1. 24 4月, 2020 4 次提交
  2. 23 4月, 2020 1 次提交
    • M
      mm, compaction: capture a page under direct compaction · 35d915be
      Mel Gorman 提交于
      to #26255339
      
      commit 5e1f0f098b4649fad53011246bcaeff011ffdf5d upstream
      
      Compaction is inherently race-prone as a suitable page freed during
      compaction can be allocated by any parallel task.  This patch uses a
      capture_control structure to isolate a page immediately when it is freed
      by a direct compactor in the slow path of the page allocator.  The
      intent is to avoid redundant scanning.
      
                                           5.0.0-rc1              5.0.0-rc1
                                     selective-v3r17          capture-v3r19
      Amean     fault-both-1         0.00 (   0.00%)        0.00 *   0.00%*
      Amean     fault-both-3      2582.11 (   0.00%)     2563.68 (   0.71%)
      Amean     fault-both-5      4500.26 (   0.00%)     4233.52 (   5.93%)
      Amean     fault-both-7      5819.53 (   0.00%)     6333.65 (  -8.83%)
      Amean     fault-both-12     9321.18 (   0.00%)     9759.38 (  -4.70%)
      Amean     fault-both-18     9782.76 (   0.00%)    10338.76 (  -5.68%)
      Amean     fault-both-24    15272.81 (   0.00%)    13379.55 *  12.40%*
      Amean     fault-both-30    15121.34 (   0.00%)    16158.25 (  -6.86%)
      Amean     fault-both-32    18466.67 (   0.00%)    18971.21 (  -2.73%)
      
      Latency is only moderately affected but the devil is in the details.  A
      closer examination indicates that base page fault latency is reduced but
      latency of huge pages is increased as it takes creater care to succeed.
      Part of the "problem" is that allocation success rates are close to 100%
      even when under pressure and compaction gets harder
      
                                      5.0.0-rc1              5.0.0-rc1
                                selective-v3r17          capture-v3r19
      Percentage huge-3        96.70 (   0.00%)       98.23 (   1.58%)
      Percentage huge-5        96.99 (   0.00%)       95.30 (  -1.75%)
      Percentage huge-7        94.19 (   0.00%)       97.24 (   3.24%)
      Percentage huge-12       94.95 (   0.00%)       97.35 (   2.53%)
      Percentage huge-18       96.74 (   0.00%)       97.30 (   0.58%)
      Percentage huge-24       97.07 (   0.00%)       97.55 (   0.50%)
      Percentage huge-30       95.69 (   0.00%)       98.50 (   2.95%)
      Percentage huge-32       96.70 (   0.00%)       99.27 (   2.65%)
      
      And scan rates are reduced as expected by 6% for the migration scanner
      and 29% for the free scanner indicating that there is less redundant
      work.
      
      Compaction migrate scanned    20815362    19573286
      Compaction free scanned       16352612    11510663
      
      [mgorman@techsingularity.net: remove redundant check]
        Link: http://lkml.kernel.org/r/20190201143853.GH9565@techsingularity.net
      Link: http://lkml.kernel.org/r/20190118175136.31341-23-mgorman@techsingularity.netSigned-off-by: NMel Gorman <mgorman@techsingularity.net>
      Acked-by: NVlastimil Babka <vbabka@suse.cz>
      Cc: Andrea Arcangeli <aarcange@redhat.com>
      Cc: Dan Carpenter <dan.carpenter@oracle.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: YueHaibing <yuehaibing@huawei.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      Signed-off-by: NYang Shi <yang.shi@linux.alibaba.com>
      Reviewed-by: NXunlei Pang <xlpang@linux.alibaba.com>
      35d915be
  3. 18 3月, 2020 4 次提交
    • X
      alinux: memcg: Introduce memory.wmark_min_adj · 60be0f54
      Xunlei Pang 提交于
      In co-location environment, there are more or less some memory
      overcommitment, then BATCH tasks may break the shared global min
      watermark resulting in all types of applications falling into
      the direct reclaim slow path hurting the RT of LS tasks.
      (NOTE: BATCH tasks tolerate big latency spike even in seconds
      as long as doesn't hurt its overal throughput. While LS tasks
      are very Latency-Sensitive, they may time out or fail in case
      of sudden latency spike lasts like hundreds of ms typically.)
      
      Actually BATCH tasks are not sensitive to memory latency, they
      can be assigned a strict min watermark which is different from
      that of LS tasks(which can be aissgned a lenient min watermark
      accordingly), thus isolating each other in case of global memory
      allocation. This is kind of like the idea behind ALLOC_HARDER
      for rt_task(), see gfp_to_alloc_flags().
      
      memory.wmark_min_adj stands for memcg global WMARK_MIN adjustment,
      it is used to realize separate min watermarks above-mentioned for
      memcgs, its valid value is within [-25, 50], specifically:
      negative value means to be relative to [0, WMARK_MIN],
      positive value means to be relative to [WMARK_MIN, WMARK_LOW].
      For examples,
        -25 means "WMARK_MIN + (WMARK_MIN - 0) * (-25%)"
         50 means "WMARK_MIN + (WMARK_LOW - WMARK_MIN) * 50%"
      
      Note that the minimum -25 is what ALLOC_HARDER uses which is safe
      for us to adopt, and the maximum 50 is one experienced value.
      
      Negative memory.wmark_min_adj means high QoS requirements, it can
      allocate below the global WMARK_MIN, which is kind of like the idea
      behind ALLOC_HARDER, see gfp_to_alloc_flags().
      
      Positive memory.wmark_min_adj means low QoS requirements, thus when
      allocation broke memcg min watermark, it should trigger direct reclaim
      traditionally, and we trigger throttle instead to further prevent
      them from disturbing others.
      
      With this interface, we can assign positive values for BATCH memcgs
      and negative values for LS memcgs.
      
      memory.wmark_min_adj default value is 0, and inherit from its parent,
      Note that the final effective wmark_min_adj will consider all the
      hierarchical values, its value is the maximal(most conservative)
      wmark_min_adj along the hierarchy but excluding intermediate default
      values(zero).
      Reviewed-by: NYang Shi <yang.shi@linux.alibaba.com>
      Reviewed-by: NGavin Shan <shan.gavin@linux.alibaba.com>
      Signed-off-by: NXunlei Pang <xlpang@linux.alibaba.com>
      60be0f54
    • J
      io-wq: small threadpool implementation for io_uring · 8a308e54
      Jens Axboe 提交于
      commit 771b53d033e8663abdf59704806aa856b236dcdb upstream.
      
      This adds support for io-wq, a smaller and specialized thread pool
      implementation. This is meant to replace workqueues for io_uring. Among
      the reasons for this addition are:
      
      - We can assign memory context smarter and more persistently if we
        manage the life time of threads.
      
      - We can drop various work-arounds we have in io_uring, like the
        async_list.
      
