- 03 7月, 2008 1 次提交
-
-
由 Alasdair G Kergon 提交于
When devices are stacked, one device's merge_bvec_fn may need to perform the mapping and then call one or more functions for its underlying devices. The following bio fields are used: bio->bi_sector bio->bi_bdev bio->bi_size bio->bi_rw using bio_data_dir() This patch creates a new struct bvec_merge_data holding a copy of those fields to avoid having to change them directly in the struct bio when going down the stack only to have to change them back again on the way back up. (And then when the bio gets mapped for real, the whole exercise gets repeated, but that's a problem for another day...) Signed-off-by: NAlasdair G Kergon <agk@redhat.com> Cc: Neil Brown <neilb@suse.de> Cc: Milan Broz <mbroz@redhat.com> Signed-off-by: NJens Axboe <jens.axboe@oracle.com>
-
- 28 6月, 2008 2 次提交
-
-
由 Neil Brown 提交于
We shouldn't acknowledge that a stripe has been expanded (When reshaping a raid5 by adding a device) until the moved data has actually been written out. However we are currently acknowledging (by calling md_done_sync) when the POST_XOR is complete and before the write. So track in s.locked whether there are pending writes, and don't call md_done_sync yet if there are. Note: we all set R5_LOCKED on devices which are are about to read from. This probably isn't technically necessary, but is usually done when writing a block, and justifies the use of s.locked here. This bug can lead to a crash if an array is stopped while an reshape is in progress. Cc: <stable@kernel.org> Signed-off-by: NNeil Brown <neilb@suse.de>
-
由 Neil Brown 提交于
If, while assembling an array, we find a device which is not fully in-sync with the array, it is important to set the "fullsync" flags. This is an exact analog to the setting of this flag in hot_add_disk methods. Currently, only v1.x metadata supports having devices in an array which are not fully in-sync (it keep track of how in sync they are). The 'fullsync' flag only makes a difference when a write-intent bitmap is being used. In this case it tells recovery to ignore the bitmap and recovery all blocks. This fix is already in place for raid1, but not raid5/6 or raid10. So without this fix, a raid1 ir raid4/5/6 array with version 1.x metadata and a write intent bitmaps, that is stopped in the middle of a recovery, will appear to complete the recovery instantly after it is reassembled, but the recovery will not be correct. If you might have an array like that, issueing echo repair > /sys/block/mdXX/md/sync_action will make sure recovery completes properly. Cc: <stable@kernel.org> Signed-off-by: NNeil Brown <neilb@suse.de>
-
- 07 6月, 2008 2 次提交
-
-
由 Dan Williams 提交于
If a block is computed (rather than read) then a check/repair operation may be lead to believe that the data on disk is correct, when infact it isn't. So only compute blocks for failed devices. This issue has been around since at least 2.6.12, but has become harder to hit in recent kernels since most reads bypass the cache. echo repair > /sys/block/mdN/md/sync_action will set the parity blocks to the correct state. Cc: <stable@kernel.org> Signed-off-by: NDan Williams <dan.j.williams@intel.com> Signed-off-by: NNeil Brown <neilb@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Dan Williams 提交于
During the initial array synchronization process there is a window between when a prexor operation is scheduled to a specific stripe and when it completes for a sync_request to be scheduled to the same stripe. When this happens the prexor completes and the stripe is unconditionally marked "insync", effectively canceling the sync_request for the stripe. Prior to 2.6.23 this was not a problem because the prexor operation was done under sh->lock. The effect in older kernels being that the prexor would still erroneously mark the stripe "insync", but sync_request would be held off and re-mark the stripe as "!in_sync". Change the write completion logic to not mark the stripe "in_sync" if a prexor was performed. The effect of the change is to sometimes not set STRIPE_INSYNC. The worst this can do is cause the resync to stall waiting for STRIPE_INSYNC to be set. If this were happening, then STRIPE_SYNCING would be set and handle_issuing_new_read_requests would cause all available blocks to eventually be read, at which point prexor would never be used on that stripe any more and STRIPE_INSYNC would eventually be set. echo repair > /sys/block/mdN/md/sync_action will correct arrays that may have lost this race. Cc: <stable@kernel.org> Signed-off-by: NDan Williams <dan.j.williams@intel.com> Signed-off-by: NNeil Brown <neilb@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 25 5月, 2008 2 次提交
