- 23 2月, 2017 2 次提交
-
-
由 Tejun Heo 提交于
__kmem_cache_shrink() is called with %true @deactivate only for memcg caches. Remove @deactivate from __kmem_cache_shrink() and introduce __kmemcg_cache_deactivate() instead. Each memcg-supporting allocator should implement it and it should deactivate and drain the cache. This is to allow memcg cache deactivation behavior to further deviate from simple shrinking without messing up __kmem_cache_shrink(). This is pure reorganization and doesn't introduce any observable behavior changes. v2: Dropped unnecessary ifdef in mm/slab.h as suggested by Vladimir. Link: http://lkml.kernel.org/r/20170117235411.9408-8-tj@kernel.orgSigned-off-by: NTejun Heo <tj@kernel.org> Acked-by: NVladimir Davydov <vdavydov.dev@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Tejun Heo 提交于
Patch series "slab: make memcg slab destruction scalable", v3. With kmem cgroup support enabled, kmem_caches can be created and destroyed frequently and a great number of near empty kmem_caches can accumulate if there are a lot of transient cgroups and the system is not under memory pressure. When memory reclaim starts under such conditions, it can lead to consecutive deactivation and destruction of many kmem_caches, easily hundreds of thousands on moderately large systems, exposing scalability issues in the current slab management code. I've seen machines which end up with hundred thousands of caches and many millions of kernfs_nodes. The current code is O(N^2) on the total number of caches and has synchronous rcu_barrier() and synchronize_sched() in cgroup offline / release path which is executed while holding cgroup_mutex. Combined, this leads to very expensive and slow cache destruction operations which can easily keep running for half a day. This also messes up /proc/slabinfo along with other cache iterating operations. seq_file operates on 4k chunks and on each 4k boundary tries to seek to the last position in the list. With a huge number of caches on the list, this becomes very slow and very prone to the list content changing underneath it leading to a lot of missing and/or duplicate entries. This patchset addresses the scalability problem. * Add root and per-memcg lists. Update each user to use the appropriate list. * Make rcu_barrier() for SLAB_DESTROY_BY_RCU caches globally batched and asynchronous. * For dying empty slub caches, remove the sysfs files after deactivation so that we don't end up with millions of sysfs files without any useful information on them. This patchset contains the following nine patches. 0001-Revert-slub-move-synchronize_sched-out-of-slab_mutex.patch 0002-slub-separate-out-sysfs_slab_release-from-sysfs_slab.patch 0003-slab-remove-synchronous-rcu_barrier-call-in-memcg-ca.patch 0004-slab-reorganize-memcg_cache_params.patch 0005-slab-link-memcg-kmem_caches-on-their-associated-memo.patch 0006-slab-implement-slab_root_caches-list.patch 0007-slab-introduce-__kmemcg_cache_deactivate.patch 0008-slab-remove-synchronous-synchronize_sched-from-memcg.patch 0009-slab-remove-slub-sysfs-interface-files-early-for-emp.patch 0010-slab-use-memcg_kmem_cache_wq-for-slab-destruction-op.patch 0001 reverts an existing optimization to prepare for the following changes. 0002 is a prep patch. 0003 makes rcu_barrier() in release path batched and asynchronous. 0004-0006 separate out the lists. 0007-0008 replace synchronize_sched() in slub destruction path with call_rcu_sched(). 0009 removes sysfs files early for empty dying caches. 0010 makes destruction work items use a workqueue with limited concurrency. This patch (of 10): Revert 89e364db ("slub: move synchronize_sched out of slab_mutex on shrink"). With kmem cgroup support enabled, kmem_caches can be created and destroyed frequently and a great number of near empty kmem_caches can accumulate if there are a lot of transient cgroups and the system is not under memory pressure. When memory reclaim starts under such conditions, it can lead to consecutive deactivation and destruction of many kmem_caches, easily hundreds of thousands on moderately large systems, exposing scalability issues in the current slab management code. This is one of the patches to address the issue. Moving synchronize_sched() out of slab_mutex isn't enough as it's still inside cgroup_mutex. The whole deactivation / release path will be updated to avoid all synchronous RCU operations. Revert this insufficient optimization in preparation to ease future changes. Link: http://lkml.kernel.org/r/20170117235411.9408-2-tj@kernel.orgSigned-off-by: NTejun Heo <tj@kernel.org> Reported-by: NJay Vana <jsvana@fb.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 13 12月, 2016 1 次提交