      - We can implement hashed work insertion, to manage concurrency of
        buffered writes without needing a) an extra workqueue, or b)
        needlessly making the concurrency of said workqueue very low
        which hurts performance of multiple buffered file writers.
      
      - We can implement cancel through signals, for cancelling
        interruptible work like read/write (or send/recv) to/from sockets.
      
      - We need the above cancel for being able to assign and use file tables
        from a process.
      
      - We can implement a more thorough cancel operation in general.
      
      - We need it to move towards a syslet/threadlet model for even faster
        async execution. For that we need to take ownership of the used
        threads.
      
      This list is just off the top of my head. Performance should be the
      same, or better, at least that's what I've seen in my testing. io-wq
      supports basic NUMA functionality, setting up a pool per node.
      
      io-wq hooks up to the scheduler schedule in/out just like workqueue
      and uses that to drive the need for more/less workers.
      Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
      Signed-off-by: NJens Axboe <axboe@kernel.dk>
      [Joseph: Cherry-pick allow_kernel_signal() from upstream commit 33da8e7c814f]
      Signed-off-by: NJoseph Qi <joseph.qi@linux.alibaba.com>
      Reviewed-by: NXiaoguang Wang <xiaoguang.wang@linux.alibaba.com>
      8a308e54
    • T
      sched: Remove stale PF_MUTEX_TESTER bit · 04695e1f
      Thomas Gleixner 提交于
      commit 15917dc02841862840efcbfe1da0830f88078b5c upstream.
      
      The RTMUTEX tester was removed long ago but the PF bit stayed
      around. Remove it and free up the space.
      Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
      Signed-off-by: NJoseph Qi <joseph.qi@linux.alibaba.com>
      Reviewed-by: NXiaoguang Wang <xiaoguang.wang@linux.alibaba.com>
      04695e1f
    • X
      alinux: fs: record page or bio info while process is waitting on it · 2864376f
      Xiaoguang Wang 提交于
      If one process context is stucked in wait_on_buffer(), lock_buffer(),
      lock_page() and wait_on_page_writeback() and wait_on_bit_io(), it's
      hard to tell ture reason, for example, whether this page is under io,
      or this page is just locked too long by other process context.
      
      Normally io request has multiple bios, and every bio contains multiple
      pages which will hold data to be read from or written to device, so here
      we record page info or bio info in task_struct while process calls
      lock_page(), lock_buffer(), wait_on_page_writeback(), wait_on_buffer()
      and wait_on_bit_io(), we add a new proce interface:
      [lege@localhost linux]$ cat /proc/4516/wait_res
      1 ffffd0969f95d3c0 4295369599 4295381596
      
      Above info means that thread 4516 is waitting on a page, address is
      ffffd0969f95d3c0, and has waited for 11997ms.
      
      First field denotes the page address process is waitting on.
      Second field denotes the wait moment and the third denotes current moment.
      
      In practice, if we found a process waitting on one page for too long time,
      we can get page's address by reading /proc/$pid/wait_page, and search this
      page address in all block devices' /sys/kernel/debug/block/${devname}/rq_hang,
      if search operation hits one, we can get the request and know why this io
      request hangs that long.
      Reviewed-by: NJoseph Qi <joseph.qi@linux.alibaba.com>
      Signed-off-by: NXiaoguang Wang <xiaoguang.wang@linux.alibaba.com>
      2864376f
  4. 17 1月, 2020 1 次提交
    • X
      alinux: hotfix: Add Cloud Kernel hotfix enhancement · f94e5b1a
      Xunlei Pang 提交于
      We reserve some fields beforehand for core structures prone to change,
      so that we won't hurt when extra fields have to be added for hotfix,
      thereby inceasing the success rate, we even can hot add features with
      this enhancement.
      
      After reserving, normally cache does not matter as the reserved fields
      (usually at tail) are not accessed at all.
      
      Currently involve the following structures:
          MM:
          struct zone
          struct pglist_data
          struct mm_struct
          struct vm_area_struct
          struct mem_cgroup
          struct writeback_control
      
          Block:
          struct gendisk
          struct backing_dev_info
          struct bio
          struct queue_limits
          struct request_queue
          struct blkcg
          struct blkcg_policy
          struct blk_mq_hw_ctx
          struct blk_mq_tag_set
          struct blk_mq_queue_data
          struct blk_mq_ops
          struct elevator_mq_ops
          struct inode
          struct dentry
          struct address_space
          struct block_device
          struct hd_struct
          struct bio_set
      
          Network:
          struct sk_buff
          struct sock
          struct net_device_ops
          struct xt_target
          struct dst_entry
          struct dst_ops
          struct fib_rule
      
          Scheduler:
          struct task_struct
          struct cfs_rq
          struct rq
          struct sched_statistics
          struct sched_entity
          struct signal_struct
          struct task_group
          struct cpuacct
      
          cgroup:
          struct cgroup_root
          struct cgroup_subsys_state
          struct cgroup_subsys
          struct css_set
      Reviewed-by: NJoseph Qi <joseph.qi@linux.alibaba.com>
      Signed-off-by: NXunlei Pang <xlpang@linux.alibaba.com>
      [ caspar: use SPDX-License-Identifier ]
      Signed-off-by: NCaspar Zhang <caspar@linux.alibaba.com>
      f94e5b1a
  5. 27 12月, 2019 2 次提交
  6. 04 8月, 2019 1 次提交
  7. 06 4月, 2019 1 次提交
  8. 06 12月, 2018 2 次提交
    • S
      function_graph: Use new curr_ret_depth to manage depth instead of curr_ret_stack · 39237432
      Steven Rostedt (VMware) 提交于
      commit 39eb456dacb543de90d3bc6a8e0ac5cf51ac475e upstream.
      
      Currently, the depth of the ret_stack is determined by curr_ret_stack index.
      The issue is that there's a race between setting of the curr_ret_stack and
      calling of the callback attached to the return of the function.
      
      Commit 03274a3f ("tracing/fgraph: Adjust fgraph depth before calling
      trace return callback") moved the calling of the callback to after the
      setting of the curr_ret_stack, even stating that it was safe to do so, when
      in fact, it was the reason there was a barrier() there (yes, I should have
      commented that barrier()).
      
      Not only does the curr_ret_stack keep track of the current call graph depth,
      it also keeps the ret_stack content from being overwritten by new data.
      
      The function profiler, uses the "subtime" variable of ret_stack structure
      and by moving the curr_ret_stack, it allows for interrupts to use the same
      structure it was using, corrupting the data, and breaking the profiler.
      
      To fix this, there needs to be two variables to handle the call stack depth
      and the pointer to where the ret_stack is being used, as they need to change
      at two different locations.
      
