- 23 3月, 2018 1 次提交
-
-
由 Paul Mackerras 提交于
Since commit 6964e6a4 ("KVM: PPC: Book3S HV: Do SLB load/unload with guest LPCR value loaded", 2018-01-11), we have been seeing occasional machine check interrupts on POWER8 systems when running KVM guests, due to SLB multihit errors. This turns out to be due to the guest exit code reloading the host SLB entries from the SLB shadow buffer when the SLB was not previously cleared in the guest entry path. This can happen because the path which skips from the guest entry code to the guest exit code without entering the guest now does the skip before the SLB is cleared and loaded with guest values, but the host values are loaded after the point in the guest exit path that we skip to. To fix this, we move the code that reloads the host SLB values up so that it occurs just before the point in the guest exit code (the label guest_bypass:) where we skip to from the guest entry path. Reported-by: NAlexey Kardashevskiy <aik@ozlabs.ru> Fixes: 6964e6a4 ("KVM: PPC: Book3S HV: Do SLB load/unload with guest LPCR value loaded") Tested-by: NAlexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
- 14 3月, 2018 1 次提交
-
-
由 Paul Mackerras 提交于
This fixes a bug where the trap number that is returned by __kvmppc_vcore_entry gets corrupted. The effect of the corruption is that IPIs get ignored on POWER9 systems when the IPI is sent via a doorbell interrupt to a CPU which is executing in a KVM guest. The effect of the IPI being ignored is often that another CPU locks up inside smp_call_function_many() (and if that CPU is holding a spinlock, other CPUs then lock up inside raw_spin_lock()). The trap number is currently held in register r12 for most of the assembly-language part of the guest exit path. In that path, we call kvmppc_subcore_exit_guest(), which is a C function, without restoring r12 afterwards. Depending on the kernel config and the compiler, it may modify r12 or it may not, so some config/compiler combinations see the bug and others don't. To fix this, we arrange for the trap number to be stored on the stack from the 'guest_bypass:' label until the end of the function, then the trap number is loaded and returned in r12 as before. Cc: stable@vger.kernel.org # v4.8+ Fixes: fd7bacbc ("KVM: PPC: Book3S HV: Fix TB corruption in guest exit path on HMI interrupt") Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
- 09 2月, 2018 1 次提交
-
-
由 Alexander Graf 提交于
We ended up with code that did a conditional branch inside a feature section to code outside of the feature section. Depending on how the object file gets organized, that might mean we exceed the 14bit relocation limit for conditional branches: arch/powerpc/kvm/built-in.o:arch/powerpc/kvm/book3s_hv_rmhandlers.S:416:(__ftr_alt_97+0x8): relocation truncated to fit: R_PPC64_REL14 against `.text'+1ca4 So instead of doing a conditional branch outside of the feature section, let's just jump at the end of the same, making the branch very short. Signed-off-by: NAlexander Graf <agraf@suse.de> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
- 19 1月, 2018 5 次提交
-
-
由 Madhavan Srinivasan 提交于
Rename the paca->soft_enabled to paca->irq_soft_mask as it is no longer used as a flag for interrupt state, but a mask. Signed-off-by: NMadhavan Srinivasan <maddy@linux.vnet.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Benjamin Herrenschmidt 提交于
This works on top of the single escalation support. When in single escalation, with this change, we will keep the escalation interrupt disabled unless the VCPU is in H_CEDE (idle). In any other case, we know the VCPU will be rescheduled and thus there is no need to take escalation interrupts in the host whenever a guest interrupt fires. Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Benjamin Herrenschmidt 提交于
Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Benjamin Herrenschmidt 提交于
Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Benjamin Herrenschmidt 提交于
The prodded flag is only cleared at the beginning of H_CEDE, so every time we have an escalation, we will cause the *next* H_CEDE to return immediately. Instead use a dedicated "irq_pending" flag to indicate that a guest interrupt is pending for the VCPU. We don't reuse the existing exception bitmap so as to avoid expensive atomic ops. Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
- 18 1月, 2018 1 次提交
-
-
由 Paul Mackerras 提交于
Hypervisor maintenance interrupts (HMIs) are generated by various causes, signalled by bits in the hypervisor maintenance exception register (HMER). In most cases calling OPAL to handle the interrupt is the correct thing to do, but the "debug trigger" HMIs signalled by PPC bit 17 (bit 46) of HMER are used to invoke software workarounds for hardware bugs, and OPAL does not have any code to handle this cause. The debug trigger HMI is used in POWER9 DD2.0 and DD2.1 chips to work around a hardware bug in executing vector load instructions to cache inhibited memory. In POWER9 DD2.2 chips, it is generated when conditions are detected relating to threads being in TM (transactional memory) suspended mode when the core SMT configuration needs to be reconfigured. The kernel currently has code to detect the vector CI load condition, but only when the HMI occurs in the host, not when it occurs in a guest. If a HMI occurs in the guest, it is always passed to OPAL, and then we always re-sync the timebase, because the HMI cause might have been a timebase error, for which OPAL