- 18 11月, 2012 33 次提交
-
-
由 Yinghai Lu 提交于
They are only for mm/init*.c. Signed-off-by: NYinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1353123563-3103-34-git-send-email-yinghai@kernel.orgSigned-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
由 Yinghai Lu 提交于
Signed-off-by: NYinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1353123563-3103-33-git-send-email-yinghai@kernel.orgSigned-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
由 Yinghai Lu 提交于
Put it in mm/init.c, and call it from probe_page_mask(). init_mem_mapping is calling probe_page_mask at first. So calling sequence is not changed. Signed-off-by: NYinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1353123563-3103-32-git-send-email-yinghai@kernel.orgSigned-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
由 Yinghai Lu 提交于
Also change them to static. Signed-off-by: NYinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1353123563-3103-31-git-send-email-yinghai@kernel.orgSigned-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
由 Yinghai Lu 提交于
On 32bit, before patcheset that only set page table for ram, we only call that one time. Now, we are calling that during every init_memory_mapping if we have holes under max_low_pfn. We should only call it one time after all ranges under max_low_page get mapped just like we did before. Also that could avoid the risk to run out of pgt_buf in BRK. Need to update page_table_range_init() to count the pages for kmap page table at first, and use new added alloc_low_pages() to get pages in sequence. That will conform to the requirement that pages need to be in low to high order. Signed-off-by: NYinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1353123563-3103-30-git-send-email-yinghai@kernel.orgSigned-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
由 Stefano Stabellini 提交于
Add link for more information 279b706b x86,xen: introduce x86_init.mapping.pagetable_reserve -v2: updated to commets from hpa to include commit name. Signed-off-by: NYinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1353123563-3103-29-git-send-email-yinghai@kernel.orgSigned-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
由 Yinghai Lu 提交于
32bit kmap mapping needs pages to be used for low to high. At this point those pages are still from pgt_buf_* from BRK, so it is ok now. But we want to move early_ioremap_page_table_range_init() out of init_memory_mapping() and only call it one time later, that will make page_table_range_init/page_table_kmap_check/alloc_low_page to use memblock to get page. memblock allocation for pages are from high to low. So will get panic from page_table_kmap_check() that has BUG_ON to do ordering checking. This patch add alloc_low_pages to make it possible to allocate serveral pages at first, and hand out pages one by one from low to high. Signed-off-by: NYinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1353123563-3103-28-git-send-email-yinghai@kernel.org Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
由 Yinghai Lu 提交于
Page table area are pre-mapped now after x86, mm: setup page table in top-down x86, mm: Remove early_memremap workaround for page table accessing on 64bit mapping_pagetable_reserve is not used anymore, so remove it. Also remove operation in mask_rw_pte(), as modified allow_low_page always return pages that are already mapped, moreover xen_alloc_pte_init, xen_alloc_pmd_init, etc, will mark the page RO before hooking it into the pagetable automatically. -v2: add changelog about mask_rw_pte() from Stefano. Signed-off-by: NYinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1353123563-3103-27-git-send-email-yinghai@kernel.org Cc: Stefano Stabellini <stefano.stabellini@eu.citrix.com> Signed-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
由 Yinghai Lu 提交于
Also change it to static. Signed-off-by: NYinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1353123563-3103-26-git-send-email-yinghai@kernel.orgSigned-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
由 Yinghai Lu 提交于
They are almost same except 64 bit need to handle after_bootmem case. Add mm_internal.h to make that alloc_low_page() only to be accessible from arch/x86/mm/init*.c Signed-off-by: NYinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1353123563-3103-25-git-send-email-yinghai@kernel.orgSigned-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
由 Yinghai Lu 提交于