      Cc: stable@kernel.org
      Fixes: 03274a3f ("tracing/fgraph: Adjust fgraph depth before calling trace return callback")
      Reviewed-by: NMasami Hiramatsu <mhiramat@kernel.org>
      Signed-off-by: NSteven Rostedt (VMware) <rostedt@goodmis.org>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
      39237432
    • T
      x86/speculation: Add prctl() control for indirect branch speculation · 238ba6e7
      Thomas Gleixner 提交于
      commit 9137bb27e60e554dab694eafa4cca241fa3a694f upstream
      
      Add the PR_SPEC_INDIRECT_BRANCH option for the PR_GET_SPECULATION_CTRL and
      PR_SET_SPECULATION_CTRL prctls to allow fine grained per task control of
      indirect branch speculation via STIBP and IBPB.
      
      Invocations:
       Check indirect branch speculation status with
       - prctl(PR_GET_SPECULATION_CTRL, PR_SPEC_INDIRECT_BRANCH, 0, 0, 0);
      
       Enable indirect branch speculation with
       - prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_INDIRECT_BRANCH, PR_SPEC_ENABLE, 0, 0);
      
       Disable indirect branch speculation with
       - prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_INDIRECT_BRANCH, PR_SPEC_DISABLE, 0, 0);
      
       Force disable indirect branch speculation with
       - prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_INDIRECT_BRANCH, PR_SPEC_FORCE_DISABLE, 0, 0);
      
      See Documentation/userspace-api/spec_ctrl.rst.
      Signed-off-by: NTim Chen <tim.c.chen@linux.intel.com>
      Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
      Reviewed-by: NIngo Molnar <mingo@kernel.org>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Andy Lutomirski <luto@kernel.org>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Jiri Kosina <jkosina@suse.cz>
      Cc: Tom Lendacky <thomas.lendacky@amd.com>
      Cc: Josh Poimboeuf <jpoimboe@redhat.com>
      Cc: Andrea Arcangeli <aarcange@redhat.com>
      Cc: David Woodhouse <dwmw@amazon.co.uk>
      Cc: Andi Kleen <ak@linux.intel.com>
      Cc: Dave Hansen <dave.hansen@intel.com>
      Cc: Casey Schaufler <casey.schaufler@intel.com>
      Cc: Asit Mallick <asit.k.mallick@intel.com>
      Cc: Arjan van de Ven <arjan@linux.intel.com>
      Cc: Jon Masters <jcm@redhat.com>
      Cc: Waiman Long <longman9394@gmail.com>
      Cc: Greg KH <gregkh@linuxfoundation.org>
      Cc: Dave Stewart <david.c.stewart@intel.com>
      Cc: Kees Cook <keescook@chromium.org>
      Cc: stable@vger.kernel.org
      Link: https://lkml.kernel.org/r/20181125185005.866780996@linutronix.deSigned-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
      238ba6e7
  9. 23 8月, 2018 1 次提交
    • D
      kernel/hung_task.c: allow to set checking interval separately from timeout · a2e51445
      Dmitry Vyukov 提交于
      Currently task hung checking interval is equal to timeout, as the result
      hung is detected anywhere between timeout and 2*timeout.  This is fine for
      most interactive environments, but this hurts automated testing setups
      (syzbot).  In an automated setup we need to strictly order CPU lockup <
      RCU stall < workqueue lockup < task hung < silent loss, so that RCU stall
      is not detected as task hung and task hung is not detected as silent
      machine loss.  The large variance in task hung detection timeout requires
      setting silent machine loss timeout to a very large value (e.g.  if task
      hung is 3 mins, then silent loss need to be set to ~7 mins).  The
      additional 3 minutes significantly reduce testing efficiency because
      usually we crash kernel within a minute, and this can add hours to bug
      localization process as it needs to do dozens of tests.
      
      Allow setting checking interval separately from timeout.  This allows to
      set timeout to, say, 3 minutes, but checking interval to 10 secs.
      
      The interval is controlled via a new hung_task_check_interval_secs sysctl,
      similar to the existing hung_task_timeout_secs sysctl.  The default value
      of 0 results in the current behavior: checking interval is equal to
      timeout.
      
      [akpm@linux-foundation.org: update hung_task_timeout_max's comment]
      Link: http://lkml.kernel.org/r/20180611111004.203513-1-dvyukov@google.comSigned-off-by: NDmitry Vyukov <dvyukov@google.com>
      Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
      Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
      Cc: Ingo Molnar <mingo@elte.hu>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      a2e51445
  10. 18 8月, 2018 3 次提交
    • K
      mm: introduce CONFIG_MEMCG_KMEM as combination of CONFIG_MEMCG && !CONFIG_SLOB · 84c07d11
      Kirill Tkhai 提交于
      Introduce new config option, which is used to replace repeating
      CONFIG_MEMCG && !CONFIG_SLOB pattern.  Next patches add a little more
      memcg+kmem related code, so let's keep the defines more clearly.
      
      Link: http://lkml.kernel.org/r/153063053670.1818.15013136946600481138.stgit@localhost.localdomainSigned-off-by: NKirill Tkhai <ktkhai@virtuozzo.com>
      Acked-by: NVladimir Davydov <vdavydov.dev@gmail.com>
      Tested-by: NShakeel Butt <shakeelb@google.com>
      Cc: Al Viro <viro@zeniv.linux.org.uk>
      Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
      Cc: Chris Wilson <chris@chris-wilson.co.uk>
      Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
      Cc: Guenter Roeck <linux@roeck-us.net>
      Cc: "Huang, Ying" <ying.huang@intel.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Josef Bacik <jbacik@fb.com>
      Cc: Li RongQing <lirongqing@baidu.com>
      Cc: Matthew Wilcox <willy@infradead.org>
      Cc: Matthias Kaehlcke <mka@chromium.org>
      Cc: Mel Gorman <mgorman@techsingularity.net>
      Cc: Michal Hocko <mhocko@kernel.org>
      Cc: Minchan Kim <minchan@kernel.org>
      Cc: Philippe Ombredanne <pombredanne@nexb.com>
      Cc: Roman Gushchin <guro@fb.com>
      Cc: Sahitya Tummala <stummala@codeaurora.org>
      Cc: Stephen Rothwell <sfr@canb.auug.org.au>
      Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Waiman Long <longman@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      84c07d11
    • M
      memcg, oom: move out_of_memory back to the charge path · 29ef680a
      Michal Hocko 提交于
      Commit 3812c8c8 ("mm: memcg: do not trap chargers with full
      callstack on OOM") has changed the ENOMEM semantic of memcg charges.
      Rather than invoking the oom killer from the charging context it delays
      the oom killer to the page fault path (pagefault_out_of_memory).  This
      in turn means that many users (e.g.  slab or g-u-p) will get ENOMEM when
      the corresponding memcg hits the hard limit and the memcg is is OOM.
      This is behavior is inconsistent with !memcg case where the oom killer
      is invoked from the allocation context and the allocator keeps retrying
      until it succeeds.
      
      The difference in the behavior is user visible.  mmap(MAP_POPULATE)
      might result in not fully populated ranges while the mmap return code
      doesn't tell that to the userspace.  Random syscalls might fail with
      ENOMEM etc.
      