would re-sync the timebase, thus removing the timebase offset which KVM applied for the guest. Since we don't know what OPAL did, we don't know whether to subtract the timebase offset from the timebase, so instead we re-sync the timebase. This adds code to determine explicitly what the cause of a debug trigger HMI will be. This is based on a new device-tree property under the CPU nodes called ibm,hmi-special-triggers, if it is present, or otherwise based on the PVR (processor version register). The handling of debug trigger HMIs is pulled out into a separate function which can be called from the KVM guest exit code. If this function handles and clears the HMI, and no other HMI causes remain, then we skip calling OPAL and we proceed to subtract the guest timebase offset from the timebase. The overall handling for HMIs that occur in the host (i.e. not in a KVM guest) is largely unchanged, except that we now don't set the flag for the vector CI load workaround on DD2.2 processors. This also removes a BUG_ON in the KVM code. BUG_ON is generally not useful in KVM guest entry/exit code since it is difficult to handle the resulting trap gracefully. Signed-off-by: NPaul Mackerras <paulus@ozlabs.org> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 17 1月, 2018 2 次提交
-
-
由 Paul Mackerras 提交于
This moves the code that loads and unloads the guest SLB values so that it is done while the guest LPCR value is loaded in the LPCR register. The reason for doing this is that on POWER9, the behaviour of the slbmte instruction depends on the LPCR[UPRT] bit. If UPRT is 1, as it is for a radix host (or guest), the SLB index is truncated to 2 bits. This means that for a HPT guest on a radix host, the SLB was not being loaded correctly, causing the guest to crash. The SLB is now loaded much later in the guest entry path, after the LPCR is loaded, which for a secondary thread is after it sees that the primary thread has switched the MMU to the guest. The loop that waits for the primary thread has a branch out to the exit code that is taken if it sees that other threads have commenced exiting the guest. Since we have now not loaded the SLB at this point, we make this path branch to a new label 'guest_bypass' and we move the SLB unload code to before this label. Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Paul Mackerras 提交于
This fixes a bug where it is possible to enter a guest on a POWER9 system without having the XIVE (interrupt controller) context loaded. This can happen because we unload the XIVE context from the CPU before doing the real-mode handling for machine checks. After the real-mode handler runs, it is possible that we re-enter the guest via a fast path which does not load the XIVE context. To fix this, we move the unloading of the XIVE context to come after the real-mode machine check handler is called. Fixes: 5af50993 ("KVM: PPC: Book3S HV: Native usage of the XIVE interrupt controller") Cc: stable@vger.kernel.org # v4.11+ Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
- 11 1月, 2018 1 次提交
-
-
由 Alexander Graf 提交于
On Book3S in HV mode, we don't use the vcpu->arch.dec field at all. Instead, all logic is built around vcpu->arch.dec_expires. So let's remove the one remaining piece of code that was setting it. Signed-off-by: NAlexander Graf <agraf@suse.de> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
- 10 1月, 2018 1 次提交
-
-
由 Nicholas Piggin 提交于
This commit does simple conversions of rfi/rfid to the new macros that include the expected destination context. By simple we mean cases where there is a single well known destination context, and it's simply a matter of substituting the instruction for the appropriate macro. Signed-off-by: NNicholas Piggin <npiggin@gmail.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 01 11月, 2017 2 次提交
-
-
由 Paul Mackerras 提交于
This patch removes the restriction that a radix host can only run radix guests, allowing us to run HPT (hashed page table) guests as well. This is useful because it provides a way to run old guest kernels that know about POWER8 but not POWER9. Unfortunately, POWER9 currently has a restriction that all threads in a given code must either all be in HPT mode, or all in radix mode. This means that when entering a HPT guest, we have to obtain control of all 4 threads in the core and get them to switch their LPIDR and LPCR registers, even if they are not going to run a guest. On guest exit we also have to get all threads to switch LPIDR and LPCR back to host values. To make this feasible, we require that KVM not be in the "independent threads" mode, and that the CPU cores be in single-threaded mode from the host kernel's perspective (only thread 0 online; threads 1, 2 and 3 offline). That allows us to use the same code as on POWER8 for obtaining control of the secondary threads. To manage the LPCR/LPIDR changes required, we extend the kvm_split_info struct to contain the information needed by the secondary threads. All threads perform a barrier synchronization (where all threads wait for every other thread to reach the synchronization point) on guest entry, both before and after loading LPCR and LPIDR. On guest exit, they all once again perform a barrier synchronization both before and after loading host values into LPCR and LPIDR. Finally, it is also currently necessary to flush the entire TLB every time we enter a HPT guest on a radix host. We do this on thread 0 with a loop of tlbiel instructions. Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Paul Mackerras 提交于