Now all page table buf are pre-mapped, and could use virtual address directly. So don't need to remember physical address anymore. Remove that phys pointer in alloc_low_page(), and that will allow us to merge alloc_low_page between 64bit and 32bit. Signed-off-by: NYinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1353123563-3103-24-git-send-email-yinghai@kernel.orgAcked-by: NStefano Stabellini <stefano.stabellini@eu.citrix.com> Signed-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
由 Yinghai Lu 提交于
We try to put page table high to make room for kdump, and at that time those ranges are not mapped yet, and have to use ioremap to access it. Now after patch that pre-map page table top down. x86, mm: setup page table in top-down We do not need that workaround anymore. Just use __va to return directly mapping address. Signed-off-by: NYinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1353123563-3103-23-git-send-email-yinghai@kernel.orgAcked-by: NStefano Stabellini <stefano.stabellini@eu.citrix.com> Signed-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
由 Yinghai Lu 提交于
Get pgt_buf early from BRK, and use it to map PMD_SIZE from top at first. Then use mapped pages to map more ranges below, and keep looping until all pages get mapped. alloc_low_page will use page from BRK at first, after that buffer is used up, will use memblock to find and reserve pages for page table usage. Introduce min_pfn_mapped to make sure find new pages from mapped ranges, that will be updated when lower pages get mapped. Also add step_size to make sure that don't try to map too big range with limited mapped pages initially, and increase the step_size when we have more mapped pages on hand. We don't need to call pagetable_reserve anymore, reserve work is done in alloc_low_page() directly. At last we can get rid of calculation and find early pgt related code. -v2: update to after fix_xen change, also use MACRO for initial pgt_buf size and add comments with it. -v3: skip big reserved range in memblock.reserved near end. -v4: don't need fix_xen change now. -v5: add changelog about moving about reserving pagetable to alloc_low_page. Suggested-by: N"H. Peter Anvin" <hpa@zytor.com> Signed-off-by: NYinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1353123563-3103-22-git-send-email-yinghai@kernel.orgSigned-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
由 Yinghai Lu 提交于
Will replace that with top-down page table initialization. New API need to take range: init_range_memory_mapping() Signed-off-by: NYinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1353123563-3103-21-git-send-email-yinghai@kernel.orgSigned-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
由 Yinghai Lu 提交于
After we add code use buffer in BRK to pre-map buf for page table in following patch: x86, mm: setup page table in top-down it should be safe to remove early_memmap for page table accessing. Instead we get panic with that. It turns out that we clear the initial page table wrongly for next range that is separated by holes. And it only happens when we are trying to map ram range one by one. We need to check if the range is ram before clearing page table. We change the loop structure to remove the extra little loop and use one loop only, and in that loop will caculate next at first, and check if [addr,next) is covered by E820_RAM. -v2: E820_RESERVED_KERN is treated as E820_RAM. EFI one change some E820_RAM to that, so next kernel by kexec will know that range is used already. Signed-off-by: NYinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1353123563-3103-20-git-send-email-yinghai@kernel.orgSigned-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
由 Yinghai Lu 提交于
We could map small range in the middle of big range at first, so should use big page size at first to avoid using small page size to break down page table. Only can set big page bit when that range has ram area around it. -v2: fix 32bit boundary checking. We can not count ram above max_low_pfn for 32 bit. Signed-off-by: NYinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1353123563-3103-19-git-send-email-yinghai@kernel.orgSigned-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
由 Yinghai Lu 提交于