-
-
由 NeilBrown 提交于
When we get any IO error during a recovery (rebuilding a spare), we abort the recovery and restart it. For RAID6 (and multi-drive RAID1) it may not be best to restart at the beginning: when multiple failures can be tolerated, the recovery may be able to continue and re-doing all that has already been done doesn't make sense. We already have the infrastructure to record where a recovery is up to and restart from there, but it is not being used properly. This is because: - We sometimes abort with MD_RECOVERY_ERR rather than just MD_RECOVERY_INTR, which causes the recovery not be be checkpointed. - We remove spares and then re-added them which loses important state information. The distinction between MD_RECOVERY_ERR and MD_RECOVERY_INTR really isn't needed. If there is an error, the relevant drive will be marked as Faulty, and that is enough to ensure correct handling of the error. So we first remove MD_RECOVERY_ERR, changing some of the uses of it to MD_RECOVERY_INTR. Then we cause the attempt to remove a non-faulty device from an array to fail (unless recovery is impossible as the array is too degraded). Then when remove_and_add_spares attempts to remove the devices on which recovery can continue, it will fail, they will remain in place, and recovery will continue on them as desired. Issue: If we are halfway through rebuilding a spare and another drive fails, and a new spare is immediately available, do we want to: 1/ complete the current rebuild, then go back and rebuild the new spare or 2/ restart the rebuild from the start and rebuild both devices in parallel. Both options can be argued for. The code currently takes option 2 as a/ this requires least code change b/ this results in a minimally-degraded array in minimal time. Cc: "Eivind Sarto" <ivan@kasenna.com> Signed-off-by: NNeil Brown <neilb@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Bernd Schubert 提交于
Last night we had scsi problems and a hardware raid unit was offlined during heavy i/o. While this happened we got for about 3 minutes a huge number messages like these Apr 12 03:36:07 pfs1n14 kernel: [197510.696595] raid5:md7: read error not correctable (sector 2993096568 on sdj2). I guess the high error rate is responsible for not scheduling other events - during this time the system was not pingable and in the end also other devices run into scsi command timeouts causing problems on these unrelated devices as well. Signed-off-by: NBernd Schubert <bernd-schubert@gmx.de> Signed-off-by: NDan Williams <dan.j.williams@intel.com> Signed-off-by: NNeil Brown <neilb@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 15 5月, 2008 1 次提交
-
-
由 Neil Brown 提交于
As setting and clearing queue flags now requires that we hold a spinlock on the queue, and as blk_queue_stack_limits is called without that lock, get the lock inside blk_queue_stack_limits. For blk_queue_stack_limits to be able to find the right lock, each md personality needs to set q->queue_lock to point to the appropriate lock. Those personalities which didn't previously use a spin_lock, us q->__queue_lock. So always initialise that lock when allocated. With this in place, setting/clearing of the QUEUE_FLAG_PLUGGED bit will no longer cause warnings as it will be clear that the proper lock is held. Thanks to Dan Williams for review and fixing the silly bugs. Signed-off-by: NNeilBrown <neilb@suse.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Jens Axboe <jens.axboe@oracle.com> Cc: Alistair John Strachan <alistair@devzero.co.uk> Cc: Nick Piggin <npiggin@suse.de> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Jacek Luczak <difrost.kernel@gmail.com> Cc: Prakash Punnoor <prakash@punnoor.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 13 5月, 2008 1 次提交
-
-
由 Dan Williams 提交于