      The primary motivation of the different memcg oom semantic was the
      deadlock avoidance.  Things have changed since then, though.  We have an
      async oom teardown by the oom reaper now and so we do not have to rely
      on the victim to tear down its memory anymore.  Therefore we can return
      to the original semantic as long as the memcg oom killer is not handed
      over to the users space.
      
      There is still one thing to be careful about here though.  If the oom
      killer is not able to make any forward progress - e.g.  because there is
      no eligible task to kill - then we have to bail out of the charge path
      to prevent from same class of deadlocks.  We have basically two options
      here.  Either we fail the charge with ENOMEM or force the charge and
      allow overcharge.  The first option has been considered more harmful
      than useful because rare inconsistencies in the ENOMEM behavior is hard
      to test for and error prone.  Basically the same reason why the page
      allocator doesn't fail allocations under such conditions.  The later
      might allow runaways but those should be really unlikely unless somebody
      misconfigures the system.  E.g.  allowing to migrate tasks away from the
      memcg to a different unlimited memcg with move_charge_at_immigrate
      disabled.
      
      Link: http://lkml.kernel.org/r/20180628151101.25307-1-mhocko@kernel.orgSigned-off-by: NMichal Hocko <mhocko@suse.com>
      Acked-by: NGreg Thelen <gthelen@google.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Shakeel Butt <shakeelb@google.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      29ef680a
    • S
      fs: fsnotify: account fsnotify metadata to kmemcg · d46eb14b
      Shakeel Butt 提交于
      Patch series "Directed kmem charging", v8.
      
      The Linux kernel's memory cgroup allows limiting the memory usage of the
      jobs running on the system to provide isolation between the jobs.  All
      the kernel memory allocated in the context of the job and marked with
      __GFP_ACCOUNT will also be included in the memory usage and be limited
      by the job's limit.
      
      The kernel memory can only be charged to the memcg of the process in
      whose context kernel memory was allocated.  However there are cases
      where the allocated kernel memory should be charged to the memcg
      different from the current processes's memcg.  This patch series
      contains two such concrete use-cases i.e.  fsnotify and buffer_head.
      
      The fsnotify event objects can consume a lot of system memory for large
      or unlimited queues if there is either no or slow listener.  The events
      are allocated in the context of the event producer.  However they should
      be charged to the event consumer.  Similarly the buffer_head objects can
      be allocated in a memcg different from the memcg of the page for which
      buffer_head objects are being allocated.
      
      To solve this issue, this patch series introduces mechanism to charge
      kernel memory to a given memcg.  In case of fsnotify events, the memcg
      of the consumer can be used for charging and for buffer_head, the memcg
      of the page can be charged.  For directed charging, the caller can use
      the scope API memalloc_[un]use_memcg() to specify the memcg to charge
      for all the __GFP_ACCOUNT allocations within the scope.
      
      This patch (of 2):
      
      A lot of memory can be consumed by the events generated for the huge or
      unlimited queues if there is either no or slow listener.  This can cause
      system level memory pressure or OOMs.  So, it's better to account the
      fsnotify kmem caches to the memcg of the listener.
      
      However the listener can be in a different memcg than the memcg of the
      producer and these allocations happen in the context of the event
      producer.  This patch introduces remote memcg charging API which the
      producer can use to charge the allocations to the memcg of the listener.
      
      There are seven fsnotify kmem caches and among them allocations from
      dnotify_struct_cache, dnotify_mark_cache, fanotify_mark_cache and
      inotify_inode_mark_cachep happens in the context of syscall from the
      listener.  So, SLAB_ACCOUNT is enough for these caches.
      
      The objects from fsnotify_mark_connector_cachep are not accounted as
      they are small compared to the notification mark or events and it is
      unclear whom to account connector to since it is shared by all events
      attached to the inode.
      
      The allocations from the event caches happen in the context of the event
      producer.  For such caches we will need to remote charge the allocations
      to the listener's memcg.  Thus we save the memcg reference in the
      fsnotify_group structure of the listener.
      
      This patch has also moved the members of fsnotify_group to keep the size
      same, at least for 64 bit build, even with additional member by filling
      the holes.
      
      [shakeelb@google.com: use GFP_KERNEL_ACCOUNT rather than open-coding it]
        Link: http://lkml.kernel.org/r/20180702215439.211597-1-shakeelb@google.com
      Link: http://lkml.kernel.org/r/20180627191250.209150-2-shakeelb@google.comSigned-off-by: NShakeel Butt <shakeelb@google.com>
      Acked-by: NJohannes Weiner <hannes@cmpxchg.org>
      Cc: Michal Hocko <mhocko@kernel.org>
      Cc: Jan Kara <jack@suse.cz>
      Cc: Amir Goldstein <amir73il@gmail.com>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
      Cc: Roman Gushchin <guro@fb.com>
      Cc: Alexander Viro <viro@zeniv.linux.org.uk>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      d46eb14b
  11. 25 7月, 2018 1 次提交
  12. 21 7月, 2018 3 次提交
    • E
      pid: Implement PIDTYPE_TGID · 6883f81a
      Eric W. Biederman 提交于
      Everywhere except in the pid array we distinguish between a tasks pid and
      a tasks tgid (thread group id).  Even in the enumeration we want that
      distinction sometimes so we have added __PIDTYPE_TGID.  With leader_pid
      we almost have an implementation of PIDTYPE_TGID in struct signal_struct.
      
      Add PIDTYPE_TGID as a first class member of the pid_type enumeration and
      into the pids array.  Then remove the __PIDTYPE_TGID special case and the
      leader_pid in signal_struct.
      
      The net size increase is just an extra pointer added to struct pid and
      an extra pair of pointers of an hlist_node added to task_struct.
      
      The effect on code maintenance is the removal of a number of special
      cases today and the potential to remove many more special cases as
      PIDTYPE_TGID gets used to it's fullest.  The long term potential
      is allowing zombie thread group leaders to exit, which will remove
      a lot more special cases in the code.
      Signed-off-by: N"Eric W. Biederman" <ebiederm@xmission.com>
      6883f81a
    • E
      pids: Move the pgrp and session pid pointers from task_struct to signal_struct · 2c470475
      Eric W. Biederman 提交于
      To access these fields the code always has to go to group leader so
      going to signal struct is no loss and is actually a fundamental simplification.
      
      This saves a little bit of memory by only allocating the pid pointer array
      once instead of once for every thread, and even better this removes a
      few potential races caused by the fact that group_leader can be changed
      by de_thread, while signal_struct can not.
      Signed-off-by: N"Eric W. Biederman" <ebiederm@xmission.com>
      2c470475
    • E
      pids: Compute task_tgid using signal->leader_pid · 7a36094d
      Eric W. Biederman 提交于
      The cost is the the same and this removes the need
      to worry about complications that come from de_thread
      and group_leader changing.
      