This patch allows for a mode on POWER9 hosts where we control all the threads of a core, much as we do on POWER8. The mode is controlled by a module parameter on the kvm_hv module, called "indep_threads_mode". The normal mode on POWER9 is the "independent threads" mode, with indep_threads_mode=Y, where the host is in SMT4 mode (or in fact any desired SMT mode) and each thread independently enters and exits from KVM guests without reference to what other threads in the core are doing. If indep_threads_mode is set to N at the point when a VM is started, KVM will expect every core that the guest runs on to be in single threaded mode (that is, threads 1, 2 and 3 offline), and will set the flag that prevents secondary threads from coming online. We can still use all four threads; the code that implements dynamic micro-threading on POWER8 will become active in over-commit situations and will allow up to three other VCPUs to be run on the secondary threads of the core whenever a VCPU is run. The reason for wanting this mode is that this will allow us to run HPT guests on a radix host on a POWER9 machine that does not support "mixed mode", that is, having some threads in a core be in HPT mode while other threads are in radix mode. It will also make it possible to implement a "strict threads" mode in future, if desired. Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
- 19 10月, 2017 1 次提交
-
-
由 Paul Mackerras 提交于
This reverts commit 94a04bc2. In order to run HPT guests on a radix POWER9 host, we will have to run the host in single-threaded mode, because POWER9 processors do not currently support running some threads of a core in HPT mode while others are in radix mode ("mixed mode"). That means that we will need the same mechanisms that are used on POWER8 to make the secondary threads available to KVM, which were disabled on POWER9 by commit 94a04bc2. Signed-off-by: NPaul Mackerras <paulus@ozlabs.org> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 16 10月, 2017 1 次提交
-
-
由 Benjamin Herrenschmidt 提交于
On POWER9 systems, we push the VCPU context onto the XIVE (eXternal Interrupt Virtualization Engine) hardware when entering a guest, and pull the context off the XIVE when exiting the guest. The push is done with cache-inhibited stores, and the pull with cache-inhibited loads. Testing has revealed that it is possible (though very rare) for the stores to get reordered with the loads so that we end up with the guest VCPU context still loaded on the XIVE after we have exited the guest. When that happens, it is possible for the same VCPU context to then get loaded on another CPU, which causes the machine to checkstop. To fix this, we add I/O barrier instructions (eieio) before and after the push and pull operations. As partial compensation for the potential slowdown caused by the extra barriers, we remove the eieio instructions between the two stores in the push operation, and between the two loads in the pull operation. (The architecture requires loads to cache-inhibited, guarded storage to be kept in order, and requires stores to cache-inhibited, guarded storage likewise to be kept in order, but allows such loads and stores to be reordered with respect to each other.) Reported-by: NCarol L Soto <clsoto@us.ibm.com> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
- 14 10月, 2017 2 次提交
-
-
由 Paul Mackerras 提交于
At present, if an interrupt (i.e. an exception or trap) occurs in the code where KVM is switching the MMU to or from guest context, we jump to kvmppc_bad_host_intr, where we simply spin with interrupts disabled. In this situation, it is hard to debug what happened because we get no indication as to which interrupt occurred or where. Typically we get a cascade of stall and soft lockup warnings from other CPUs. In order to get more information for debugging, this adds code to create a stack frame on the emergency stack and save register values to it. We start half-way down the emergency stack in order to give ourselves some chance of being able to do a stack trace on secondary threads that are already on the emergency stack. On POWER7 or POWER8, we then just spin, as before, because we don't know what state the MMU context is in or what other threads are doing, and we can't switch back to host context without coordinating with other threads. On POWER9 we can do better; there we load up the host MMU context and jump to C code, which prints an oops message to the console and panics. Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Nicholas Piggin 提交于
- Add another case where msgsync is required. - Required barrier sequence for global doorbells is msgsync ; lwsync When msgsnd is used for IPIs to other cores, msgsync must be executed by the target to order stores performed on the source before its msgsnd (provided the source executes the appropriate sync). Fixes: 1704a81c ("KVM: PPC: Book3S HV: Use msgsnd for IPIs to other cores on POWER9") Cc: stable@vger.kernel.org # v4.10+ Signed-off-by: NNicholas Piggin <npiggin@gmail.com> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
- 22 9月, 2017 1 次提交
-
-
由 Michael Neuling 提交于