-
-
由 Vladimir Davydov 提交于
synchronize_sched() is a heavy operation and calling it per each cache owned by a memory cgroup being destroyed may take quite some time. What is worse, it's currently called under the slab_mutex, stalling all works doing cache creation/destruction. Actually, there isn't much point in calling synchronize_sched() for each cache - it's enough to call it just once - after setting cpu_partial for all caches and before shrinking them. This way, we can also move it out of the slab_mutex, which we have to hold for iterating over the slab cache list. Link: https://bugzilla.kernel.org/show_bug.cgi?id=172991 Link: http://lkml.kernel.org/r/0a10d71ecae3db00fb4421bcd3f82bcc911f4be4.1475329751.git.vdavydov.dev@gmail.comSigned-off-by: NVladimir Davydov <vdavydov.dev@gmail.com> Reported-by: NDoug Smythies <dsmythies@telus.net> Acked-by: NJoonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 19 2月, 2016 1 次提交
-
-
由 Dmitry Safonov 提交于
When slub_debug alloc_calls_show is enabled we will try to track location and user of slab object on each online node, kmem_cache_node structure and cpu_cache/cpu_slub shouldn't be freed till there is the last reference to sysfs file. This fixes the following panic: BUG: unable to handle kernel NULL pointer dereference at 0000000000000020 IP: list_locations+0x169/0x4e0 PGD 257304067 PUD 438456067 PMD 0 Oops: 0000 [#1] SMP CPU: 3 PID: 973074 Comm: cat ve: 0 Not tainted 3.10.0-229.7.2.ovz.9.30-00007-japdoll-dirty #2 9.30 Hardware name: DEPO Computers To Be Filled By O.E.M./H67DE3, BIOS L1.60c 07/14/2011 task: ffff88042a5dc5b0 ti: ffff88037f8d8000 task.ti: ffff88037f8d8000 RIP: list_locations+0x169/0x4e0 Call Trace: alloc_calls_show+0x1d/0x30 slab_attr_show+0x1b/0x30 sysfs_read_file+0x9a/0x1a0 vfs_read+0x9c/0x170 SyS_read+0x58/0xb0 system_call_fastpath+0x16/0x1b Code: 5e 07 12 00 b9 00 04 00 00 3d 00 04 00 00 0f 4f c1 3d 00 04 00 00 89 45 b0 0f 84 c3 00 00 00 48 63 45 b0 49 8b 9c c4 f8 00 00 00 <48> 8b 43 20 48 85 c0 74 b6 48 89 df e8 46 37 44 00 48 8b 53 10 CR2: 0000000000000020 Separated __kmem_cache_release from __kmem_cache_shutdown which now called on slab_kmem_cache_release (after the last reference to sysfs file object has dropped). Reintroduced locking in free_partial as sysfs file might access cache's partial list after shutdowning - partial revert of the commit 69cb8e6b ("slub: free slabs without holding locks"). Zap __remove_partial and use remove_partial (w/o underscores) as free_partial now takes list_lock which s partial revert for commit 1e4dd946 ("slub: do not assert not having lock in removing freed partial") Signed-off-by: NDmitry Safonov <dsafonov@virtuozzo.com> Suggested-by: NVladimir Davydov <vdavydov@virtuozzo.com> Acked-by: NVladimir Davydov <vdavydov@virtuozzo.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 23 11月, 2015 1 次提交
-
-
由 Jesper Dangaard Brouer 提交于
Adjust kmem_cache_alloc_bulk API before we have any real users. Adjust API to return type 'int' instead of previously type 'bool'. This is done to allow future extension of the bulk alloc API. A future extension could be to allow SLUB to stop at a page boundary, when specified by a flag, and then return the number of objects. The advantage of this approach, would make it easier to make bulk alloc run without local IRQs disabled. With an approach of cmpxchg "stealing" the entire c->freelist or page->freelist. To avoid overshooting we would stop processing at a slab-page boundary. Else we always end up returning some objects at the cost of another cmpxchg. To keep compatible with future users of this API linking against an older kernel when using the new flag, we need to return the number of allocated objects with this API change. Signed-off-by: NJesper Dangaard Brouer <brouer@redhat.com> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Acked-by: NChristoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 09 9月, 2015 1 次提交
-
-
由 Vlastimil Babka 提交于
