- 11 5月, 2016 1 次提交
-
-
由 Aneesh Kumar K.V 提交于
We also use MMU_FTR_RADIX to branch out from code path specific to hash. No functionality change. Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 01 5月, 2016 1 次提交
-
-
由 Aneesh Kumar K.V 提交于
Core kernel doesn't track the page size of the VA range that we are invalidating. Hence we end up flushing TLB for the entire mm here. Later patches will improve this. We also don't flush page walk cache separetly instead use RIC=2 when flushing TLB, because we do a MMU gather flush after freeing page table. MMU_NO_CONTEXT is updated for hash. Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 22 2月, 2016 1 次提交
-
-
由 Michael Neuling 提交于
Add a cputable entry for POWER9. More code is required to actually boot and run on a POWER9 but this gets the base piece in which we can start building on. Copies over from POWER8 except for: - Adds a new CPU_FTR_ARCH_300 bit to start hanging new architecture features from (in subsequent patches). - Advertises new user features bits PPC_FEATURE2_ARCH_3_00 & HAS_IEEE128 when on POWER9. - Drops CPU_FTR_SUBCORE. - Drops PMU code and machine check. Signed-off-by: NMichael Neuling <mikey@neuling.org> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 17 3月, 2015 1 次提交
-
-
由 Mahesh Salgaonkar 提交于
The flush_tlb hook in cpu_spec was introduced as a generic function hook to invalidate TLBs. But the current implementation of flush_tlb hook takes IS (invalidation selector) as an argument which is architecture dependent. Hence, It is not right to have a generic routine where caller has to pass non-generic argument. This patch fixes this and makes flush_tlb hook as high level API. Reported-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: NMahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 05 12月, 2014 1 次提交
-
-
由 Mahesh Salgaonkar 提交于
The existing MCE code calls flush_tlb hook with IS=0 (single page) resulting in partial invalidation of TLBs which is not right. This patch fixes that by passing IS=0xc00 to invalidate whole TLB for successful recovery from TLB and ERAT errors. Cc: stable@vger.kernel.org Signed-off-by: NMahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 07 3月, 2014 1 次提交
-
-
由 Mahesh Salgaonkar 提交于
Detect and recover from machine check when inside opal on a special scom load instructions. On specific SCOM read via MMIO we may get a machine check exception with SRR0 pointing inside opal. To recover from MC in this scenario, get a recovery instruction address and return to it from MC. OPAL will export the machine check recoverable ranges through device tree node mcheck-recoverable-ranges under ibm,opal: # hexdump /proc/device-tree/ibm,opal/mcheck-recoverable-ranges 0000000 0000 0000 3000 2804 0000 000c 0000 0000 0000010 3000 2814 0000 0000 3000 27f0 0000 000c 0000020 0000 0000 3000 2814 xxxx xxxx xxxx xxxx 0000030 llll llll yyyy yyyy yyyy yyyy ... ... # where: xxxx xxxx xxxx xxxx = Starting instruction address llll llll = Length of the address range. yyyy yyyy yyyy yyyy = recovery address Each recoverable address range entry is (start address, len, recovery address), 2 cells each for start and recovery address, 1 cell for len, totalling 5 cells per entry. During kernel boot time, build up the recovery table with the list of recovery ranges from device-tree node which will be used during machine check exception to recover from MMIO SCOM UE. Signed-off-by: NMahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
- 30 12月, 2013 1 次提交
-
-
由 Anton Blanchard 提交于
The SLB save area is shared with the hypervisor and is defined as big endian, so we need to byte swap on little endian builds. Signed-off-by: NAnton Blanchard <anton@samba.org> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
- 05 12月, 2013 3 次提交
-
-
由 Mahesh Salgaonkar 提交于
Now that we handle machine check in linux, the MCE decoding should also take place in linux host. This info is crucial to log before we go down in case we can not handle the machine check errors. This patch decodes and populates a machine check event which contain high level meaning full MCE information. We do this in real mode C code with ME bit on. The MCE information is still available on emergency stack (in pt_regs structure format). Even if we take another exception at this point the MCE early handler will allocate a new stack frame on top of current one. So when we return back here we still have our MCE information safe on current stack. We use per cpu buffer to save high level MCE information. Each per cpu buffer is an array of machine check event structure indexed by per cpu counter mce_nest_count. The mce_nest_count is incremented every time we enter machine check early handler in real mode to get the current free slot (index = mce_nest_count - 1). The mce_nest_count is decremented once the MCE info is consumed by virtual mode machine exception handler. This patch provides save_mce_event(), get_mce_event() and release_mce_event() generic routines that can be used by machine check handlers to populate and retrieve the event. The routine release_mce_event() will free the event slot so that it can be reused. Caller can invoke get_mce_event() with a release flag either to release the event slot immediately OR keep it so that it can be fetched again. The event slot can be also released anytime by invoking release_mce_event(). This patch also updates kvm code to invoke get_mce_event to retrieve generic mce event rather than paca->opal_mce_evt. The KVM code always calls get_mce_event() with release flags set to false so that event is available for linus host machine If machine check occurs while we are in guest, KVM tries to handle the error. If KVM is able to handle MC error successfully, it enters the guest and delivers the machine check to guest. If KVM is not able to handle MC error, it exists the guest and passes the control to linux host machine check handler which then logs MC event and decides how to handle it in linux host. In failure case, KVM needs to make sure that the MC event is available for linux host to consume. Hence KVM always calls get_mce_event() with release flags set to false and later it invokes release_mce_event() only if it succeeds to handle error. Signed-off-by: NMahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 Mahesh Salgaonkar 提交于
This patch handles the memory errors on power8. If we get a machine check exception due to SLB or TLB errors, then flush SLBs/TLBs and reload SLBs to recover. Signed-off-by: NMahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Acked-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 Mahesh Salgaonkar 提交于
If we get a machine check exception due to SLB or TLB errors, then flush SLBs/TLBs and reload SLBs to recover. We do this in real mode before turning on MMU. Otherwise we would run into nested machine checks. If we get a machine check when we are in guest, then just flush the SLBs and continue. This patch handles errors for power7. The next patch will handle errors for power8 Signed-off-by: NMahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-