On POWER9 DD2.1 and below, sometimes on a Hypervisor Data Storage Interrupt (HDSI) the HDSISR is not be updated at all. To work around this we put a canary value into the HDSISR before returning to a guest and then check for this canary when we take a HDSI. If we find the canary on a HDSI, we know the hardware didn't update the HDSISR. In this case we return to the guest to retake the HDSI which should correctly update the HDSISR the second time HDSI entry. After talking to Paulus we've applied this workaround to all POWER9 CPUs. The workaround of returning to the guest shouldn't ever be triggered on well behaving CPU. The extra instructions should have negligible performance impact. Signed-off-by: NMichael Neuling <mikey@neuling.org> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 12 9月, 2017 1 次提交
-
-
由 Paul Mackerras 提交于
Aneesh Kumar reported seeing host crashes when running recent kernels on POWER8. The symptom was an oops like this: Unable to handle kernel paging request for data at address 0xf00000000786c620 Faulting instruction address: 0xc00000000030e1e4 Oops: Kernel access of bad area, sig: 11 [#1] LE SMP NR_CPUS=2048 NUMA PowerNV Modules linked in: powernv_op_panel CPU: 24 PID: 6663 Comm: qemu-system-ppc Tainted: G W 4.13.0-rc7-43932-gfc36c59 #2 task: c000000fdeadfe80 task.stack: c000000fdeb68000 NIP: c00000000030e1e4 LR: c00000000030de6c CTR: c000000000103620 REGS: c000000fdeb6b450 TRAP: 0300 Tainted: G W (4.13.0-rc7-43932-gfc36c59) MSR: 9000000000009033 <SF,HV,EE,ME,IR,DR,RI,LE> CR: 24044428 XER: 20000000 CFAR: c00000000030e134 DAR: f00000000786c620 DSISR: 40000000 SOFTE: 0 GPR00: 0000000000000000 c000000fdeb6b6d0 c0000000010bd000 000000000000e1b0 GPR04: c00000000115e168 c000001fffa6e4b0 c00000000115d000 c000001e1b180386 GPR08: f000000000000000 c000000f9a8913e0 f00000000786c600 00007fff587d0000 GPR12: c000000fdeb68000 c00000000fb0f000 0000000000000001 00007fff587cffff GPR16: 0000000000000000 c000000000000000 00000000003fffff c000000fdebfe1f8 GPR20: 0000000000000004 c000000fdeb6b8a8 0000000000000001 0008000000000040 GPR24: 07000000000000c0 00007fff587cffff c000000fdec20bf8 00007fff587d0000 GPR28: c000000fdeca9ac0 00007fff587d0000 00007fff587c0000 00007fff587d0000 NIP [c00000000030e1e4] __get_user_pages_fast+0x434/0x1070 LR [c00000000030de6c] __get_user_pages_fast+0xbc/0x1070 Call Trace: [c000000fdeb6b6d0] [c00000000139dab8] lock_classes+0x0/0x35fe50 (unreliable) [c000000fdeb6b7e0] [c00000000030ef38] get_user_pages_fast+0xf8/0x120 [c000000fdeb6b830] [c000000000112318] kvmppc_book3s_hv_page_fault+0x308/0xf30 [c000000fdeb6b960] [c00000000010e10c] kvmppc_vcpu_run_hv+0xfdc/0x1f00 [c000000fdeb6bb20] [c0000000000e915c] kvmppc_vcpu_run+0x2c/0x40 [c000000fdeb6bb40] [c0000000000e5650] kvm_arch_vcpu_ioctl_run+0x110/0x300 [c000000fdeb6bbe0] [c0000000000d6468] kvm_vcpu_ioctl+0x528/0x900 [c000000fdeb6bd40] [c0000000003bc04c] do_vfs_ioctl+0xcc/0x950 [c000000fdeb6bde0] [c0000000003bc930] SyS_ioctl+0x60/0x100 [c000000fdeb6be30] [c00000000000b96c] system_call+0x58/0x6c Instruction dump: 7ca81a14 2fa50000 41de0010 7cc8182a 68c60002 78c6ffe2 0b060000 3cc2000a 794a3664 390610d8 e9080000 7d485214 <e90a0020> 7d435378 790507e1 408202f0 ---[ end trace fad4a342d0414aa2 ]--- It turns out that what has happened is that the SLB entry for the vmmemap region hasn't been reloaded on exit from a guest, and it has the wrong page size. Then, when the host next accesses the vmemmap region, it gets a page fault. Commit a25bd72b ("powerpc/mm/radix: Workaround prefetch issue with KVM", 2017-07-24) modified the guest exit code so that it now only clears out the SLB for hash guest. The code tests the radix flag and puts the result in a non-volatile CR field, CR2, and later branches based on CR2. Unfortunately, the kvmppc_save_tm function, which gets called between those two points, modifies all the user-visible registers in the case where the guest was in transactional or suspended state, except for a few which it restores (namely r1, r2, r9 and r13). Thus the hash/radix indication in CR2 gets corrupted. This fixes the problem by re-doing the comparison just before the result is needed. For good measure, this also adds comments next to the call sites of kvmppc_save_tm and kvmppc_restore_tm pointing out that non-volatile register state will be lost. Cc: stable@vger.kernel.org # v4.13 Fixes: a25bd72b ("powerpc/mm/radix: Workaround prefetch issue with KVM") Tested-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
- 31 8月, 2017 2 次提交
-
-
由 Paul Mackerras 提交于
Commit 2f272463 ("KVM: PPC: Book3S HV: Cope with host using large decrementer mode", 2017-05-22) added code to treat the hypervisor decrementer (HDEC) as a 64-bit value on POWER9 rather than 32-bit. Unfortunately, that commit missed one place where HDEC is treated as a 32-bit value. This fixes it. This bug should not have any user-visible consequences that I can think of, beyond an occasional unnecessary exit to the host kernel. If the hypervisor decrementer has gone negative, then the bottom 32 bits will be negative for about 4 seconds after that, so as long as we get out of the guest within those 4 seconds we won't conclude that the HDEC interrupt is spurious. Reported-by: NSuraj Jitindar Singh <sjitindarsingh@gmail.com> Fixes: 2f272463 ("KVM: PPC: Book3S HV: Cope with host using large decrementer mode") Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Andreas Schwab 提交于
binutils >= 2.26 now warns about misuse of register expressions in assembler operands that are actually literals. In this instance r0 is being used where a literal 0 should be used. Signed-off-by: NAndreas Schwab <schwab@linux-m68k.org> [mpe: Split into separate KVM patch, tweak change log] Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
- 29 8月, 2017 1 次提交
