1. 17 2月, 2015 2 次提交
  2. 11 2月, 2015 1 次提交
  3. 21 1月, 2015 1 次提交
  4. 30 12月, 2014 1 次提交
    • M
      mm: get rid of radix tree gfp mask for pagecache_get_page · 45f87de5
      Michal Hocko 提交于
      Commit 2457aec6 ("mm: non-atomically mark page accessed during page
      cache allocation where possible") has added a separate parameter for
      specifying gfp mask for radix tree allocations.
      
      Not only this is less than optimal from the API point of view because it
      is error prone, it is also buggy currently because
      grab_cache_page_write_begin is using GFP_KERNEL for radix tree and if
      fgp_flags doesn't contain FGP_NOFS (mostly controlled by fs by
      AOP_FLAG_NOFS flag) but the mapping_gfp_mask has __GFP_FS cleared then
      the radix tree allocation wouldn't obey the restriction and might
      recurse into filesystem and cause deadlocks.  This is the case for most
      filesystems unfortunately because only ext4 and gfs2 are using
      AOP_FLAG_NOFS.
      
      Let's simply remove radix_gfp_mask parameter because the allocation
      context is same for both page cache and for the radix tree.  Just make
      sure that the radix tree gets only the sane subset of the mask (e.g.  do
      not pass __GFP_WRITE).
      
      Long term it is more preferable to convert remaining users of
      AOP_FLAG_NOFS to use mapping_gfp_mask instead and simplify this
      interface even further.
      Reported-by: NDave Chinner <david@fromorbit.com>
      Signed-off-by: NMichal Hocko <mhocko@suse.cz>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      45f87de5
  5. 17 12月, 2014 1 次提交
  6. 14 12月, 2014 1 次提交
  7. 10 10月, 2014 1 次提交
  8. 25 9月, 2014 2 次提交
  9. 09 9月, 2014 1 次提交
  10. 12 8月, 2014 1 次提交
  11. 09 8月, 2014 2 次提交
    • J
      mm: memcontrol: rewrite uncharge API · 0a31bc97
      Johannes Weiner 提交于
      The memcg uncharging code that is involved towards the end of a page's
      lifetime - truncation, reclaim, swapout, migration - is impressively
      complicated and fragile.
      
      Because anonymous and file pages were always charged before they had their
      page->mapping established, uncharges had to happen when the page type
      could still be known from the context; as in unmap for anonymous, page
      cache removal for file and shmem pages, and swap cache truncation for swap
      pages.  However, these operations happen well before the page is actually
      freed, and so a lot of synchronization is necessary:
      
      - Charging, uncharging, page migration, and charge migration all need
        to take a per-page bit spinlock as they could race with uncharging.
      
      - Swap cache truncation happens during both swap-in and swap-out, and
        possibly repeatedly before the page is actually freed.  This means
        that the memcg swapout code is called from many contexts that make
        no sense and it has to figure out the direction from page state to
        make sure memory and memory+swap are always correctly charged.
      
      - On page migration, the old page might be unmapped but then reused,
        so memcg code has to prevent untimely uncharging in that case.
        Because this code - which should be a simple charge transfer - is so
        special-cased, it is not reusable for replace_page_cache().
      
      But now that charged pages always have a page->mapping, introduce
      mem_cgroup_uncharge(), which is called after the final put_page(), when we
      know for sure that nobody is looking at the page anymore.
      
      For page migration, introduce mem_cgroup_migrate(), which is called after
      the migration is successful and the new page is fully rmapped.  Because
      the old page is no longer uncharged after migration, prevent double
      charges by decoupling the page's memcg association (PCG_USED and
      pc->mem_cgroup) from the page holding an actual charge.  The new bits
      PCG_MEM and PCG_MEMSW represent the respective charges and are transferred
      to the new page during migration.
      
      mem_cgroup_migrate() is suitable for replace_page_cache() as well,
      which gets rid of mem_cgroup_replace_page_cache().  However, care
      needs to be taken because both the source and the target page can
      already be charged and on the LRU when fuse is splicing: grab the page
      lock on the charge moving side to prevent changing pc->mem_cgroup of a
      page under migration.  Also, the lruvecs of both pages change as we
      uncharge the old and charge the new during migration, and putback may
      race with us, so grab the lru lock and isolate the pages iff on LRU to
      prevent races and ensure the pages are on the right lruvec afterward.
      