alloc_pages_exact_node() was introduced in commit 6484eb3e ("page allocator: do not check NUMA node ID when the caller knows the node is valid") as an optimized variant of alloc_pages_node(), that doesn't fallback to current node for nid == NUMA_NO_NODE. Unfortunately the name of the function can easily suggest that the allocation is restricted to the given node and fails otherwise. In truth, the node is only preferred, unless __GFP_THISNODE is passed among the gfp flags. The misleading name has lead to mistakes in the past, see for example commits 5265047a ("mm, thp: really limit transparent hugepage allocation to local node") and b360edb4 ("mm, mempolicy: migrate_to_node should only migrate to node"). Another issue with the name is that there's a family of alloc_pages_exact*() functions where 'exact' means exact size (instead of page order), which leads to more confusion. To prevent further mistakes, this patch effectively renames alloc_pages_exact_node() to __alloc_pages_node() to better convey that it's an optimized variant of alloc_pages_node() not intended for general usage. Both functions get described in comments. It has been also considered to really provide a convenience function for allocations restricted to a node, but the major opinion seems to be that __GFP_THISNODE already provides that functionality and we shouldn't duplicate the API needlessly. The number of users would be small anyway. Existing callers of alloc_pages_exact_node() are simply converted to call __alloc_pages_node(), with the exception of sba_alloc_coherent() which open-codes the check for NUMA_NO_NODE, so it is converted to use alloc_pages_node() instead. This means it no longer performs some VM_BUG_ON checks, and since the current check for nid in alloc_pages_node() uses a 'nid < 0' comparison (which includes NUMA_NO_NODE), it may hide wrong values which would be previously exposed. Both differences will be rectified by the next patch. To sum up, this patch makes no functional changes, except temporarily hiding potentially buggy callers. Restricting the checks in alloc_pages_node() is left for the next patch which can in turn expose more existing buggy callers. Signed-off-by: NVlastimil Babka <vbabka@suse.cz> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NRobin Holt <robinmholt@gmail.com> Acked-by: NMichal Hocko <mhocko@suse.com> Acked-by: NChristoph Lameter <cl@linux.com> Acked-by: NMichael Ellerman <mpe@ellerman.id.au> Cc: Mel Gorman <mgorman@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Greg Thelen <gthelen@google.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Gleb Natapov <gleb@kernel.org> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Cliff Whickman <cpw@sgi.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 05 9月, 2015 1 次提交
-
-
由 Christoph Lameter 提交于
Add the basic infrastructure for alloc/free operations on pointer arrays. It includes a generic function in the common slab code that is used in this infrastructure patch to create the unoptimized functionality for slab bulk operations. Allocators can then provide optimized allocation functions for situations in which large numbers of objects are needed. These optimization may avoid taking locks repeatedly and bypass metadata creation if all objects in slab pages can be used to provide the objects required. Allocators can extend the skeletons provided and add their own code to the bulk alloc and free functions. They can keep the generic allocation and freeing and just fall back to those if optimizations would not work (like for example when debugging is on). Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NJesper Dangaard Brouer <brouer@redhat.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 15 4月, 2015 1 次提交
-
-
由 Fabian Frederick 提交于
slob_alloc_node() is only used in slob.c. Remove the EXPORT_SYMBOL and make slob_alloc_node() static. Signed-off-by: NFabian Frederick <fabf@skynet.be> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 13 2月, 2015 1 次提交
-
-
由 Vladimir Davydov 提交于
To speed up further allocations SLUB may store empty slabs in per cpu/node partial lists instead of freeing them immediately. This prevents per memcg caches destruction, because kmem caches created for a memory cgroup are only destroyed after the last page charged to the cgroup is freed. To fix this issue, this patch resurrects approach first proposed in [1]. It forbids SLUB to cache empty slabs after the memory cgroup that the cache belongs to was destroyed. It is achieved by setting kmem_cache's cpu_partial and min_partial constants to 0 and tuning put_cpu_partial() so that it would drop frozen empty slabs immediately if cpu_partial = 0. The runtime overhead is minimal. From all the hot functions, we only touch relatively cold put_cpu_partial(): we make it call unfreeze_partials() after freezing a slab that belongs to an offline memory cgroup. Since slab freezing exists to avoid moving slabs from/to a partial list on free/alloc, and there can't be allocations from dead caches, it shouldn't cause any overhead. We do have to disable preemption for put_cpu_partial() to achieve that though. The original patch was accepted well and even merged to the mm tree. However, I decided to withdraw it due to changes