-
-
由 Nicholas Piggin 提交于
POWER9 CPUs have independent MMU contexts per thread, so KVM does not need to quiesce secondary threads, so the hwthread_req/hwthread_state protocol does not have to be used. So patch it away on POWER9, and patch away the branch from the Linux idle wakeup to kvm_start_guest that is never used. Add a warning and error out of kvmppc_grab_hwthread in case it is ever called on POWER9. This avoids a hwsync in the idle wakeup path on POWER9. Signed-off-by: NNicholas Piggin <npiggin@gmail.com> Acked-by: NPaul Mackerras <paulus@ozlabs.org> [mpe: Use WARN(...) instead of WARN_ON()/pr_err(...)] Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 24 8月, 2017 1 次提交
-
-
由 Nicholas Piggin 提交于
When msgsnd is used for IPIs to other cores, msgsync must be executed by the target to order stores performed on the source before its msgsnd (provided the source executes the appropriate sync). Fixes: 1704a81c ("KVM: PPC: Book3S HV: Use msgsnd for IPIs to other cores on POWER9") Signed-off-by: NNicholas Piggin <npiggin@gmail.com> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
- 26 7月, 2017 1 次提交
-
-
由 Benjamin Herrenschmidt 提交于
There's a somewhat architectural issue with Radix MMU and KVM. When coming out of a guest with AIL (Alternate Interrupt Location, ie, MMU enabled), we start executing hypervisor code with the PID register still containing whatever the guest has been using. The problem is that the CPU can (and will) then start prefetching or speculatively load from whatever host context has that same PID (if any), thus bringing translations for that context into the TLB, which Linux doesn't know about. This can cause stale translations and subsequent crashes. Fixing this in a way that is neither racy nor a huge performance impact is difficult. We could just make the host invalidations always use broadcast forms but that would hurt single threaded programs for example. We chose to fix it instead by partitioning the PID space between guest and host. This is possible because today Linux only use 19 out of the 20 bits of PID space, so existing guests will work if we make the host use the top half of the 20 bits space. We additionally add support for a property to indicate to Linux the size of the PID register which will be useful if we eventually have processors with a larger PID space available. There is still an issue with malicious guests purposefully setting the PID register to a value in the hosts PID range. Hopefully future HW can prevent that, but in the meantime, we handle it with a pair of kludges: - On the way out of a guest, before we clear the current VCPU in the PACA, we check the PID and if it's outside of the permitted range we flush the TLB for that PID. - When context switching, if the mm is "new" on that CPU (the corresponding bit was set for the first time in the mm cpumask), we check if any sibling thread is in KVM (has a non-NULL VCPU pointer in the PACA). If that is the case, we also flush the PID for that CPU (core). This second part is needed to handle the case where a process is migrated (or starts a new pthread) on a sibling thread of the CPU coming out of KVM, as there's a window where stale translations can exist before we detect it and flush them out. A future optimization could be added by keeping track of whether the PID has ever been used and avoid doing that for completely fresh PIDs. We could similarily mark PIDs that have been the subject of a global invalidation as "fresh". But for now this will do. Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org> [mpe: Rework the asm to build with CONFIG_PPC_RADIX_MMU=n, drop unneeded include of kvm_book3s_asm.h] Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 01 7月, 2017 1 次提交
-
-
由 Paul Mackerras 提交于
At present, interrupts are hard-disabled fairly late in the guest entry path, in the assembly code. Since we check for pending signals for the vCPU(s) task(s) earlier in the guest entry path, it is possible for a signal to be delivered before we enter the guest but not be noticed until after we exit the guest for some other reason. Similarly, it is possible for the scheduler to request a reschedule while we are in the guest entry path, and we won't notice until after we have run the guest, potentially for a whole timeslice. Furthermore, with a radix guest on POWER9, we can take the interrupt with the MMU on. In this case we end up leaving interrupts hard-disabled after the guest exit, and they are likely to stay hard-disabled until we exit to userspace or context-switch to another process. This was masking the fact that we were also not setting the RI (recoverable interrupt) bit in the MSR, meaning that if we had taken an interrupt, it would have crashed the host kernel with an unrecoverable interrupt message. To close these races, we need to check for signals and reschedule requests after hard-disabling interrupts, and then keep interrupts hard-disabled until we enter the guest. If there is a signal or a reschedule request from another CPU, it will send an IPI, which will cause a guest exit. This puts the interrupt disabling before we call kvmppc_start_thread() for all the secondary threads of this core that are going to run vCPUs. The reason for that is that once we have started the secondary threads there is no easy way to back out without going through at least part of the guest entry path. However, kvmppc_start_thread() includes some code for radix guests which needs to call