      Swap accounting is massively simplified: because the page is no longer
      uncharged as early as swap cache deletion, a new mem_cgroup_swapout() can
      transfer the page's memory+swap charge (PCG_MEMSW) to the swap entry
      before the final put_page() in page reclaim.
      
      Finally, page_cgroup changes are now protected by whatever protection the
      page itself offers: anonymous pages are charged under the page table lock,
      whereas page cache insertions, swapin, and migration hold the page lock.
      Uncharging happens under full exclusion with no outstanding references.
      Charging and uncharging also ensure that the page is off-LRU, which
      serializes against charge migration.  Remove the very costly page_cgroup
      lock and set pc->flags non-atomically.
      
      [mhocko@suse.cz: mem_cgroup_charge_statistics needs preempt_disable]
      [vdavydov@parallels.com: fix flags definition]
      Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org>
      Cc: Hugh Dickins <hughd@google.com>
      Cc: Tejun Heo <tj@kernel.org>
      Cc: Vladimir Davydov <vdavydov@parallels.com>
      Tested-by: NJet Chen <jet.chen@intel.com>
      Acked-by: NMichal Hocko <mhocko@suse.cz>
      Tested-by: NFelipe Balbi <balbi@ti.com>
      Signed-off-by: NVladimir Davydov <vdavydov@parallels.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      0a31bc97
    • J
      mm: memcontrol: rewrite charge API · 00501b53
      Johannes Weiner 提交于
      These patches rework memcg charge lifetime to integrate more naturally
      with the lifetime of user pages.  This drastically simplifies the code and
      reduces charging and uncharging overhead.  The most expensive part of
      charging and uncharging is the page_cgroup bit spinlock, which is removed
      entirely after this series.
      
      Here are the top-10 profile entries of a stress test that reads a 128G
      sparse file on a freshly booted box, without even a dedicated cgroup (i.e.
       executing in the root memcg).  Before:
      
          15.36%              cat  [kernel.kallsyms]   [k] copy_user_generic_string
          13.31%              cat  [kernel.kallsyms]   [k] memset
          11.48%              cat  [kernel.kallsyms]   [k] do_mpage_readpage
           4.23%              cat  [kernel.kallsyms]   [k] get_page_from_freelist
           2.38%              cat  [kernel.kallsyms]   [k] put_page
           2.32%              cat  [kernel.kallsyms]   [k] __mem_cgroup_commit_charge
           2.18%          kswapd0  [kernel.kallsyms]   [k] __mem_cgroup_uncharge_common
           1.92%          kswapd0  [kernel.kallsyms]   [k] shrink_page_list
           1.86%              cat  [kernel.kallsyms]   [k] __radix_tree_lookup
           1.62%              cat  [kernel.kallsyms]   [k] __pagevec_lru_add_fn
      
      After:
      
          15.67%           cat  [kernel.kallsyms]   [k] copy_user_generic_string
          13.48%           cat  [kernel.kallsyms]   [k] memset
          11.42%           cat  [kernel.kallsyms]   [k] do_mpage_readpage
           3.98%           cat  [kernel.kallsyms]   [k] get_page_from_freelist
           2.46%           cat  [kernel.kallsyms]   [k] put_page
           2.13%       kswapd0  [kernel.kallsyms]   [k] shrink_page_list
           1.88%           cat  [kernel.kallsyms]   [k] __radix_tree_lookup
           1.67%           cat  [kernel.kallsyms]   [k] __pagevec_lru_add_fn
           1.39%       kswapd0  [kernel.kallsyms]   [k] free_pcppages_bulk
           1.30%           cat  [kernel.kallsyms]   [k] kfree
      
      As you can see, the memcg footprint has shrunk quite a bit.
      
         text    data     bss     dec     hex filename
        37970    9892     400   48262    bc86 mm/memcontrol.o.old
        35239    9892     400   45531    b1db mm/memcontrol.o
      
      This patch (of 4):
      
      The memcg charge API charges pages before they are rmapped - i.e.  have an
      actual "type" - and so every callsite needs its own set of charge and
      uncharge functions to know what type is being operated on.  Worse,
      uncharge has to happen from a context that is still type-specific, rather
      than at the end of the page's lifetime with exclusive access, and so
      requires a lot of synchronization.
      