happening to the memcg core at that time. I had an idea of introducing per-memcg shrinkers for kmem caches, but now, as memcg has finally settled down, I do not see it as an option, because SLUB shrinker would be too costly to call since SLUB does not keep free slabs on a separate list. Besides, we currently do not even call per-memcg shrinkers for offline memcgs. Overall, it would introduce much more complexity to both SLUB and memcg than this small patch. Regarding to SLAB, there's no problem with it, because it shrinks per-cpu/node caches periodically. Thanks to list_lru reparenting, we no longer keep entries for offline cgroups in per-memcg arrays (such as memcg_cache_params->memcg_caches), so we do not have to bother if a per-memcg cache will be shrunk a bit later than it could be. [1] http://thread.gmane.org/gmane.linux.kernel.mm/118649/focus=118650Signed-off-by: NVladimir Davydov <vdavydov@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 10 10月, 2014 1 次提交
-
-
由 Joonsoo Kim 提交于
Now, we track caller if tracing or slab debugging is enabled. If they are disabled, we could save one argument passing overhead by calling __kmalloc(_node)(). But, I think that it would be marginal. Furthermore, default slab allocator, SLUB, doesn't use this technique so I think that it's okay to change this situation. After this change, we can turn on/off CONFIG_DEBUG_SLAB without full kernel build and remove some complicated '#if' defintion. It looks more benefitial to me. Signed-off-by: NJoonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: NChristoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 05 6月, 2014 1 次提交
-
-
由 Vladimir Davydov 提交于
When we create a sl[au]b cache, we allocate kmem_cache_node structures for each online NUMA node. To handle nodes taken online/offline, we register memory hotplug notifier and allocate/free kmem_cache_node corresponding to the node that changes its state for each kmem cache. To synchronize between the two paths we hold the slab_mutex during both the cache creationg/destruction path and while tuning per-node parts of kmem caches in memory hotplug handler, but that's not quite right, because it does not guarantee that a newly created cache will have all kmem_cache_nodes initialized in case it races with memory hotplug. For instance, in case of slub: CPU0 CPU1 ---- ---- kmem_cache_create: online_pages: __kmem_cache_create: slab_memory_callback: slab_mem_going_online_callback: lock slab_mutex for each slab_caches list entry allocate kmem_cache node unlock slab_mutex lock slab_mutex init_kmem_cache_nodes: for_each_node_state(node, N_NORMAL_MEMORY) allocate kmem_cache node add kmem_cache to slab_caches list unlock slab_mutex online_pages (continued): node_states_set_node As a result we'll get a kmem cache with not all kmem_cache_nodes allocated. To avoid issues like that we should hold get/put_online_mems() during the whole kmem cache creation/destruction/shrink paths, just like we deal with cpu hotplug. This patch does the trick. Note, that after it's applied, there is no need in taking the slab_mutex for kmem_cache_shrink any more, so it is removed from there. Signed-off-by: NVladimir Davydov <vdavydov@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: Toshi Kani <toshi.kani@hp.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Jiang Liu <liuj97@gmail.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 11 4月, 2014 1 次提交
-
-
由 Dave Hansen 提交于
'struct page' has two list_head fields: 'lru' and 'list'. Conveniently, they are unioned together. This means that code can use them interchangably, which gets horribly confusing like with this nugget from slab.c: > list_del(&page->lru); > if (page->active == cachep->num) > list_add(&page->list, &n->slabs_full); This patch makes the slab and slub code use page->lru universally instead of mixing ->list and ->lru. So, the new rule is: page->lru is what the you use if you want to keep your page on a list. Don't like the fact that it's not called ->list? Too bad. Signed-off-by: NDave Hansen <dave.hansen@linux.intel.com> Acked-by: NChristoph Lameter <cl@linux.com> Acked-by: NDavid Rientjes <rientjes@google.com> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
- 05 9月, 2013 1 次提交
-
-
由 Christoph Lameter 提交于
The kmalloc* functions of all slab allcoators are similar now so lets move them into slab.h. This requires some function naming changes in slob. As a results of this patch there is a common set of functions for all allocators. Also means that kmalloc_large() is now available in general to perform large order allocations that go directly via the page allocator. kmalloc_large() can be substituted if kmalloc() throws warnings because of too large allocations. kmalloc_large() has exactly the same semantics as kmalloc but can only used for allocations > PAGE_SIZE. Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