We are going to use buffer in BRK to map small range just under memory top, and use those new mapped ram to map ram range under it. The ram range that will be mapped at first could be only page aligned, but ranges around it are ram too, we could use bigger page to map it to avoid small page size. We will adjust page_size_mask in following patch: x86, mm: Use big page size for small memory range to use big page size for small ram range. Before that patch, this patch will make sure start address to be aligned down according to bigger page size, otherwise entry in page page will not have correct value. Signed-off-by: NYinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1353123563-3103-18-git-send-email-yinghai@kernel.orgSigned-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
由 Yinghai Lu 提交于
instead of under 4g. For 64bit, we can use any mapped mem instead of low mem. Signed-off-by: NYinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1353123563-3103-17-git-send-email-yinghai@kernel.orgSigned-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
由 Jacob Shin 提交于
Currently direct mappings are created for [ 0 to max_low_pfn<<PAGE_SHIFT ) and [ 4GB to max_pfn<<PAGE_SHIFT ), which may include regions that are not backed by actual DRAM. This is fine for holes under 4GB which are covered by fixed and variable range MTRRs to be UC. However, we run into trouble on higher memory addresses which cannot be covered by MTRRs. Our system with 1TB of RAM has an e820 that looks like this: BIOS-e820: [mem 0x0000000000000000-0x00000000000983ff] usable BIOS-e820: [mem 0x0000000000098400-0x000000000009ffff] reserved BIOS-e820: [mem 0x00000000000d0000-0x00000000000fffff] reserved BIOS-e820: [mem 0x0000000000100000-0x00000000c7ebffff] usable BIOS-e820: [mem 0x00000000c7ec0000-0x00000000c7ed7fff] ACPI data BIOS-e820: [mem 0x00000000c7ed8000-0x00000000c7ed9fff] ACPI NVS BIOS-e820: [mem 0x00000000c7eda000-0x00000000c7ffffff] reserved BIOS-e820: [mem 0x00000000fec00000-0x00000000fec0ffff] reserved BIOS-e820: [mem 0x00000000fee00000-0x00000000fee00fff] reserved BIOS-e820: [mem 0x00000000fff00000-0x00000000ffffffff] reserved BIOS-e820: [mem 0x0000000100000000-0x000000e037ffffff] usable BIOS-e820: [mem 0x000000e038000000-0x000000fcffffffff] reserved BIOS-e820: [mem 0x0000010000000000-0x0000011ffeffffff] usable and so direct mappings are created for huge memory hole between 0x000000e038000000 to 0x0000010000000000. Even though the kernel never generates memory accesses in that region, since the page tables mark them incorrectly as being WB, our (AMD) processor ends up causing a MCE while doing some memory bookkeeping/optimizations around that area. This patch iterates through e820 and only direct maps ranges that are marked as E820_RAM, and keeps track of those pfn ranges. Depending on the alignment of E820 ranges, this may possibly result in using smaller size (i.e. 4K instead of 2M or 1G) page tables. -v2: move changes from setup.c to mm/init.c, also use for_each_mem_pfn_range instead. - Yinghai Lu -v3: add calculate_all_table_space_size() to get correct needed page table size. - Yinghai Lu -v4: fix add_pfn_range_mapped() to get correct max_low_pfn_mapped when mem map does have hole under 4g that is found by Konard on xen domU with 8g ram. - Yinghai Signed-off-by: NJacob Shin <jacob.shin@amd.com> Link: http://lkml.kernel.org/r/1353123563-3103-16-git-send-email-yinghai@kernel.orgSigned-off-by: NYinghai Lu <yinghai@kernel.org> Reviewed-by: NPekka Enberg <penberg@kernel.org> Signed-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
由 Yinghai Lu 提交于
We are going to map ram only, so under max_low_pfn_mapped, between 4g and max_pfn_mapped does not mean mapped at all. Use pfn_range_is_mapped() to find out if range is mapped for initrd. That could happen bootloader put initrd in range but user could use memmap to carve some of range out. Also during copying need to use early_memmap to map original initrd for accessing. Signed-off-by: NYinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1353123563-3103-15-git-send-email-yinghai@kernel.orgSigned-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
由 Yinghai Lu 提交于
We are going to map ram only, so under max_low_pfn_mapped, between 4g and max_pfn_mapped does not mean mapped at all. Use pfn_range_is_mapped() directly. Signed-off-by: NYinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1353123563-3103-14-git-send-email-yinghai@kernel.orgSigned-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
由 Yinghai Lu 提交于