commit bd2ab670 "md: close a livelock window in handle_parity_checks5" introduced a bug in handling 'repair' operations. After a repair operation completes we clear the state bits tracking this operation. However, they are cleared too early and this results in the code deciding to re-run the parity check operation. Since we have done the repair in memory the second check does not find a mismatch and thus does not do a writeback. Test results: $ echo repair > /sys/block/md0/md/sync_action $ cat /sys/block/md0/md/mismatch_cnt 51072 $ echo repair > /sys/block/md0/md/sync_action $ cat /sys/block/md0/md/mismatch_cnt 0 (also fix incorrect indentation) Cc: <stable@kernel.org> Tested-by: NGeorge Spelvin <linux@horizon.com> Acked-by: NNeilBrown <neilb@suse.de> Signed-off-by: NDan Williams <dan.j.williams@intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 30 4月, 2008 1 次提交
-
-
由 Dan Williams 提交于
Allows a userspace metadata handler to take action upon detecting a device failure. Based on an original patch by Neil Brown. Changes: -added blocked_wait waitqueue to rdev -don't qualify Blocked with Faulty always let userspace block writes -added md_wait_for_blocked_rdev to wait for the block device to be clear, if userspace misses the notification another one is sent every 5 seconds -set MD_RECOVERY_NEEDED after clearing "blocked" -kill DoBlock flag, just test mddev->external Signed-off-by: NDan Williams <dan.j.williams@intel.com> Signed-off-by: NNeil Brown <neilb@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 28 4月, 2008 4 次提交
-
-
由 Nick Andrew 提交于
MD drivers use one printk() call to print 2 log messages and the second line may be prefixed by a TAB character. It may also output a trailing space before newline. klogd (I think) turns the TAB character into the 2 characters '^I' when logging to a file. This looks ugly. Instead of a leading TAB to indicate continuation, prefix both output lines with 'raid:' or similar. Also remove any trailing space in the vicinity of the affected code and consistently end the sentences with a period. Signed-off-by: NNick Andrew <nick@nick-andrew.net> Cc: Neil Brown <neilb@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Dan Williams 提交于
strict_strtoul handles the open-coded sanity checks in raid5_store_stripe_cache_size and raid5_store_preread_threshold Acked-by: NNeilBrown <neilb@suse.de> Signed-off-by: NDan Williams <dan.j.williams@intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Dan Williams 提交于
Improve write performance by preventing the delayed_list from dumping all its stripes onto the handle_list in one shot. Delayed stripes are now further delayed by being held on the 'hold_list'. The 'hold_list' is bypassed when: * a STRIPE_IO_STARTED stripe is found at the head of 'handle_list' * 'handle_list' is empty and i/o is being done to satisfy full stripe-width write requests * 'bypass_count' is less than 'bypass_threshold'. By default the threshold is 1, i.e. every other stripe handled is a preread stripe provided the top two conditions are false. Benchmark data: System: 2x Xeon 5150, 4x SATA, mem=1GB Baseline: 2.6.24-rc7 Configuration: mdadm --create /dev/md0 /dev/sd[b-e] -n 4 -l 5 --assume-clean Test1: dd if=/dev/zero of=/dev/md0 bs=1024k count=2048 * patched: +33% (stripe_cache_size = 256), +25% (stripe_cache_size = 512) Test2: tiobench --size 2048 --numruns 5 --block 4096 --block 131072 (XFS) * patched: +13% * patched + preread_bypass_threshold = 0: +37% Changes since v1: * reduce bypass_threshold from (chunk_size / sectors_per_chunk) to (1) and make it configurable. This defaults to fairness and modest performance gains out of the box. Changes since v2: * [neilb@suse.de]: kill STRIPE_PRIO_HI and preread_needed as they are not necessary, the important change was clearing STRIPE_DELAYED in add_stripe_bio and this has been moved out to make_request for the hang fix. * [neilb@suse.de]: simplify get_priority_stripe * [dan.j.williams@intel.com]: reset the bypass_count when ->hold_list is sampled empty (+11%) * [dan.j.williams@intel.com]: decrement the bypass_count at the detection of stripes being naturally promoted off of hold_list +2%. Note, resetting bypass_count instead of decrementing on these events yields +4% but that is probably too aggressive. Changes since v3: * cosmetic fixups Tested-by: NJames W. Laferriere <babydr@baby-dragons.com> Signed-off-by: NDan Williams <dan.j.williams@intel.com> Signed-off-by: NNeil Brown <neilb@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Harvey Harrison 提交于