- 08 7月, 2013 1 次提交
-
-
由 Steven Rostedt 提交于
While doing some code inspection, I noticed that the slob constructor method can be called with a NULL pointer. If memory is tight and slob fails to allocate with slob_alloc() or slob_new_pages() it still calls the ctor() method with a NULL pointer. Looking at the first ctor() method I found, I noticed that it can not handle a NULL pointer (I'm sure others probably can't either): static void sighand_ctor(void *data) { struct sighand_struct *sighand = data; spin_lock_init(&sighand->siglock); init_waitqueue_head(&sighand->signalfd_wqh); } The solution is to only call the ctor() method if allocation succeeded. Acked-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
- 07 7月, 2013 1 次提交
-
-
由 Sasha Levin 提交于
Acked-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NSasha Levin <sasha.levin@oracle.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
- 24 2月, 2013 1 次提交
-
-
由 Mel Gorman 提交于
The function names page_xchg_last_nid(), page_last_nid() and reset_page_last_nid() were judged to be inconsistent so rename them to a struct_field_op style pattern. As it looked jarring to have reset_page_mapcount() and page_nid_reset_last() beside each other in memmap_init_zone(), this patch also renames reset_page_mapcount() to page_mapcount_reset(). There are others like init_page_count() but as it is used throughout the arch code a rename would likely cause more conflicts than it is worth. [akpm@linux-foundation.org: fix zcache] Signed-off-by: NMel Gorman <mgorman@suse.de> Suggested-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 19 12月, 2012 1 次提交
-
-
由 Glauber Costa 提交于
struct page already has this information. If we start chaining caches, this information will always be more trustworthy than whatever is passed into the function. Signed-off-by: NGlauber Costa <glommer@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Frederic Weisbecker <fweisbec@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: JoonSoo Kim <js1304@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Michal Hocko <mhocko@suse.cz> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Rik van Riel <riel@redhat.com> Cc: Suleiman Souhlal <suleiman@google.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 11 12月, 2012 1 次提交
-
-
由 Christoph Lameter 提交于
Extract the code to do object alignment from the allocators. Do the alignment calculations in slab_common so that the __kmem_cache_create functions of the allocators do not have to deal with alignment. Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
- 31 10月, 2012 5 次提交
-
-
由 Arnd Bergmann 提交于
The definition of ARCH_SLAB_MINALIGN is architecture dependent and can be either of type size_t or int. Comparing that value with ARCH_KMALLOC_MINALIGN can cause harmless warnings on platforms where they are different. Since both are always small positive integer numbers, using the size_t type to compare them is safe and gets rid of the warning. Without this patch, building ARM collie_defconfig results in: mm/slob.c: In function '__kmalloc_node': mm/slob.c:431:152: warning: comparison of distinct pointer types lacks a cast [enabled by default] mm/slob.c: In function 'kfree': mm/slob.c:484:153: warning: comparison of distinct pointer types lacks a cast [enabled by default] mm/slob.c: In function 'ksize': mm/slob.c:503:153: warning: comparison of distinct pointer types lacks a cast [enabled by default] Acked-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NArnd Bergmann <arnd@arndb.de> [ penberg@kernel.org: updates for master ] Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Ezequiel Garcia 提交于
When freeing objects, the slob allocator currently free empty pages calling __free_pages(). However, page-size kmallocs are disposed using put_page() instead. It makes no sense to call put_page() for kernel pages that are provided by the object allocator, so we shouldn't be doing this ourselves. This is based on: commit d9b7f226 Author: Glauber Costa <glommer@parallels.com> slub: use free_page instead of put_page for freeing kmalloc allocation Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: Matt Mackall <mpm@selenic.com> Acked-by: NGlauber Costa <glommer@parallels.com> Signed-off-by: NEzequiel Garcia <elezegarcia@gmail.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Ezequiel Garcia 提交于