      __task_pid_nr_ns has been updated to take advantage of this change.
      Signed-off-by: N"Eric W. Biederman" <ebiederm@xmission.com>
      7a36094d
  13. 17 7月, 2018 1 次提交
  14. 09 7月, 2018 1 次提交
    • J
      blkcg: add generic throttling mechanism · d09d8df3
      Josef Bacik 提交于
      Since IO can be issued from literally anywhere it's almost impossible to
      do throttling without having some sort of adverse effect somewhere else
      in the system because of locking or other dependencies.  The best way to
      solve this is to do the throttling when we know we aren't holding any
      other kernel resources.  Do this by tracking throttling in a per-blkg
      basis, and if we require throttling flag the task that it needs to check
      before it returns to user space and possibly sleep there.
      
      This is to address the case where a process is doing work that is
      generating IO that can't be throttled, whether that is directly with a
      lot of REQ_META IO, or indirectly by allocating so much memory that it
      is swamping the disk with REQ_SWAP.  We can't use task_add_work as we
      don't want to induce a memory allocation in the IO path, so simply
      saving the request queue in the task and flagging it to do the
      notify_resume thing achieves the same result without the overhead of a
      memory allocation.
      Signed-off-by: NJosef Bacik <jbacik@fb.com>
      Acked-by: NTejun Heo <tj@kernel.org>
      Signed-off-by: NJens Axboe <axboe@kernel.dk>
      d09d8df3
  15. 03 7月, 2018 1 次提交
    • P
      kthread, sched/core: Fix kthread_parkme() (again...) · 1cef1150
      Peter Zijlstra 提交于
      Gaurav reports that commit:
      
        85f1abe0 ("kthread, sched/wait: Fix kthread_parkme() completion issue")
      
      isn't working for him. Because of the following race:
      
      > controller Thread                               CPUHP Thread
      > takedown_cpu
      > kthread_park
      > kthread_parkme
      > Set KTHREAD_SHOULD_PARK
      >                                                 smpboot_thread_fn
      >                                                 set Task interruptible
      >
      >
      > wake_up_process
      >  if (!(p->state & state))
      >                 goto out;
      >
      >                                                 Kthread_parkme
      >                                                 SET TASK_PARKED
      >                                                 schedule
      >                                                 raw_spin_lock(&rq->lock)
      > ttwu_remote
      > waiting for __task_rq_lock
      >                                                 context_switch
      >
      >                                                 finish_lock_switch
      >
      >
      >
      >                                                 Case TASK_PARKED
      >                                                 kthread_park_complete
      >
      >
      > SET Running
      
      Furthermore, Oleg noticed that the whole scheduler TASK_PARKED
      handling is buggered because the TASK_DEAD thing is done with
      preemption disabled, the current code can still complete early on
      preemption :/
      
      So basically revert that earlier fix and go with a variant of the
      alternative mentioned in the commit. Promote TASK_PARKED to special
      state to avoid the store-store issue on task->state leading to the
      WARN in kthread_unpark() -> __kthread_bind().
      
      But in addition, add wait_task_inactive() to kthread_park() to ensure
      the task really is PARKED when we return from kthread_park(). This
      avoids the whole kthread still gets migrated nonsense -- although it
      would be really good to get this done differently.
      Reported-by: NGaurav Kohli <gkohli@codeaurora.org>
      Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Oleg Nesterov <oleg@redhat.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Fixes: 85f1abe0 ("kthread, sched/wait: Fix kthread_parkme() completion issue")
      Signed-off-by: NIngo Molnar <mingo@kernel.org>
      1cef1150
  16. 23 6月, 2018 1 次提交
    • W
      rseq: Avoid infinite recursion when delivering SIGSEGV · 784e0300
      Will Deacon 提交于
      When delivering a signal to a task that is using rseq, we call into
      __rseq_handle_notify_resume() so that the registers pushed in the
      sigframe are updated to reflect the state of the restartable sequence
      (for example, ensuring that the signal returns to the abort handler if
      necessary).
      
      However, if the rseq management fails due to an unrecoverable fault when
      accessing userspace or certain combinations of RSEQ_CS_* flags, then we
      will attempt to deliver a SIGSEGV. This has the potential for infinite
      recursion if the rseq code continuously fails on signal delivery.
      
      Avoid this problem by using force_sigsegv() instead of force_sig(), which
      is explicitly designed to reset the SEGV handler to SIG_DFL in the case
      of a recursive fault. In doing so, remove rseq_signal_deliver() from the
      internal rseq API and have an optional struct ksignal * parameter to
      rseq_handle_notify_resume() instead.
      Signed-off-by: NWill Deacon <will.deacon@arm.com>
      Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
      Acked-by: NMathieu Desnoyers <mathieu.desnoyers@efficios.com>
      Cc: peterz@infradead.org
      Cc: paulmck@linux.vnet.ibm.com
      Cc: boqun.feng@gmail.com
      Link: https://lkml.kernel.org/r/1529664307-983-1-git-send-email-will.deacon@arm.com
      784e0300
  17. 21 6月, 2018 1 次提交
    • M
      rseq/cleanup: Do not abort rseq c.s. in child on fork() · 9a789fcf
      Mathieu Desnoyers 提交于
      Considering that we explicitly forbid system calls in rseq critical
      sections, it is not valid to issue a fork or clone system call within a
      rseq critical section, so rseq_fork() is not required to restart an
      active rseq c.s. in the child process.
      Signed-off-by: NMathieu Desnoyers <mathieu.desnoyers@efficios.com>
      Cc: Andrew Morton <akpm@linux-foundation.org>
      Cc: Andy Lutomirski <luto@amacapital.net>
      Cc: Ben Maurer <bmaurer@fb.com>
      Cc: Boqun Feng <boqun.feng@gmail.com>
      Cc: Catalin Marinas <catalin.marinas@arm.com>
      Cc: Chris Lameter <cl@linux.com>
      Cc: Dave Watson <davejwatson@fb.com>
      Cc: Joel Fernandes <joelaf@google.com>
      Cc: Josh Triplett <josh@joshtriplett.org>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Michael Kerrisk <mtk.manpages@gmail.com>
      Cc: Paul E . McKenney <paulmck@linux.vnet.ibm.com>
      Cc: Paul Turner <pjt@google.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Russell King <linux@arm.linux.org.uk>
      Cc: Shuah Khan <shuahkh@osg.samsung.com>
      Cc: Steven Rostedt <rostedt@goodmis.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Will Deacon <will.deacon@arm.com>
      Cc: linux-api@vger.kernel.org
      Cc: linux-kselftest@vger.kernel.org
      Link: https://lore.kernel.org/lkml/20180619133230.4087-4-mathieu.desnoyers@efficios.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
      9a789fcf
  18. 15 6月, 2018 1 次提交
    • M
      sched/core / kcov: avoid kcov_area during task switch · 0ed557aa
      Mark Rutland 提交于
      During a context switch, we first switch_mm() to the next task's mm,
      then switch_to() that new task.  This means that vmalloc'd regions which
      had previously been faulted in can transiently disappear in the context
      of the prev task.
      