      Rewrite the charge API to provide a generic set of try_charge(),
      commit_charge() and cancel_charge() transaction operations, much like
      what's currently done for swap-in:
      
        mem_cgroup_try_charge() attempts to reserve a charge, reclaiming
        pages from the memcg if necessary.
      
        mem_cgroup_commit_charge() commits the page to the charge once it
        has a valid page->mapping and PageAnon() reliably tells the type.
      
        mem_cgroup_cancel_charge() aborts the transaction.
      
      This reduces the charge API and enables subsequent patches to
      drastically simplify uncharging.
      
      As pages need to be committed after rmap is established but before they
      are added to the LRU, page_add_new_anon_rmap() must stop doing LRU
      additions again.  Revive lru_cache_add_active_or_unevictable().
      
      [hughd@google.com: fix shmem_unuse]
      [hughd@google.com: Add comments on the private use of -EAGAIN]
      Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org>
      Acked-by: NMichal Hocko <mhocko@suse.cz>
      Cc: Tejun Heo <tj@kernel.org>
      Cc: Vladimir Davydov <vdavydov@parallels.com>
      Signed-off-by: NHugh Dickins <hughd@google.com>
      Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      00501b53
  12. 07 8月, 2014 2 次提交
  13. 31 7月, 2014 1 次提交
  14. 16 7月, 2014 1 次提交
    • N
      sched: Remove proliferation of wait_on_bit() action functions · 74316201
      NeilBrown 提交于
      The current "wait_on_bit" interface requires an 'action'
      function to be provided which does the actual waiting.
      There are over 20 such functions, many of them identical.
      Most cases can be satisfied by one of just two functions, one
      which uses io_schedule() and one which just uses schedule().
      
      So:
       Rename wait_on_bit and        wait_on_bit_lock to
              wait_on_bit_action and wait_on_bit_lock_action
       to make it explicit that they need an action function.
      
       Introduce new wait_on_bit{,_lock} and wait_on_bit{,_lock}_io
       which are *not* given an action function but implicitly use
       a standard one.
       The decision to error-out if a signal is pending is now made
       based on the 'mode' argument rather than being encoded in the action
       function.
      
       All instances of the old wait_on_bit and wait_on_bit_lock which
       can use the new version have been changed accordingly and their
       action functions have been discarded.
       wait_on_bit{_lock} does not return any specific error code in the
       event of a signal so the caller must check for non-zero and
       interpolate their own error code as appropriate.
      
      The wait_on_bit() call in __fscache_wait_on_invalidate() was
      ambiguous as it specified TASK_UNINTERRUPTIBLE but used
      fscache_wait_bit_interruptible as an action function.
      David Howells confirms this should be uniformly
      "uninterruptible"
      
      The main remaining user of wait_on_bit{,_lock}_action is NFS
      which needs to use a freezer-aware schedule() call.
      
      A comment in fs/gfs2/glock.c notes that having multiple 'action'
      functions is useful as they display differently in the 'wchan'
      field of 'ps'. (and /proc/$PID/wchan).
      As the new bit_wait{,_io} functions are tagged "__sched", they
      will not show up at all, but something higher in the stack.  So
      the distinction will still be visible, only with different
      function names (gds2_glock_wait versus gfs2_glock_dq_wait in the
      gfs2/glock.c case).
      
      Since first version of this patch (against 3.15) two new action
      functions appeared, on in NFS and one in CIFS.  CIFS also now
      uses an action function that makes the same freezer aware
      schedule call as NFS.
      Signed-off-by: NNeilBrown <neilb@suse.de>
      Acked-by: David Howells <dhowells@redhat.com> (fscache, keys)
      Acked-by: Steven Whitehouse <swhiteho@redhat.com> (gfs2)
      Acked-by: NPeter Zijlstra <peterz@infradead.org>
      Cc: Oleg Nesterov <oleg@redhat.com>
      Cc: Steve French <sfrench@samba.org>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Link: http://lkml.kernel.org/r/20140707051603.28027.72349.stgit@notabene.brownSigned-off-by: NIngo Molnar <mingo@kernel.org>
      74316201
  15. 05 6月, 2014 3 次提交
    • M
      mm: avoid unnecessary atomic operations during end_page_writeback() · 888cf2db
      Mel Gorman 提交于
      If a page is marked for immediate reclaim then it is moved to the tail of
      the LRU list.  This occurs when the system is under enough memory pressure
      for pages under writeback to reach the end of the LRU but we test for this
      using atomic operations on every writeback.  This patch uses an optimistic
      non-atomic test first.  It'll miss some pages in rare cases but the
      consequences are not severe enough to warrant such a penalty.
      