smp_call_function(), which must be called with interrupts enabled. To solve this problem, this patch moves that code into a separate function that is called earlier. When the guest exit is caused by an external interrupt, a hypervisor doorbell or a hypervisor maintenance interrupt, we now handle these using the replay facility. __kvmppc_vcore_entry() now returns the trap number that caused the exit on this thread, and instead of the assembly code jumping to the handler entry, we return to C code with interrupts still hard-disabled and set the irq_happened flag in the PACA, so that when we do local_irq_enable() the appropriate handler gets called. With all this, we now have the interrupt soft-enable flag clear while we are in the guest. This is useful because code in the real-mode hypercall handlers that checks whether interrupts are enabled will now see that they are disabled, which is correct, since interrupts are hard-disabled in the real-mode code. Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
- 22 6月, 2017 1 次提交
-
-
由 Aravinda Prasad 提交于
Enhance KVM to cause a guest exit with KVM_EXIT_NMI exit reason upon a machine check exception (MCE) in the guest address space if the KVM_CAP_PPC_FWNMI capability is enabled (instead of delivering a 0x200 interrupt to guest). This enables QEMU to build error log and deliver machine check exception to guest via guest registered machine check handler. This approach simplifies the delivery of machine check exception to guest OS compared to the earlier approach of KVM directly invoking 0x200 guest interrupt vector. This design/approach is based on the feedback for the QEMU patches to handle machine check exception. Details of earlier approach of handling machine check exception in QEMU and related discussions can be found at: https://lists.nongnu.org/archive/html/qemu-devel/2014-11/msg00813.html Note: This patch now directly invokes machine_check_print_event_info() from kvmppc_handle_exit_hv() to print the event to host console at the time of guest exit before the exception is passed on to the guest. Hence, the host-side handling which was performed earlier via machine_check_fwnmi is removed. The reasons for this approach is (i) it is not possible to distinguish whether the exception occurred in the guest or the host from the pt_regs passed on the machine_check_exception(). Hence machine_check_exception() calls panic, instead of passing on the exception to the guest, if the machine check exception is not recoverable. (ii) the approach introduced in this patch gives opportunity to the host kernel to perform actions in virtual mode before passing on the exception to the guest. This approach does not require complex tweaks to machine_check_fwnmi and friends. Signed-off-by: NAravinda Prasad <aravinda@linux.vnet.ibm.com> Reviewed-by: NDavid Gibson <david@gibson.dropbear.id.au> Signed-off-by: NMahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
- 19 6月, 2017 4 次提交
-
-
由 Nicholas Piggin 提交于
Idle code now always runs at the 0xc... effective address whether in real or virtual mode. This means rfid can be ditched, along with a lot of SRR manipulations. In the wakeup path, carry SRR1 around in r12. Use mtmsrd to change MSR states as required. This also balances the return prediction for the idle call, by doing blr rather than rfid to return to the idle caller. On POWER9, 2-process context switch on different cores, with snooze disabled, increases performance by 2%. Signed-off-by: NNicholas Piggin <npiggin@gmail.com> [mpe: Incorporate v2 fixes from Nick] Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Paul Mackerras 提交于
On POWER9, we no longer have the restriction that we had on POWER8 where all threads in a core have to be in the same partition, so the CPU threads are now independent. However, we still want to be able to run guests with a virtual SMT topology, if only to allow migration of guests from POWER8 systems to POWER9. A guest that has a virtual SMT mode greater than 1 will expect to be able to use the doorbell facility; it will expect the msgsndp and msgclrp instructions to work appropriately and to be able to read sensible values from the TIR (thread identification register) and DPDES (directed privileged doorbell exception status) special-purpose registers. However, since each CPU thread is a separate sub-processor in POWER9, these instructions and registers can only be used within a single CPU thread. In order for these instructions to appear to act correctly according to the guest's virtual SMT mode, we have to trap and emulate them. We cause them to trap by clearing the HFSCR_MSGP bit in the HFSCR register. The emulation is triggered by the hypervisor facility unavailable interrupt that occurs when the guest uses them. To cause a doorbell interrupt to occur within the guest, we set the DPDES register to 1. If the guest has interrupts enabled, the CPU will generate a doorbell interrupt and clear the DPDES register in hardware. The DPDES hardware register for the guest is saved in the vcpu->arch.vcore->dpdes field. Since this gets written by the guest exit code, other VCPUs wishing to cause a doorbell interrupt don't write that field directly, but instead set a vcpu->arch.doorbell_request flag. This is consumed and set to 0 by the guest entry code, which then sets DPDES to 1. Emulating reads of the DPDES register is somewhat involved, because it requires reading the doorbell pending interrupt status of all of the VCPU threads in the virtual core, and if any of those VCPUs are running, their doorbell status is only up-to-date in the hardware DPDES registers of the CPUs where they are running. In order to get a reasonable approximation of the current doorbell status, we send those CPUs an IPI, causing an exit from the guest which will update the vcpu->arch.vcore->dpdes field. We then use that value in constructing the emulated DPDES register value. Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Paul Mackerras 提交于