We are going to map ram only, so under max_low_pfn_mapped, between 4g and max_pfn_mapped does not mean mapped at all. Use pfn_range_is_mapped() directly. Signed-off-by: NYinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1353123563-3103-13-git-send-email-yinghai@kernel.orgSigned-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
由 Jacob Shin 提交于
Update code that previously assumed pfns [ 0 - max_low_pfn_mapped ) and [ 4GB - max_pfn_mapped ) were always direct mapped, to now look up pfn_mapped ranges instead. -v2: change applying sequence to keep git bisecting working. so add dummy pfn_range_is_mapped(). - Yinghai Lu Signed-off-by: NJacob Shin <jacob.shin@amd.com> Link: http://lkml.kernel.org/r/1353123563-3103-12-git-send-email-yinghai@kernel.orgSigned-off-by: NYinghai Lu <yinghai@kernel.org> Signed-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
由 Jacob Shin 提交于
There could be cases where user supplied memmap=exactmap memory mappings do not mark the region where the kernel .text .data and .bss reside as E820_RAM, as reported here: https://lkml.org/lkml/2012/8/14/86 Handle it by complaining, and adding the range back into the e820. Signed-off-by: NJacob Shin <jacob.shin@amd.com> Link: http://lkml.kernel.org/r/1353123563-3103-11-git-send-email-yinghai@kernel.orgSigned-off-by: NYinghai Lu <yinghai@kernel.org> Reviewed-by: NPekka Enberg <penberg@kernel.org> Signed-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
由 Yinghai Lu 提交于
memblock_x86_fill() could double memory array. If we set memblock.current_limit to 512M, so memory array could be around 512M. So kdump will not get big range (like 512M) under 1024M. Try to put it down under 1M, it would use about 4k or so, and that is limited. Signed-off-by: NYinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1353123563-3103-10-git-send-email-yinghai@kernel.orgSigned-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
由 Yinghai Lu 提交于
It should take physical address range that will need to be mapped. find_early_table_space should take range that pgt buff should be in. Separating page table size calculating and finding early page table to reduce confusing. Signed-off-by: NYinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1353123563-3103-9-git-send-email-yinghai@kernel.orgReviewed-by: NPekka Enberg <penberg@kernel.org> Signed-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
由 Yinghai Lu 提交于
We should not do that in every calling of init_memory_mapping. At the same time need to move down early_memtest, and could remove after_bootmem checking. -v2: fix one early_memtest with 32bit by passing max_pfn_mapped instead. Signed-off-by: NYinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1353123563-3103-8-git-send-email-yinghai@kernel.orgSigned-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
由 Yinghai Lu 提交于
call split_mem_range inside the function. Signed-off-by: NYinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1353123563-3103-7-git-send-email-yinghai@kernel.orgSigned-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
由 Yinghai Lu 提交于
After | commit 8548c84d | Author: Takashi Iwai <tiwai@suse.de> | Date: Sun Oct 23 23:19:12 2011 +0200 | | x86: Fix S4 regression | | Commit 4b239f45 ("x86-64, mm: Put early page table high") causes a S4 | regression since 2.6.39, namely the machine reboots occasionally at S4 | resume. It doesn't happen always, overall rate is about 1/20. But, | like other bugs, once when this happens, it continues to happen. | | This patch fixes the problem by essentially reverting the memory | assignment in the older way. Have some page table around 512M again, that will prevent kdump to find 512M under 768M. We need revert that reverting, so we could put page table high again for 64bit. Takashi agreed that S4 regression could be something else. https://lkml.org/lkml/2012/6/15/182Signed-off-by: NYinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1353123563-3103-6-git-send-email-yinghai@kernel.orgSigned-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
由 Yinghai Lu 提交于
Now init_memory_mapping is called two times, later will be called for every ram ranges. Could put all related init_mem calling together and out of setup.c. Actually, it reverts commit 1bbbbe77 x86: Exclude E820_RESERVED regions and memory holes above 4 GB from direct mapping. will address that later with complete solution include handling hole under 4g. Signed-off-by: NYinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1353123563-3103-5-git-send-email-yinghai@kernel.orgReviewed-by: NPekka Enberg <penberg@kernel.org> Signed-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