__FUNCTION__ is gcc-specific, use __func__ Signed-off-by: NHarvey Harrison <harvey.harrison@gmail.com> Cc: Neil Brown <neilb@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 11 4月, 2008 1 次提交
-
-
由 Dan Williams 提交于
If a failure is detected after a parity check operation has been initiated, but before it completes handle_parity_checks5 will never quiesce operations on the stripe. Explicitly handle this case by "canceling" the parity check, i.e. clear the STRIPE_OP_CHECK flags and queue the stripe on the handle list again to refresh any non-uptodate blocks. Kernel versions >= 2.6.23 are susceptible. Cc: <stable@kernel.org> Cc: NeilBrown <neilb@suse.de> Signed-off-by: NDan Williams <dan.j.williams@intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 20 3月, 2008 1 次提交
-
-
由 Andrew Morton 提交于
gcc-3.4.5 on sparc64: drivers/md/raid5.c: In function `raid5_end_read_request': drivers/md/raid5.c:1147: warning: long long unsigned int format, long unsigned int arg (arg 4) drivers/md/raid5.c:1164: warning: long long unsigned int format, long unsigned int arg (arg 3) drivers/md/raid5.c:1170: warning: long long unsigned int format, long unsigned int arg (arg 3) sector_t is u64, and we don't know what type the architecture uses to implement u64 (on some it is unsigned long). Cc: Neil Brown <neilb@suse.de> Cc: "J. Bruce Fields" <bfields@fieldses.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 07 2月, 2008 4 次提交
-
-
由 NeilBrown 提交于
raid5's 'make_request' function calls generic_make_request on underlying devices and if we run out of stripe heads, it could end up waiting for one of those requests to complete. This is bad as recursive calls to generic_make_request go on a queue and are not even attempted until make_request completes. So: don't make any generic_make_request calls in raid5 make_request until all waiting has been done. We do this by simply setting STRIPE_HANDLE instead of calling handle_stripe(). If we need more stripe_heads, raid5d will get called to process the pending stripe_heads which will call generic_make_request from a This change by itself causes a performance hit. So add a change so that raid5_activate_delayed is only called at unplug time, never in raid5. This seems to bring back the performance numbers. Calling it in raid5d was sometimes too soon... Neil said: How about we queue it for 2.6.25-rc1 and then about when -rc2 comes out, we queue it for 2.6.24.y? Acked-by: NDan Williams <dan.j.williams@intel.com> Signed-off-by: NNeil Brown <neilb@suse.de> Tested-by: Ndean gaudet <dean@arctic.org> Cc: <stable@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 NeilBrown 提交于
As this is more in line with common practice in the kernel. Also swap the args around to be more like list_for_each. Signed-off-by: NNeil Brown <neilb@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 NeilBrown 提交于
This allows userspace to control resync/reshape progress and synchronise it with other activities, such as shared access in a SAN, or backing up critical sections during a tricky reshape. Writing a number of sectors (which must be a multiple of the chunk size if such is meaningful) causes a resync to pause when it gets to that point. Signed-off-by: NNeil Brown <neilb@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 NeilBrown 提交于
Currently an md array with a write-intent bitmap does not updated that bitmap to reflect successful partial resync. Rather the entire bitmap is updated when the resync completes. This is because there is no guarentee that resync requests will complete in order, and tracking each request individually is unnecessarily burdensome. However there is value in regularly updating the bitmap, so add code to periodically pause while all pending sync requests complete, then update the bitmap. Doing this only every few seconds (the same as the bitmap update time) does not notciably affect resync performance. [snitzer@gmail.com: export bitmap_cond_end_sync] Signed-off-by: NNeil Brown <neilb@suse.de> Cc: "Mike Snitzer" <snitzer@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 09 1月, 2008 1 次提交
-
-
由 Dan Williams 提交于