      Functions instrumented by KCOV may try to access a vmalloc'd kcov_area
      during this window, and as the fault handling code is instrumented, this
      results in a recursive fault.
      
      We must avoid accessing any kcov_area during this window.  We can do so
      with a new flag in kcov_mode, set prior to switching the mm, and cleared
      once the new task is live.  Since task_struct::kcov_mode isn't always a
      specific enum kcov_mode value, this is made an unsigned int.
      
      The manipulation is hidden behind kcov_{prepare,finish}_switch() helpers,
      which are empty for !CONFIG_KCOV kernels.
      
      The code uses macros because I can't use static inline functions without a
      circular include dependency between <linux/sched.h> and <linux/kcov.h>,
      since the definition of task_struct uses things defined in <linux/kcov.h>
      
      Link: http://lkml.kernel.org/r/20180504135535.53744-4-mark.rutland@arm.comSigned-off-by: NMark Rutland <mark.rutland@arm.com>
      Acked-by: NAndrey Ryabinin <aryabinin@virtuozzo.com>
      Cc: Dmitry Vyukov <dvyukov@google.com>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      0ed557aa
  19. 14 6月, 2018 1 次提交
    • L
      Kbuild: rename CC_STACKPROTECTOR[_STRONG] config variables · 050e9baa
      Linus Torvalds 提交于
      The changes to automatically test for working stack protector compiler
      support in the Kconfig files removed the special STACKPROTECTOR_AUTO
      option that picked the strongest stack protector that the compiler
      supported.
      
      That was all a nice cleanup - it makes no sense to have the AUTO case
      now that the Kconfig phase can just determine the compiler support
      directly.
      
      HOWEVER.
      
      It also meant that doing "make oldconfig" would now _disable_ the strong
      stackprotector if you had AUTO enabled, because in a legacy config file,
      the sane stack protector configuration would look like
      
        CONFIG_HAVE_CC_STACKPROTECTOR=y
        # CONFIG_CC_STACKPROTECTOR_NONE is not set
        # CONFIG_CC_STACKPROTECTOR_REGULAR is not set
        # CONFIG_CC_STACKPROTECTOR_STRONG is not set
        CONFIG_CC_STACKPROTECTOR_AUTO=y
      
      and when you ran this through "make oldconfig" with the Kbuild changes,
      it would ask you about the regular CONFIG_CC_STACKPROTECTOR (that had
      been renamed from CONFIG_CC_STACKPROTECTOR_REGULAR to just
      CONFIG_CC_STACKPROTECTOR), but it would think that the STRONG version
      used to be disabled (because it was really enabled by AUTO), and would
      disable it in the new config, resulting in:
      
        CONFIG_HAVE_CC_STACKPROTECTOR=y
        CONFIG_CC_HAS_STACKPROTECTOR_NONE=y
        CONFIG_CC_STACKPROTECTOR=y
        # CONFIG_CC_STACKPROTECTOR_STRONG is not set
        CONFIG_CC_HAS_SANE_STACKPROTECTOR=y
      
      That's dangerously subtle - people could suddenly find themselves with
      the weaker stack protector setup without even realizing.
      
      The solution here is to just rename not just the old RECULAR stack
      protector option, but also the strong one.  This does that by just
      removing the CC_ prefix entirely for the user choices, because it really
      is not about the compiler support (the compiler support now instead
      automatially impacts _visibility_ of the options to users).
      
      This results in "make oldconfig" actually asking the user for their
      choice, so that we don't have any silent subtle security model changes.
      The end result would generally look like this:
      
        CONFIG_HAVE_CC_STACKPROTECTOR=y
        CONFIG_CC_HAS_STACKPROTECTOR_NONE=y
        CONFIG_STACKPROTECTOR=y
        CONFIG_STACKPROTECTOR_STRONG=y
        CONFIG_CC_HAS_SANE_STACKPROTECTOR=y
      
      where the "CC_" versions really are about internal compiler
      infrastructure, not the user selections.
      Acked-by: NMasahiro Yamada <yamada.masahiro@socionext.com>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      050e9baa
  20. 06 6月, 2018 1 次提交
    • M
      rseq: Introduce restartable sequences system call · d7822b1e
      Mathieu Desnoyers 提交于
      Expose a new system call allowing each thread to register one userspace
      memory area to be used as an ABI between kernel and user-space for two
      purposes: user-space restartable sequences and quick access to read the
      current CPU number value from user-space.
      
      * Restartable sequences (per-cpu atomics)
      
      Restartables sequences allow user-space to perform update operations on
      per-cpu data without requiring heavy-weight atomic operations.
      
      The restartable critical sections (percpu atomics) work has been started
      by Paul Turner and Andrew Hunter. It lets the kernel handle restart of
      critical sections. [1] [2] The re-implementation proposed here brings a
      few simplifications to the ABI which facilitates porting to other
      architectures and speeds up the user-space fast path.
      
      Here are benchmarks of various rseq use-cases.
      
      Test hardware:
      
      arm32: ARMv7 Processor rev 4 (v7l) "Cubietruck", 2-core
      x86-64: Intel E5-2630 v3@2.40GHz, 16-core, hyperthreading
      
      The following benchmarks were all performed on a single thread.
      
      * Per-CPU statistic counter increment
      
                      getcpu+atomic (ns/op)    rseq (ns/op)    speedup
      arm32:                344.0                 31.4          11.0
      x86-64:                15.3                  2.0           7.7
      
      * LTTng-UST: write event 32-bit header, 32-bit payload into tracer
                   per-cpu buffer
      
                      getcpu+atomic (ns/op)    rseq (ns/op)    speedup
      arm32:               2502.0                 2250.0         1.1
      x86-64:               117.4                   98.0         1.2
      
      * liburcu percpu: lock-unlock pair, dereference, read/compare word
      
                      getcpu+atomic (ns/op)    rseq (ns/op)    speedup
      arm32:                751.0                 128.5          5.8
      x86-64:                53.4                  28.6          1.9
      
      * jemalloc memory allocator adapted to use rseq
      
      Using rseq with per-cpu memory pools in jemalloc at Facebook (based on
      rseq 2016 implementation):
      
      The production workload response-time has 1-2% gain avg. latency, and
      the P99 overall latency drops by 2-3%.
      
      * Reading the current CPU number
      
      Speeding up reading the current CPU number on which the caller thread is
      running is done by keeping the current CPU number up do date within the
      cpu_id field of the memory area registered by the thread. This is done
      by making scheduler preemption set the TIF_NOTIFY_RESUME flag on the
      current thread. Upon return to user-space, a notify-resume handler
      updates the current CPU value within the registered user-space memory
      area. User-space can then read the current CPU number directly from
      memory.
      