由 Yinghai Lu 提交于
It will need to call split_mem_range(). Move it down after that to avoid extra declaration. Signed-off-by: NYinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1353123563-3103-4-git-send-email-yinghai@kernel.orgSigned-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
由 Yinghai Lu 提交于
So make init_memory_mapping smaller and readable. -v2: use 0 instead of nr_range as input parameter found by Yasuaki Ishimatsu. Suggested-by: NIngo Molnar <mingo@elte.hu> Signed-off-by: NYinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1353123563-3103-3-git-send-email-yinghai@kernel.orgReviewed-by: NPekka Enberg <penberg@kernel.org> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Signed-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
由 Yinghai Lu 提交于
Now we pass around use_gbpages and use_pse for calculating page table size, Later we will need to call init_memory_mapping for every ram range one by one, that mean those calculation will be done several times. Those information are the same for all ram range and could be stored in page_size_mask and could be probed it one time only. Move that probing code out of init_memory_mapping into separated function probe_page_size_mask(), and call it before all init_memory_mapping. Suggested-by: NIngo Molnar <mingo@elte.hu> Signed-off-by: NYinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1353123563-3103-2-git-send-email-yinghai@kernel.orgReviewed-by: NPekka Enberg <penberg@kernel.org> Signed-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
- 17 11月, 2012 1 次提交
-
-
由 Takashi Iwai 提交于
The commit [ad756a16: KVM: VMX: Implement PCID/INVPCID for guests with EPT] introduced the unconditional access to SECONDARY_VM_EXEC_CONTROL, and this triggers kernel warnings like below on old CPUs: vmwrite error: reg 401e value a0568000 (err 12) Pid: 13649, comm: qemu-kvm Not tainted 3.7.0-rc4-test2+ #154 Call Trace: [<ffffffffa0558d86>] vmwrite_error+0x27/0x29 [kvm_intel] [<ffffffffa054e8cb>] vmcs_writel+0x1b/0x20 [kvm_intel] [<ffffffffa054f114>] vmx_cpuid_update+0x74/0x170 [kvm_intel] [<ffffffffa03629b6>] kvm_vcpu_ioctl_set_cpuid2+0x76/0x90 [kvm] [<ffffffffa0341c67>] kvm_arch_vcpu_ioctl+0xc37/0xed0 [kvm] [<ffffffff81143f7c>] ? __vunmap+0x9c/0x110 [<ffffffffa0551489>] ? vmx_vcpu_load+0x39/0x1a0 [kvm_intel] [<ffffffffa0340ee2>] ? kvm_arch_vcpu_load+0x52/0x1a0 [kvm] [<ffffffffa032dcd4>] ? vcpu_load+0x74/0xd0 [kvm] [<ffffffffa032deb0>] kvm_vcpu_ioctl+0x110/0x5e0 [kvm] [<ffffffffa032e93d>] ? kvm_dev_ioctl+0x4d/0x4a0 [kvm] [<ffffffff8117dc6f>] do_vfs_ioctl+0x8f/0x530 [<ffffffff81139d76>] ? remove_vma+0x56/0x60 [<ffffffff8113b708>] ? do_munmap+0x328/0x400 [<ffffffff81187c8c>] ? fget_light+0x4c/0x100 [<ffffffff8117e1a1>] sys_ioctl+0x91/0xb0 [<ffffffff815a942d>] system_call_fastpath+0x1a/0x1f This patch adds a check for the availability of secondary exec control to avoid these warnings. Cc: <stable@vger.kernel.org> [v3.6+] Signed-off-by: NTakashi Iwai <tiwai@suse.de> Signed-off-by: NMarcelo Tosatti <mtosatti@redhat.com>
-
- 13 11月, 2012 1 次提交
-
-
由 Petr Matousek 提交于
On hosts without the XSAVE support unprivileged local user can trigger oops similar to the one below by setting X86_CR4_OSXSAVE bit in guest cr4 register using KVM_SET_SREGS ioctl and later issuing KVM_RUN ioctl. invalid opcode: 0000 [#2] SMP Modules linked in: tun ip6table_filter ip6_tables ebtable_nat ebtables ... Pid: 24935, comm: zoog_kvm_monito Tainted: G D 3.2.0-3-686-pae EIP: 0060:[<f8b9550c>] EFLAGS: 00210246 CPU: 0 EIP is at kvm_arch_vcpu_ioctl_run+0x92a/0xd13 [kvm] EAX: 00000001 EBX: 000f387e ECX: 00000000 EDX: 00000000 ESI: 00000000 EDI: 00000000 EBP: ef5a0060 ESP: d7c63e70 DS: 007b ES: 007b FS: 00d8 GS: 00e0 SS: 0068 Process zoog_kvm_monito (pid: 24935, ti=d7c62000 task=ed84a0c0 task.ti=d7c62000) Stack: 00000001 f70a1200 f8b940a9 ef5a0060 00000000 00200202 f8769009 00000000 ef5a0060 000f387e eda5c020 8722f9c8 00015bae 00000000 ed84a0c0 ed84a0c0 c12bf02d 0000ae80 ef7f8740 fffffffb f359b740 ef5a0060 f8b85dc1 0000ae80 Call Trace: [<f8b940a9>] ? kvm_arch_vcpu_ioctl_set_sregs+0x2fe/0x308 [kvm] ... [<c12bfb44>] ? syscall_call+0x7/0xb Code: 89 e8 e8 14 ee ff ff ba 00 00 04 00 89 e8 e8 98 48 ff ff 85 c0 74 1e 83 7d 48 00 75 18 8b 85 08 07 00 00 31 c9 8b 95 0c 07 00 00 <0f> 01 d1 c7 45 48 01 00 00 00 c7 45 1c 01 00 00 00 0f ae f0 89 EIP: [<f8b9550c>] kvm_arch_vcpu_ioctl_run+0x92a/0xd13 [kvm] SS:ESP 0068:d7c63e70 QEMU first retrieves the supported features via KVM_GET_SUPPORTED_CPUID and then sets them later. So guest's X86_FEATURE_XSAVE should be masked out on hosts without X86_FEATURE_XSAVE, making kvm_set_cr4 with X86_CR4_OSXSAVE fail. Userspaces that allow specifying guest cpuid with X86_FEATURE_XSAVE even on hosts that do not support it, might be susceptible to this attack from inside the guest as well. Allow setting X86_CR4_OSXSAVE bit only if host has XSAVE support. Signed-off-by: NPetr Matousek <pmatouse@redhat.com> Signed-off-by: NMarcelo Tosatti <mtosatti@redhat.com>