      While the function does not dominate profiles during a simple dd test the
      cost of it is reduced.
      
      73048     0.7428  vmlinux-3.15.0-rc5-mmotm-20140513 end_page_writeback
      23740     0.2409  vmlinux-3.15.0-rc5-lessatomic     end_page_writeback
      Signed-off-by: NMel Gorman <mgorman@suse.de>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      888cf2db
    • M
      mm: non-atomically mark page accessed during page cache allocation where possible · 2457aec6
      Mel Gorman 提交于
      aops->write_begin may allocate a new page and make it visible only to have
      mark_page_accessed called almost immediately after.  Once the page is
      visible the atomic operations are necessary which is noticable overhead
      when writing to an in-memory filesystem like tmpfs but should also be
      noticable with fast storage.  The objective of the patch is to initialse
      the accessed information with non-atomic operations before the page is
      visible.
      
      The bulk of filesystems directly or indirectly use
      grab_cache_page_write_begin or find_or_create_page for the initial
      allocation of a page cache page.  This patch adds an init_page_accessed()
      helper which behaves like the first call to mark_page_accessed() but may
      called before the page is visible and can be done non-atomically.
      
      The primary APIs of concern in this care are the following and are used
      by most filesystems.
      
      	find_get_page
      	find_lock_page
      	find_or_create_page
      	grab_cache_page_nowait
      	grab_cache_page_write_begin
      
      All of them are very similar in detail to the patch creates a core helper
      pagecache_get_page() which takes a flags parameter that affects its
      behavior such as whether the page should be marked accessed or not.  Then
      old API is preserved but is basically a thin wrapper around this core
      function.
      
      Each of the filesystems are then updated to avoid calling
      mark_page_accessed when it is known that the VM interfaces have already
      done the job.  There is a slight snag in that the timing of the
      mark_page_accessed() has now changed so in rare cases it's possible a page
      gets to the end of the LRU as PageReferenced where as previously it might
      have been repromoted.  This is expected to be rare but it's worth the
      filesystem people thinking about it in case they see a problem with the
      timing change.  It is also the case that some filesystems may be marking
      pages accessed that previously did not but it makes sense that filesystems
      have consistent behaviour in this regard.
      
      The test case used to evaulate this is a simple dd of a large file done
      multiple times with the file deleted on each iterations.  The size of the
      file is 1/10th physical memory to avoid dirty page balancing.  In the
      async case it will be possible that the workload completes without even
      hitting the disk and will have variable results but highlight the impact
      of mark_page_accessed for async IO.  The sync results are expected to be
      more stable.  The exception is tmpfs where the normal case is for the "IO"
      to not hit the disk.
      
      The test machine was single socket and UMA to avoid any scheduling or NUMA
      artifacts.  Throughput and wall times are presented for sync IO, only wall
      times are shown for async as the granularity reported by dd and the
      variability is unsuitable for comparison.  As async results were variable
      do to writback timings, I'm only reporting the maximum figures.  The sync
      results were stable enough to make the mean and stddev uninteresting.
      
      The performance results are reported based on a run with no profiling.
      Profile data is based on a separate run with oprofile running.
      
      async dd
                                          3.15.0-rc3            3.15.0-rc3
                                             vanilla           accessed-v2
      ext3    Max      elapsed     13.9900 (  0.00%)     11.5900 ( 17.16%)
      tmpfs	Max      elapsed      0.5100 (  0.00%)      0.4900 (  3.92%)
      btrfs   Max      elapsed     12.8100 (  0.00%)     12.7800 (  0.23%)
      ext4	Max      elapsed     18.6000 (  0.00%)     13.3400 ( 28.28%)
      xfs	Max      elapsed     12.5600 (  0.00%)      2.0900 ( 83.36%)
      
      The XFS figure is a bit strange as it managed to avoid a worst case by
      sheer luck but the average figures looked reasonable.
      