This adds code to allow us to use a different value for the HFSCR (Hypervisor Facilities Status and Control Register) when running the guest from that which applies in the host. The reason for doing this is to allow us to trap the msgsndp instruction and related operations in future so that they can be virtualized. We also save the value of HFSCR when a hypervisor facility unavailable interrupt occurs, because the high byte of HFSCR indicates which facility the guest attempted to access. We save and restore the host value on guest entry/exit because some bits of it affect host userspace execution. We only do all this on POWER9, not on POWER8, because we are not intending to virtualize any of the facilities controlled by HFSCR on POWER8. In particular, the HFSCR bit that controls execution of msgsndp and related operations does not exist on POWER8. The HFSCR doesn't exist at all on POWER7. Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Paul Mackerras 提交于
This allows userspace (e.g. QEMU) to enable large decrementer mode for the guest when running on a POWER9 host, by setting the LPCR_LD bit in the guest LPCR value. With this, the guest exit code saves 64 bits of the guest DEC value on exit. Other places that use the guest DEC value check the LPCR_LD bit in the guest LPCR value, and if it is set, omit the 32-bit sign extension that would otherwise be done. This doesn't change the DEC emulation used by PR KVM because PR KVM is not supported on POWER9 yet. This is partly based on an earlier patch by Oliver O'Halloran. Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
- 16 6月, 2017 1 次提交
-
-
由 Paul Mackerras 提交于
At present, HV KVM on POWER8 and POWER9 machines loses any instruction or data breakpoint set in the host whenever a guest is run. Instruction breakpoints are currently only used by xmon, but ptrace and the perf_event subsystem can set data breakpoints as well as xmon. To fix this, we save the host values of the debug registers (CIABR, DAWR and DAWRX) before entering the guest and restore them on exit. To provide space to save them in the stack frame, we expand the stack frame allocated by kvmppc_hv_entry() from 112 to 144 bytes. Fixes: b005255e ("KVM: PPC: Book3S HV: Context-switch new POWER8 SPRs", 2014-01-08) Cc: stable@vger.kernel.org # v3.14+ Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
- 15 6月, 2017 1 次提交
-
-
由 Paul Mackerras 提交于
This restores several special-purpose registers (SPRs) to sane values on guest exit that were missed before. TAR and VRSAVE are readable and writable by userspace, and we need to save and restore them to prevent the guest from potentially affecting userspace execution (not that TAR or VRSAVE are used by any known program that run uses the KVM_RUN ioctl). We save/restore these in kvmppc_vcpu_run_hv() rather than on every guest entry/exit. FSCR affects userspace execution in that it can prohibit access to certain facilities by userspace. We restore it to the normal value for the task on exit from the KVM_RUN ioctl. IAMR is normally 0, and is restored to 0 on guest exit. However, with a radix host on POWER9, it is set to a value that prevents the kernel from executing user-accessible memory. On POWER9, we save IAMR on guest entry and restore it on guest exit to the saved value rather than 0. On POWER8 we continue to set it to 0 on guest exit. PSPB is normally 0. We restore it to 0 on guest exit to prevent userspace taking advantage of the guest having set it non-zero (which would allow userspace to set its SMT priority to high). UAMOR is normally 0. We restore it to 0 on guest exit to prevent the AMR from being used as a covert channel between userspace processes, since the AMR is not context-switched at present. Fixes: b005255e ("KVM: PPC: Book3S HV: Context-switch new POWER8 SPRs", 2014-01-08) Cc: stable@vger.kernel.org # v3.14+ Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
- 29 5月, 2017 1 次提交
-
-
由 Paul Mackerras 提交于
POWER9 introduces a new mode for the decrementer register, called large decrementer mode, in which the decrementer counter is 56 bits wide rather than 32, and reads are sign-extended rather than zero-extended. For the decrementer, this new mode is optional and controlled by a bit in the LPCR. The hypervisor decrementer (HDEC) is 56 bits wide on POWER9 and has no mode control. Since KVM code reads and writes the decrementer and hypervisor decrementer registers in a few places, it needs to be aware of the need to treat the decrementer value as a 64-bit quantity, and only do a 32-bit sign extension when large decrementer mode is not in effect. Similarly, the HDEC should always be treated as a 64-bit quantity on POWER9. We define a new EXTEND_HDEC macro to encapsulate the feature test for POWER9 and the sign extension. To enable the sign extension to be removed in large decrementer mode, we test the LPCR_LD bit in the host LPCR image stored in the struct kvm for the guest. If is set then large decrementer mode is enabled and the sign extension should be skipped. This is partly based on an earlier patch by Oliver O'Halloran. Cc: stable@vger.kernel.org # v4.10+ Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