-
- 04 11月, 2012 1 次提交
-
-
由 Jan Beulich 提交于
While copying the argument structures in HYPERVISOR_event_channel_op() and HYPERVISOR_physdev_op() into the local variable is sufficiently safe even if the actual structure is smaller than the container one, copying back eventual output values the same way isn't: This may collide with on-stack variables (particularly "rc") which may change between the first and second memcpy() (i.e. the second memcpy() could discard that change). Move the fallback code into out-of-line functions, and handle all of the operations known by this old a hypervisor individually: Some don't require copying back anything at all, and for the rest use the individual argument structures' sizes rather than the container's. Reported-by: NDan Carpenter <dan.carpenter@oracle.com> Signed-off-by: NJan Beulich <jbeulich@suse.com> [v2: Reduce #define/#undef usage in HYPERVISOR_physdev_op_compat().] [v3: Fix compile errors when modules use said hypercalls] [v4: Add xen_ prefix to the HYPERCALL_..] [v5: Alter the name and only EXPORT_SYMBOL_GPL one of them] Signed-off-by: NKonrad Rzeszutek Wilk <konrad.wilk@oracle.com>
-
- 01 11月, 2012 2 次提交
-
-
由 Xiao Guangrong 提交于
After commit b3356bf0 (KVM: emulator: optimize "rep ins" handling), the pieces of io data can be collected and write them to the guest memory or MMIO together Unfortunately, kvm splits the mmio access into 8 bytes and store them to vcpu->mmio_fragments. If the guest uses "rep ins" to move large data, it will cause vcpu->mmio_fragments overflow The bug can be exposed by isapc (-M isapc): [23154.818733] general protection fault: 0000 [#1] SMP DEBUG_PAGEALLOC [ ......] [23154.858083] Call Trace: [23154.859874] [<ffffffffa04f0e17>] kvm_get_cr8+0x1d/0x28 [kvm] [23154.861677] [<ffffffffa04fa6d4>] kvm_arch_vcpu_ioctl_run+0xcda/0xe45 [kvm] [23154.863604] [<ffffffffa04f5a1a>] ? kvm_arch_vcpu_load+0x17b/0x180 [kvm] Actually, we can use one mmio_fragment to store a large mmio access then split it when we pass the mmio-exit-info to userspace. After that, we only need two entries to store mmio info for the cross-mmio pages access Signed-off-by: NXiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Signed-off-by: NMarcelo Tosatti <mtosatti@redhat.com>
-
由 Konrad Rzeszutek Wilk 提交于
As Mukesh explained it, the MMUEXT_TLB_FLUSH_ALL allows the hypervisor to do a TLB flush on all active vCPUs. If instead we were using the generic one (which ends up being xen_flush_tlb) we end up making the MMUEXT_TLB_FLUSH_LOCAL hypercall. But before we make that hypercall the kernel will IPI all of the vCPUs (even those that were asleep from the hypervisor perspective). The end result is that we needlessly wake them up and do a TLB flush when we can just let the hypervisor do it correctly. This patch gives around 50% speed improvement when migrating idle guest's from one host to another. Oracle-bug: 14630170 CC: stable@vger.kernel.org Tested-by: NJingjie Jiang <jingjie.jiang@oracle.com> Suggested-by: NMukesh Rathor <mukesh.rathor@oracle.com> Signed-off-by: NKonrad Rzeszutek Wilk <konrad.wilk@oracle.com>
-
- 30 10月, 2012 1 次提交
-
-
由 Olaf Hering 提交于
Signed-off-by: NOlaf Hering <olaf@aepfle.de> Signed-off-by: NKonrad Rzeszutek Wilk <konrad.wilk@oracle.com>
-
- 26 10月, 2012 1 次提交
-
-
由 Yinghai Lu 提交于
Commit 844ab6f9 x86, mm: Find_early_table_space based on ranges that are actually being mapped added back some lines back wrongly that has been removed in commit 7b16bbf9 Revert "x86/mm: Fix the size calculation of mapping tables" remove them again. Signed-off-by: NYinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/CAE9FiQW_vuaYQbmagVnxT2DGsYc=9tNeAbdBq53sYkitPOwxSQ@mail.gmail.comAcked-by: NJacob Shin <jacob.shin@amd.com> Signed-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-