We currently do not wait for the block from the missing device to be computed from parity before copying data to the new stripe layout. The change in the raid6 code is not techincally needed as we don't delay data block recovery in the same way for raid6 yet. But making the change now is safer long-term. This bug exists in 2.6.23 and 2.6.24-rc Cc: <stable@kernel.org> Signed-off-by: NDan Williams <dan.j.williams@intel.com> Acked-by: NNeil Brown <neilb@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 15 11月, 2007 1 次提交
-
-
由 Dan Williams 提交于
<debug output from Joel's system> handling stripe 7629696, state=0x14 cnt=1, pd_idx=2 ops=0:0:0 check 5: state 0x6 toread 0000000000000000 read 0000000000000000 write fffff800ffcffcc0 written 0000000000000000 check 4: state 0x6 toread 0000000000000000 read 0000000000000000 write fffff800fdd4e360 written 0000000000000000 check 3: state 0x1 toread 0000000000000000 read 0000000000000000 write 0000000000000000 written 0000000000000000 check 2: state 0x1 toread 0000000000000000 read 0000000000000000 write 0000000000000000 written 0000000000000000 check 1: state 0x6 toread 0000000000000000 read 0000000000000000 write fffff800ff517e40 written 0000000000000000 check 0: state 0x6 toread 0000000000000000 read 0000000000000000 write fffff800fd4cae60 written 0000000000000000 locked=4 uptodate=2 to_read=0 to_write=4 failed=0 failed_num=0 for sector 7629696, rmw=0 rcw=0 </debug> These blocks were prepared to be written out, but were never handled in ops_run_biodrain(), so they remain locked forever. The operations flags are all clear which means handle_stripe() thinks nothing else needs to be done. This state suggests that the STRIPE_OP_PREXOR bit was sampled 'set' when it should not have been. This patch cleans up cases where the code looks at sh->ops.pending when it should be looking at the consistent stack-based snapshot of the operations flags. Report from Joel: Resync done. Patch fix this bug. Signed-off-by: NDan Williams <dan.j.williams@intel.com> Tested-by: NJoel Bertrand <joel.bertrand@systella.fr> Cc: <stable@kernel.org> Cc: Neil Brown <neilb@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 09 11月, 2007 1 次提交
-
-
由 Alan D. Brunelle 提交于
Added blk_unplug interface, allowing all invocations of unplugs to result in a generated blktrace UNPLUG. Signed-off-by: NAlan D. Brunelle <Alan.Brunelle@hp.com> Signed-off-by: NJens Axboe <jens.axboe@oracle.com>
-
- 06 11月, 2007 1 次提交
-
-
由 Neil Brown 提交于
commit 4ae3f847 ("md: raid5: fix clearing of biofill operations") did not get applied correctly, presumably due to substantial similarities between handle_stripe5 and handle_stripe6. This patch moves the chunk of new code from handle_stripe6 (where it isn't needed (yet)) to handle_stripe5. Signed-off-by: NNeil Brown <neilb@suse.de> Cc: "Dan Williams" <dan.j.williams@intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 23 10月, 2007 1 次提交
-
-
由 Dan Williams 提交于
ops_complete_biofill() runs outside of spin_lock(&sh->lock) and clears the 'pending' and 'ack' bits. Since the test_and_ack_op() macro only checks against 'complete' it can get an inconsistent snapshot of pending work. Move the clearing of these bits to handle_stripe5(), under the lock. Signed-off-by: NDan Williams <dan.j.williams@intel.com> Tested-by: NJoel Bertrand <joel.bertrand@systella.fr> Signed-off-by: NNeil Brown <neilb@suse.de> Cc: Stable <stable@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 16 10月, 2007 1 次提交
-
-
由 Jens Axboe 提交于
Then we can get rid of ->issue_flush_fn() and all the driver private implementations of that. Signed-off-by: NJens Axboe <jens.axboe@oracle.com>
-
- 10 10月, 2007 1 次提交
-
-
由 NeilBrown 提交于
As bi_end_io is only called once when the reqeust is complete, the 'size' argument is now redundant. Remove it. Now there is no need for bio_endio to subtract the size completed from bi_size. So don't do that either. While we are at it, change bi_end_io to return void. Signed-off-by: NNeil Brown <neilb@suse.de> Signed-off-by: NJens Axboe <jens.axboe@oracle.com>
-
- 25 9月, 2007 1 次提交
-
-
由 Dan Williams 提交于