- 27 4月, 2017 1 次提交
-
-
由 Benjamin Herrenschmidt 提交于
This patch makes KVM capable of using the XIVE interrupt controller to provide the standard PAPR "XICS" style hypercalls. It is necessary for proper operations when the host uses XIVE natively. This has been lightly tested on an actual system, including PCI pass-through with a TG3 device. Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org> [mpe: Cleanup pr_xxx(), unsplit pr_xxx() strings, etc., fix build failures by adding KVM_XIVE which depends on KVM_XICS and XIVE, and adding empty stubs for the kvm_xive_xxx() routines, fixup subject, integrate fixes from Paul for building PR=y HV=n] Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 01 3月, 2017 1 次提交
-
-
由 Paul Mackerras 提交于
In HPT mode on POWER9, the ASDR register is supposed to record segment information for hypervisor page faults. It turns out that POWER9 DD1 does not record the page size information in the ASDR for faults in guest real mode. We have the necessary information in memory already, so by moving the checks for real mode that already existed, we can use the in-memory copy. Since a load is likely to be faster than reading an SPR, we do this unconditionally (not just for POWER9 DD1). Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
- 31 1月, 2017 3 次提交
-
-
由 Paul Mackerras 提交于
On POWER9 DD1, we need to invalidate the ERAT (effective to real address translation cache) when changing the PIDR register, which we do as part of guest entry and exit. Signed-off-by: NPaul Mackerras <paulus@ozlabs.org> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Paul Mackerras 提交于
If we allow LPCR[AIL] to be set for radix guests, then interrupts from the guest to the host can be delivered by the hardware with relocation on, and thus the code path starting at kvmppc_interrupt_hv can be executed in virtual mode (MMU on) for radix guests (previously it was only ever executed in real mode). Most of the code is indifferent to whether the MMU is on or off, but the calls to OPAL that use the real-mode OPAL entry code need to be switched to use the virtual-mode code instead. The affected calls are the calls to the OPAL XICS emulation functions in kvmppc_read_one_intr() and related functions. We test the MSR[IR] bit to detect whether we are in real or virtual mode, and call the opal_rm_* or opal_* function as appropriate. The other place that depends on the MMU being off is the optimization where the guest exit code jumps to the external interrupt vector or hypervisor doorbell interrupt vector, or returns to its caller (which is __kvmppc_vcore_entry). If the MMU is on and we are returning to the caller, then we don't need to use an rfid instruction since the MMU is already on; a simple blr suffices. If there is an external or hypervisor doorbell interrupt to handle, we branch to the relocation-on version of the interrupt vector. Signed-off-by: NPaul Mackerras <paulus@ozlabs.org> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Paul Mackerras 提交于
With radix, the guest can do TLB invalidations itself using the tlbie (global) and tlbiel (local) TLB invalidation instructions. Linux guests use local TLB invalidations for translations that have only ever been accessed on one vcpu. However, that doesn't mean that the translations have only been accessed on one physical cpu (pcpu) since vcpus can move around from one pcpu to another. Thus a tlbiel might leave behind stale TLB entries on a pcpu where the vcpu previously ran, and if that task then moves back to that previous pcpu, it could see those stale TLB entries and thus access memory incorrectly. The usual symptom of this is random segfaults in userspace programs in the guest. To cope with this, we detect when a vcpu is about to start executing on a thread in a core that is a different core from the last time it executed. If that is the case, then we mark the core as needing a TLB flush and then send an interrupt to any thread in the core that is currently running a vcpu from the same guest. This will get those vcpus out of the guest, and the first one to re-enter the guest will do the TLB flush. The reason for interrupting the vcpus executing on the old core is to cope with the following scenario: CPU 0 CPU 1 CPU 4 (core 0) (core 0) (core 1) VCPU 0 runs task X VCPU 1 runs core 0 TLB gets entries from task X VCPU 0 moves to CPU 4 VCPU 0 runs task X Unmap pages of task X tlbiel (still VCPU 1) task X moves to VCPU 1 task X runs task X sees stale TLB entries That is, as soon as the VCPU starts executing on the new core, it could unmap and tlbiel some page table entries, and then the task could migrate to one of the VCPUs running on the old core and potentially see stale TLB entries. Since the TLB is shared between all the threads in a core, we only use the bit of kvm->arch.need_tlb_flush corresponding to the first thread in the core. To ensure that we don't have a window where we can miss a flush, this moves the clearing of the bit from before the actual flush to after it. This way, two threads might both do the flush, but we prevent the situation where one thread can enter the guest before the flush is finished. Signed-off-by: NPaul Mackerras <paulus@ozlabs.org> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-