This function is identically defined in all three allocators and it's trivial to move it to slab.h Since now it's static, inline, header-defined function this patch also drops the EXPORT_SYMBOL tag. Cc: Pekka Enberg <penberg@kernel.org> Cc: Matt Mackall <mpm@selenic.com> Acked-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NEzequiel Garcia <elezegarcia@gmail.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Ezequiel Garcia 提交于
Fields object_size and size are not the same: the latter might include slab metadata. Return object_size field in kmem_cache_size(). Also, improve trace accuracy by correctly tracing reported size. Cc: Pekka Enberg <penberg@kernel.org> Cc: Matt Mackall <mpm@selenic.com> Acked-by: NChristoph Lameter <cl@linux.com> Acked-by: NDavid Rientjes <rientjes@google.com> Signed-off-by: NEzequiel Garcia <elezegarcia@gmail.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Ezequiel Garcia 提交于
This field was being used to store size allocation so it could be retrieved by ksize(). However, it is a bad practice to not mark a page as a slab page and then use fields for special purposes. There is no need to store the allocated size and ksize() can simply return PAGE_SIZE << compound_order(page). Cc: Pekka Enberg <penberg@kernel.org> Cc: Matt Mackall <mpm@selenic.com> Acked-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NEzequiel Garcia <elezegarcia@gmail.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
- 10 10月, 2012 1 次提交
-
-
由 Arnd Bergmann 提交于
The definition of ARCH_SLAB_MINALIGN is architecture dependent and can be either of type size_t or int. Comparing that value with ARCH_KMALLOC_MINALIGN can cause harmless warnings on platforms where they are different. Since both are always small positive integer numbers, using the size_t type to compare them is safe and gets rid of the warning. Without this patch, building ARM collie_defconfig results in: mm/slob.c: In function '__kmalloc_node': mm/slob.c:431:152: warning: comparison of distinct pointer types lacks a cast [enabled by default] mm/slob.c: In function 'kfree': mm/slob.c:484:153: warning: comparison of distinct pointer types lacks a cast [enabled by default] mm/slob.c: In function 'ksize': mm/slob.c:503:153: warning: comparison of distinct pointer types lacks a cast [enabled by default] Signed-off-by: NArnd Bergmann <arnd@arndb.de> Acked-by: NChristoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org>
-
- 26 9月, 2012 1 次提交
-
-
由 David Rientjes 提交于
On Sat, 8 Sep 2012, Ezequiel Garcia wrote: > @@ -454,15 +455,35 @@ void *__kmalloc_node(size_t size, gfp_t gfp, int node) > gfp |= __GFP_COMP; > ret = slob_new_pages(gfp, order, node); > > - trace_kmalloc_node(_RET_IP_, ret, > + trace_kmalloc_node(caller, ret, > size, PAGE_SIZE << order, gfp, node); > } > > kmemleak_alloc(ret, size, 1, gfp); > return ret; > } > + > +void *__kmalloc_node(size_t size, gfp_t gfp, int node) > +{ > + return __do_kmalloc_node(size, gfp, node, _RET_IP_); > +} > EXPORT_SYMBOL(__kmalloc_node); > > +#ifdef CONFIG_TRACING > +void *__kmalloc_track_caller(size_t size, gfp_t gfp, unsigned long caller) > +{ > + return __do_kmalloc_node(size, gfp, NUMA_NO_NODE, caller); > +} > + > +#ifdef CONFIG_NUMA > +void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, > + int node, unsigned long caller) > +{ > + return __do_kmalloc_node(size, gfp, node, caller); > +} > +#endif This breaks Pekka's slab/next tree with this: mm/slob.c: In function '__kmalloc_node_track_caller': mm/slob.c:488: error: 'gfp' undeclared (first use in this function) mm/slob.c:488: error: (Each undeclared identifier is reported only once mm/slob.c:488: error: for each function it appears in.) mm, slob: fix build breakage in __kmalloc_node_track_caller "mm, slob: Add support for kmalloc_track_caller()" breaks the build because gfp is undeclared. Fix it. Acked-by: NEzequiel Garcia <elezegarcia@gmail.com> Signed-off-by: NDavid Rientjes <rientjes@google.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
- 25 9月, 2012 2 次提交
-
-
由 Ezequiel Garcia 提交于
Currently slob falls back to regular kmalloc for this case. With this patch kmalloc_track_caller() is correctly implemented, thus tracing the specified caller. This is important to trace accurately allocations performed by krealloc, kstrdup, kmemdup, etc. Signed-off-by: NEzequiel Garcia <elezegarcia@gmail.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Ezequiel Garcia 提交于
Acked-by: NDavid Rientjes <rientjes@google.com> Signed-off-by: NEzequiel Garcia <elezegarcia@gmail.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
- 05 9月, 2012 8 次提交
-
-
由 Christoph Lameter 提交于