1/ ops_complete_biofill tried to avoid calling handle_stripe since all the state necessary to return read completions is available. However the process of determining whether more read requests are pending requires locking the stripe (to block add_stripe_bio from updating dev->toead). ops_complete_biofill can run in tasklet context, so rather than upgrading all the stripe locks from spin_lock to spin_lock_bh this patch just unconditionally reschedules handle_stripe after completing the read request. 2/ ops_complete_biofill needlessly qualified processing R5_Wantfill with dev->toread. The result being that the 'biofill' pending bit is cleared before handling the pending read-completions on dev->read. R5_Wantfill can be unconditionally handled because the 'biofill' pending bit prevents new R5_Wantfill requests from being seen by ops_run_biofill and ops_complete_biofill. Found-by: NYuri Tikhonov <yur@emcraft.com> [neilb@suse.de: simpler fix for bug 1 than moving code] Signed-off-by: NNeilBrown <neilb@suse.de> Signed-off-by: NDan Williams <dan.j.williams@intel.com>
-
- 12 9月, 2007 1 次提交
-
-
由 NeilBrown 提交于
The recent changed to raid5 to allow offload of parity calculation etc introduced some bugs in the code for growing (i.e. adding a disk to) raid5 and raid6. This fixes them Acked-by: NDan Williams <dan.j.williams@intel.com> Signed-off-by: NNeil Brown <neilb@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 24 7月, 2007 1 次提交
-
-
由 Jens Axboe 提交于
Some of the code has been gradually transitioned to using the proper struct request_queue, but there's lots left. So do a full sweet of the kernel and get rid of this typedef and replace its uses with the proper type. Signed-off-by: NJens Axboe <jens.axboe@oracle.com>
-
- 20 7月, 2007 2 次提交
-
-
由 Dan Williams 提交于
Andrew Morton: [async_memcpy] is very wrong if both ASYNC_TX_KMAP_DST and ASYNC_TX_KMAP_SRC can ever be set. We'll end up using the same kmap slot for both src add dest and we get either corrupted data or a BUG. Evgeniy Polyakov: Btw, shouldn't it always be kmap_atomic() even if flag is not set. That pages are usual one returned by alloc_page(). So fix the usage of kmap_atomic and kill the ASYNC_TX_KMAP_DST and ASYNC_TX_KMAP_SRC flags. Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Evgeniy Polyakov <johnpol@2ka.mipt.ru> Signed-off-by: NDan Williams <dan.j.williams@intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Paul Mundt 提交于
Slab destructors were no longer supported after Christoph's c59def9f change. They've been BUGs for both slab and slub, and slob never supported them either. This rips out support for the dtor pointer from kmem_cache_create() completely and fixes up every single callsite in the kernel (there were about 224, not including the slab allocator definitions themselves, or the documentation references). Signed-off-by: NPaul Mundt <lethal@linux-sh.org>
-
- 13 7月, 2007 8 次提交
-
-
由 Dan Williams 提交于
replaced by raid5_run_ops Signed-off-by: NDan Williams <dan.j.williams@intel.com> Acked-By: NNeilBrown <neilb@suse.de>
-
由 Dan Williams 提交于
I/O submission requests were already handled outside of the stripe lock in handle_stripe. Now that handle_stripe is only tasked with finding work, this logic belongs in raid5_run_ops. Signed-off-by: NDan Williams <dan.j.williams@intel.com> Acked-By: NNeilBrown <neilb@suse.de>
-
由 Dan Williams 提交于
When a stripe is being expanded bulk copying takes place to move the data from the old stripe to the new. Since raid5_run_ops only operates on one stripe at a time these bulk copies are handled in-line under the stripe lock. In the dma offload case we poll for the completion of the operation. After the data has been copied into the new stripe the parity needs to be recalculated across the new disks. We reuse the existing postxor functionality to carry out this calculation. By setting STRIPE_OP_POSTXOR without setting STRIPE_OP_BIODRAIN the completion path in handle stripe can differentiate expand operations from normal write operations. Signed-off-by: NDan Williams <dan.j.williams@intel.com> Acked-By: NNeilBrown <neilb@suse.de>
-
由 Dan Williams 提交于
When a read bio is attached to the stripe and the corresponding block is marked R5_UPTODATE, then a read (biofill) operation is scheduled to copy the data from the stripe cache to the bio buffer. handle_stripe flags the blocks to be operated on with the R5_Wantfill flag. If new read requests arrive while raid5_run_ops is running they will not be handled until handle_stripe is scheduled to run again. Changelog: * cleanup to_read and to_fill accounting * do not fail reads that have reached the cache Signed-off-by: NDan Williams <dan.j.williams@intel.com> Acked-By: NNeilBrown <neilb@suse.de>
-
由 Dan Williams 提交于