      Keeping the current cpu id in a memory area shared between kernel and
      user-space is an improvement over current mechanisms available to read
      the current CPU number, which has the following benefits over
      alternative approaches:
      
      - 35x speedup on ARM vs system call through glibc
      - 20x speedup on x86 compared to calling glibc, which calls vdso
        executing a "lsl" instruction,
      - 14x speedup on x86 compared to inlined "lsl" instruction,
      - Unlike vdso approaches, this cpu_id value can be read from an inline
        assembly, which makes it a useful building block for restartable
        sequences.
      - The approach of reading the cpu id through memory mapping shared
        between kernel and user-space is portable (e.g. ARM), which is not the
        case for the lsl-based x86 vdso.
      
      On x86, yet another possible approach would be to use the gs segment
      selector to point to user-space per-cpu data. This approach performs
      similarly to the cpu id cache, but it has two disadvantages: it is
      not portable, and it is incompatible with existing applications already
      using the gs segment selector for other purposes.
      
      Benchmarking various approaches for reading the current CPU number:
      
      ARMv7 Processor rev 4 (v7l)
      Machine model: Cubietruck
      - Baseline (empty loop):                                    8.4 ns
      - Read CPU from rseq cpu_id:                               16.7 ns
      - Read CPU from rseq cpu_id (lazy register):               19.8 ns
      - glibc 2.19-0ubuntu6.6 getcpu:                           301.8 ns
      - getcpu system call:                                     234.9 ns
      
      x86-64 Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz:
      - Baseline (empty loop):                                    0.8 ns
      - Read CPU from rseq cpu_id:                                0.8 ns
      - Read CPU from rseq cpu_id (lazy register):                0.8 ns
      - Read using gs segment selector:                           0.8 ns
      - "lsl" inline assembly:                                   13.0 ns
      - glibc 2.19-0ubuntu6 getcpu:                              16.6 ns
      - getcpu system call:                                      53.9 ns
      
      - Speed (benchmark taken on v8 of patchset)
      
      Running 10 runs of hackbench -l 100000 seems to indicate, contrary to
      expectations, that enabling CONFIG_RSEQ slightly accelerates the
      scheduler:
      
      Configuration: 2 sockets * 8-core Intel(R) Xeon(R) CPU E5-2630 v3 @
      2.40GHz (directly on hardware, hyperthreading disabled in BIOS, energy
      saving disabled in BIOS, turboboost disabled in BIOS, cpuidle.off=1
      kernel parameter), with a Linux v4.6 defconfig+localyesconfig,
      restartable sequences series applied.
      
      * CONFIG_RSEQ=n
      
      avg.:      41.37 s
      std.dev.:   0.36 s
      
      * CONFIG_RSEQ=y
      
      avg.:      40.46 s
      std.dev.:   0.33 s
      
      - Size
      
      On x86-64, between CONFIG_RSEQ=n/y, the text size increase of vmlinux is
      567 bytes, and the data size increase of vmlinux is 5696 bytes.
      
      [1] https://lwn.net/Articles/650333/
      [2] http://www.linuxplumbersconf.org/2013/ocw/system/presentations/1695/original/LPC%20-%20PerCpu%20Atomics.pdfSigned-off-by: NMathieu Desnoyers <mathieu.desnoyers@efficios.com>
      Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
      Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
      Cc: Joel Fernandes <joelaf@google.com>
      Cc: Catalin Marinas <catalin.marinas@arm.com>
      Cc: Dave Watson <davejwatson@fb.com>
      Cc: Will Deacon <will.deacon@arm.com>
      Cc: Andi Kleen <andi@firstfloor.org>
      Cc: "H . Peter Anvin" <hpa@zytor.com>
      Cc: Chris Lameter <cl@linux.com>
      Cc: Russell King <linux@arm.linux.org.uk>
      Cc: Andrew Hunter <ahh@google.com>
      Cc: Michael Kerrisk <mtk.manpages@gmail.com>
      Cc: "Paul E . McKenney" <paulmck@linux.vnet.ibm.com>
      Cc: Paul Turner <pjt@google.com>
      Cc: Boqun Feng <boqun.feng@gmail.com>
      Cc: Josh Triplett <josh@joshtriplett.org>
      Cc: Steven Rostedt <rostedt@goodmis.org>
      Cc: Ben Maurer <bmaurer@fb.com>
      Cc: Alexander Viro <viro@zeniv.linux.org.uk>
      Cc: linux-api@vger.kernel.org
      Cc: Andy Lutomirski <luto@amacapital.net>
      Cc: Andrew Morton <akpm@linux-foundation.org>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Link: http://lkml.kernel.org/r/20151027235635.16059.11630.stgit@pjt-glaptop.roam.corp.google.com
      Link: http://lkml.kernel.org/r/20150624222609.6116.86035.stgit@kitami.mtv.corp.google.com
      Link: https://lkml.kernel.org/r/20180602124408.8430-3-mathieu.desnoyers@efficios.com
      d7822b1e
  21. 25 5月, 2018 1 次提交
  22. 16 5月, 2018 1 次提交
  23. 14 5月, 2018 1 次提交
    • R
      sched/core: Distinguish between idle_cpu() calls based on desired effect,... · 943d355d
      Rohit Jain 提交于
      sched/core: Distinguish between idle_cpu() calls based on desired effect, introduce available_idle_cpu()
      
      In the following commit:
      
        247f2f6f ("sched/core: Don't schedule threads on pre-empted vCPUs")
      
      ... we distinguish between idle_cpu() when the vCPU is not running for
      scheduling threads.
      
      However, the idle_cpu() function is used in other places for
      actually checking whether the state of the CPU is idle or not.
      
      Hence split the use of that function based on the desired return value,
      by introducing the available_idle_cpu() function.
      
      This fixes a (slight) regression in that initial vCPU commit, because
      some code paths (like the load-balancer) don't care and shouldn't care
      if the vCPU is preempted or not, they just want to know if there's any
      tasks on the CPU.
      Signed-off-by: NRohit Jain <rohit.k.jain@oracle.com>
      Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Mike Galbraith <efault@gmx.de>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: dhaval.giani@oracle.com
      Cc: linux-kernel@vger.kernel.org
      Cc: matt@codeblueprint.co.uk
      Cc: steven.sistare@oracle.com
      Cc: subhra.mazumdar@oracle.com
      Link: http://lkml.kernel.org/r/1525883988-10356-1-git-send-email-rohit.k.jain@oracle.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
      943d355d
  24. 05 5月, 2018 1 次提交
    • T
      prctl: Add force disable speculation · 356e4bff
      Thomas Gleixner 提交于
      For certain use cases it is desired to enforce mitigations so they cannot
      be undone afterwards. That's important for loader stubs which want to
      prevent a child from disabling the mitigation again. Will also be used for
      seccomp(). The extra state preserving of the prctl state for SSB is a
      preparatory step for EBPF dymanic speculation control.
      Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
      356e4bff
  25. 04 5月, 2018 1 次提交
    • P
      sched/core: Introduce set_special_state() · b5bf9a90
      Peter Zijlstra 提交于
      Gaurav reported a perceived problem with TASK_PARKED, which turned out
      to be a broken wait-loop pattern in __kthread_parkme(), but the
      reported issue can (and does) in fact happen for states that do not do
      condition based sleeps.
      