Get rid of the refcount stuff in the allocators and do that part of kmem_cache management in the common code. Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Christoph Lameter 提交于
Do the initial settings of the fields in common code. This will allow us to push more processing into common code later and improve readability. Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Christoph Lameter 提交于
Shift the allocations to common code. That way the allocation and freeing of the kmem_cache structures is handled by common code. Reviewed-by: NGlauber Costa <glommer@parallels.com> Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Christoph Lameter 提交于
What is done there can be done in __kmem_cache_shutdown. This affects RCU handling somewhat. On rcu free all slab allocators do not refer to other management structures than the kmem_cache structure. Therefore these other structures can be freed before the rcu deferred free to the page allocator occurs. Reviewed-by: NJoonsoo Kim <js1304@gmail.com> Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Christoph Lameter 提交于
The freeing action is basically the same in all slab allocators. Move to the common kmem_cache_destroy() function. Reviewed-by: NGlauber Costa <glommer@parallels.com> Reviewed-by: NJoonsoo Kim <js1304@gmail.com> Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Christoph Lameter 提交于
Make all allocators use the "kmem_cache" slabname for the "kmem_cache" structure. Reviewed-by: NGlauber Costa <glommer@parallels.com> Reviewed-by: NJoonsoo Kim <js1304@gmail.com> Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Christoph Lameter 提交于
kmem_cache_destroy does basically the same in all allocators. Extract common code which is easy since we already have common mutex handling. Reviewed-by: NGlauber Costa <glommer@parallels.com> Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Christoph Lameter 提交于
Move the code to append the new kmem_cache to the list of slab caches to the kmem_cache_create code in the shared code. This is possible now since the acquisition of the mutex was moved into kmem_cache_create(). Acked-by: NDavid Rientjes <rientjes@google.com> Reviewed-by: NGlauber Costa <glommer@parallels.com> Reviewed-by: NJoonsoo Kim <js1304@gmail.com> Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
- 12 7月, 2012 1 次提交
-
-
由 Christoph Lameter 提交于
Commit fd3142a59af2012a7c5dc72ec97a4935ff1c5fc6 broke slob since a piece of a change for a later patch slipped into it. Fengguang Wu writes: The commit crashes the kernel w/o any dmesg output (the attached one is created by the script as a summary for that run). This is very reproducible in kvm for the attached config. Reported-by: NFengguang Wu <fengguang.wu@intel.com> Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
- 09 7月, 2012 2 次提交
-
-
由 Christoph Lameter 提交于
All allocators have some sort of support for the bootstrap status. Setup a common definition for the boot states and make all slab allocators use that definition. Reviewed-by: NGlauber Costa <glommer@parallels.com> Reviewed-by: NJoonsoo Kim <js1304@gmail.com> Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Christoph Lameter 提交于
Kmem_cache_create() does a variety of sanity checks but those vary depending on the allocator. Use the strictest tests and put them into a slab_common file. Make the tests conditional on CONFIG_DEBUG_VM. This patch has the effect of adding sanity checks for SLUB and SLOB under CONFIG_DEBUG_VM and removes the checks in SLAB for !CONFIG_DEBUG_VM. Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
- 14 6月, 2012 2 次提交
-
-
由 Christoph Lameter 提交于
Define a struct that describes common fields used in all slab allocators. A slab allocator either uses the common definition (like SLOB) or is required to provide members of kmem_cache with the definition given. After that it will be possible to share code that only operates on those fields of kmem_cache. The patch basically takes the slob definition of kmem cache and uses the field namees for the other allocators. It also standardizes the names used for basic object lengths in allocators: object_size Struct size specified at kmem_cache_create. Basically the payload expected to be used by the subsystem. size The size of memory allocator for each object. This size is larger than object_size and includes padding, alignment and extra metadata for each object (f.e. for debugging and rcu). Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Christoph Lameter 提交于
Those have become so simple that they are no longer needed. Reviewed-by: NJoonsoo Kim <js1304@gmail.com> Acked-by: NDavid Rientjes <rientjes@google.com> signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-