Check operations are scheduled when the array is being resynced or an explicit 'check/repair' command was sent to the array. Previously check operations would destroy the parity block in the cache such that even if parity turned out to be correct the parity block would be marked !R5_UPTODATE at the completion of the check. When the operation can be carried out by a dma engine the assumption is that it can check parity as a read-only operation. If raid5_run_ops notices that the check was handled by hardware it will preserve the R5_UPTODATE status of the parity disk. When a check operation determines that the parity needs to be repaired we reuse the existing compute block infrastructure to carry out the operation. Repair operations imply an immediate write back of the data, so to differentiate a repair from a normal compute operation the STRIPE_OP_MOD_REPAIR_PD flag is added. Changelog: * remove test_and_set/test_and_clear BUG_ONs, Neil Brown Signed-off-by: NDan Williams <dan.j.williams@intel.com> Acked-By: NNeilBrown <neilb@suse.de>
-
由 Dan Williams 提交于
handle_stripe will compute a block when a backing disk has failed, or when it determines it can save a disk read by computing the block from all the other up-to-date blocks. Previously a block would be computed under the lock and subsequent logic in handle_stripe could use the newly up-to-date block. With the raid5_run_ops implementation the compute operation is carried out a later time outside the lock. To preserve the old functionality we take advantage of the dependency chain feature of async_tx to flag the block as R5_Wantcompute and then let other parts of handle_stripe operate on the block as if it were up-to-date. raid5_run_ops guarantees that the block will be ready before it is used in another operation. However, this only works in cases where the compute and the dependent operation are scheduled at the same time. If a previous call to handle_stripe sets the R5_Wantcompute flag there is no facility to pass the async_tx dependency chain across successive calls to raid5_run_ops. The req_compute variable protects against this case. Changelog: * remove the req_compute BUG_ON Signed-off-by: NDan Williams <dan.j.williams@intel.com> Acked-By: NNeilBrown <neilb@suse.de>
-
由 Dan Williams 提交于
After handle_stripe5 decides whether it wants to perform a read-modify-write, or a reconstruct write it calls handle_write_operations5. A read-modify-write operation will perform an xor subtraction of the blocks marked with the R5_Wantprexor flag, copy the new data into the stripe (biodrain) and perform a postxor operation across all up-to-date blocks to generate the new parity. A reconstruct write is run when all blocks are already up-to-date in the cache so all that is needed is a biodrain and postxor. On the completion path STRIPE_OP_PREXOR will be set if the operation was a read-modify-write. The STRIPE_OP_BIODRAIN flag is used in the completion path to differentiate write-initiated postxor operations versus expansion-initiated postxor operations. Completion of a write triggers i/o to the drives. Changelog: * make the 'rcw' parameter to handle_write_operations5 a simple flag, Neil Brown * remove test_and_set/test_and_clear BUG_ONs, Neil Brown Signed-off-by: NDan Williams <dan.j.williams@intel.com> Acked-By: NNeilBrown <neilb@suse.de>
-
由 Dan Williams 提交于
All the handle_stripe operations that are to be transitioned to use raid5_run_ops need a method to coherently gather work under the stripe-lock and hand that work off to raid5_run_ops. The 'get_stripe_work' routine runs under the lock to read all the bits in sh->ops.pending that do not have the corresponding bit set in sh->ops.ack. This modified 'pending' bitmap is then passed to raid5_run_ops for processing. The transition from 'ack' to 'completion' does not need similar protection as the existing release_stripe infrastructure will guarantee that handle_stripe will run again after a completion bit is set, and handle_stripe can tolerate a sh->ops.completed bit being set while the lock is held. A call to async_tx_issue_pending_all() is added to raid5d to kick the offload engines once all pending stripe operations work has been submitted. This enables batching of the submission and completion of operations. Signed-off-by: NDan Williams <dan.j.williams@intel.com> Acked-By: NNeilBrown <neilb@suse.de>
-