      When the 'current->state = TASK_RUNNING' store of a previous
      (concurrent) try_to_wake_up() collides with the setting of a 'special'
      sleep state, we can loose the sleep state.
      
      Normal condition based wait-loops are immune to this problem, but for
      sleep states that are not condition based are subject to this problem.
      
      There already is a fix for TASK_DEAD. Abstract that and also apply it
      to TASK_STOPPED and TASK_TRACED, both of which are also without
      condition based wait-loop.
      Reported-by: NGaurav Kohli <gkohli@codeaurora.org>
      Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
      Reviewed-by: NOleg Nesterov <oleg@redhat.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Signed-off-by: NIngo Molnar <mingo@kernel.org>
      b5bf9a90
  26. 05 4月, 2018 1 次提交
    • P
      sched/core: Force proper alignment of 'struct util_est' · 317d359d
      Peter Zijlstra 提交于
      For some as yet not understood reason, Tony gets unaligned access
      traps on IA64 because of:
      
        struct util_est ue = READ_ONCE(p->se.avg.util_est);
      
      and:
      
        WRITE_ONCE(p->se.avg.util_est, ue);
      
      introduced by commit:
      
        d519329f ("sched/fair: Update util_est only on util_avg updates")
      
      Normally those two fields should end up on an 8-byte aligned location,
      but UP and RANDSTRUCT can mess that up so enforce the alignment
      explicitly.
      
      Also make the alignment on sched_avg unconditional, as it is really
      about data locality, not false-sharing.
      
      With or without this patch the layout for sched_avg on a
      ia64-defconfig build looks like:
      
      	$ pahole -EC sched_avg ia64-defconfig/kernel/sched/core.o
      	die__process_function: tag not supported (INVALID)!
      	struct sched_avg {
      		/* typedef u64 */ long long unsigned int     last_update_time;                   /*     0     8 */
      		/* typedef u64 */ long long unsigned int     load_sum;                           /*     8     8 */
      		/* typedef u64 */ long long unsigned int     runnable_load_sum;                  /*    16     8 */
      		/* typedef u32 */ unsigned int               util_sum;                           /*    24     4 */
      		/* typedef u32 */ unsigned int               period_contrib;                     /*    28     4 */
      		long unsigned int          load_avg;                                             /*    32     8 */
      		long unsigned int          runnable_load_avg;                                    /*    40     8 */
      		long unsigned int          util_avg;                                             /*    48     8 */
      		struct util_est {
      			unsigned int       enqueued;                                             /*    56     4 */
      			unsigned int       ewma;                                                 /*    60     4 */
      		} util_est; /*    56     8 */
      		/* --- cacheline 1 boundary (64 bytes) --- */
      
      		/* size: 64, cachelines: 1, members: 9 */
      	};
      Reported-and-Tested-by: NTony Luck <tony.luck@intel.com>
      Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
      Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
      Cc: Frederic Weisbecker <frederic@kernel.org>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Mel Gorman <mgorman@techsingularity.net>
      Cc: Norbert Manthey <nmanthey@amazon.de>
      Cc: Patrick Bellasi <patrick.bellasi@arm.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Tony <tony.luck@intel.com>
      Cc: Vincent Guittot <vincent.guittot@linaro.org>
      Fixes: d519329f ("sched/fair: Update util_est only on util_avg updates")
      Link: http://lkml.kernel.org/r/20180405080521.GG4129@hirez.programming.kicks-ass.netSigned-off-by: NIngo Molnar <mingo@kernel.org>
      317d359d
  27. 20 3月, 2018 1 次提交
    • P
      sched/fair: Add util_est on top of PELT · 7f65ea42
      Patrick Bellasi 提交于
      The util_avg signal computed by PELT is too variable for some use-cases.
      For example, a big task waking up after a long sleep period will have its
      utilization almost completely decayed. This introduces some latency before
      schedutil will be able to pick the best frequency to run a task.
      
      The same issue can affect task placement. Indeed, since the task
      utilization is already decayed at wakeup, when the task is enqueued in a
      CPU, this can result in a CPU running a big task as being temporarily
      represented as being almost empty. This leads to a race condition where
      other tasks can be potentially allocated on a CPU which just started to run
      a big task which slept for a relatively long period.
      
      Moreover, the PELT utilization of a task can be updated every [ms], thus
      making it a continuously changing value for certain longer running
      tasks. This means that the instantaneous PELT utilization of a RUNNING
      task is not really meaningful to properly support scheduler decisions.
      
      For all these reasons, a more stable signal can do a better job of
      representing the expected/estimated utilization of a task/cfs_rq.
      Such a signal can be easily created on top of PELT by still using it as
      an estimator which produces values to be aggregated on meaningful
      events.
      
      This patch adds a simple implementation of util_est, a new signal built on
      top of PELT's util_avg where:
      
          util_est(task) = max(task::util_avg, f(task::util_avg@dequeue))
      
      This allows to remember how big a task has been reported by PELT in its
      previous activations via f(task::util_avg@dequeue), which is the new
      _task_util_est(struct task_struct*) function added by this patch.
      
      If a task should change its behavior and it runs longer in a new
      activation, after a certain time its util_est will just track the
      original PELT signal (i.e. task::util_avg).
      
      The estimated utilization of cfs_rq is defined only for root ones.
      That's because the only sensible consumer of this signal are the
      scheduler and schedutil when looking for the overall CPU utilization
      due to FAIR tasks.
      
      For this reason, the estimated utilization of a root cfs_rq is simply
      defined as:
      
          util_est(cfs_rq) = max(cfs_rq::util_avg, cfs_rq::util_est::enqueued)
      
      where:
      
          cfs_rq::util_est::enqueued = sum(_task_util_est(task))
                                       for each RUNNABLE task on that root cfs_rq
      
      It's worth noting that the estimated utilization is tracked only for
      objects of interests, specifically:
      
       - Tasks: to better support tasks placement decisions
       - root cfs_rqs: to better support both tasks placement decisions as
                       well as frequencies selection
      Signed-off-by: NPatrick Bellasi <patrick.bellasi@arm.com>
      Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
      Reviewed-by: NDietmar Eggemann <dietmar.eggemann@arm.com>
      Cc: Joel Fernandes <joelaf@google.com>
      Cc: Juri Lelli <juri.lelli@redhat.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Morten Rasmussen <morten.rasmussen@arm.com>
      Cc: Paul Turner <pjt@google.com>
      Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
      Cc: Steve Muckle <smuckle@google.com>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Todd Kjos <tkjos@android.com>
      Cc: Vincent Guittot <vincent.guittot@linaro.org>
      Cc: Viresh Kumar <viresh.kumar@linaro.org>
      Link: http://lkml.kernel.org/r/20180309095245.11071-2-patrick.bellasi@arm.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
      7f65ea42
  28. 12 3月, 2018 1 次提交