              samples percentage
      ext3       86107    0.9783  vmlinux-3.15.0-rc4-vanilla        mark_page_accessed
      ext3       23833    0.2710  vmlinux-3.15.0-rc4-accessed-v3r25 mark_page_accessed
      ext3        5036    0.0573  vmlinux-3.15.0-rc4-accessed-v3r25 init_page_accessed
      ext4       64566    0.8961  vmlinux-3.15.0-rc4-vanilla        mark_page_accessed
      ext4        5322    0.0713  vmlinux-3.15.0-rc4-accessed-v3r25 mark_page_accessed
      ext4        2869    0.0384  vmlinux-3.15.0-rc4-accessed-v3r25 init_page_accessed
      xfs        62126    1.7675  vmlinux-3.15.0-rc4-vanilla        mark_page_accessed
      xfs         1904    0.0554  vmlinux-3.15.0-rc4-accessed-v3r25 init_page_accessed
      xfs          103    0.0030  vmlinux-3.15.0-rc4-accessed-v3r25 mark_page_accessed
      btrfs      10655    0.1338  vmlinux-3.15.0-rc4-vanilla        mark_page_accessed
      btrfs       2020    0.0273  vmlinux-3.15.0-rc4-accessed-v3r25 init_page_accessed
      btrfs        587    0.0079  vmlinux-3.15.0-rc4-accessed-v3r25 mark_page_accessed
      tmpfs      59562    3.2628  vmlinux-3.15.0-rc4-vanilla        mark_page_accessed
      tmpfs       1210    0.0696  vmlinux-3.15.0-rc4-accessed-v3r25 init_page_accessed
      tmpfs         94    0.0054  vmlinux-3.15.0-rc4-accessed-v3r25 mark_page_accessed
      
      [akpm@linux-foundation.org: don't run init_page_accessed() against an uninitialised pointer]
      Signed-off-by: NMel Gorman <mgorman@suse.de>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Vlastimil Babka <vbabka@suse.cz>
      Cc: Jan Kara <jack@suse.cz>
      Cc: Michal Hocko <mhocko@suse.cz>
      Cc: Hugh Dickins <hughd@google.com>
      Cc: Dave Hansen <dave.hansen@intel.com>
      Cc: Theodore Ts'o <tytso@mit.edu>
      Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
      Cc: Oleg Nesterov <oleg@redhat.com>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Tested-by: NPrabhakar Lad <prabhakar.csengg@gmail.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      2457aec6
    • M
      fs/mpage.c: factor page_endio() out of mpage_end_io() · 57d99845
      Matthew Wilcox 提交于
      page_endio() takes care of updating all the appropriate page flags once
      I/O has finished to a page.  Switch to using mapping_set_error() instead
      of setting AS_EIO directly; this will handle thin-provisioned devices
      correctly.
      Signed-off-by: NMatthew Wilcox <matthew.r.wilcox@intel.com>
      Cc: Dave Chinner <david@fromorbit.com>
      Cc: Dheeraj Reddy <dheeraj.reddy@intel.com>
      Cc: Hugh Dickins <hughd@google.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      57d99845
  16. 24 5月, 2014 1 次提交
  17. 07 5月, 2014 12 次提交
  18. 19 4月, 2014 1 次提交
  19. 18 4月, 2014 1 次提交
  20. 08 4月, 2014 3 次提交
  21. 04 4月, 2014 1 次提交
    • S
      mm: remove read_cache_page_async() · 67f9fd91
      Sasha Levin 提交于
      This patch removes read_cache_page_async() which wasn't really needed
      anywhere and simplifies the code around it a bit.
      
      read_cache_page_async() is useful when we want to read a page into the
      cache without waiting for it to complete.  This happens when the
      appropriate callback 'filler' doesn't complete its read operation and
      releases the page lock immediately, and instead queues a different
      completion routine to do that.  This never actually happened anywhere in
      the code.
      
      read_cache_page_async() had 3 different callers:
      
      - read_cache_page() which is the sync version, it would just wait for
        the requested read to complete using wait_on_page_read().
      
      - JFFS2 would call it from jffs2_gc_fetch_page(), but the filler
        function it supplied doesn't do any async reads, and would complete
        before the filler function returns - making it actually a sync read.
      
      - CRAMFS would call it using the read_mapping_page_async() wrapper, with
        a similar story to JFFS2 - the filler function doesn't do anything that
        reminds async reads and would always complete before the filler function
        returns.
      
      To sum it up, the code in mm/filemap.c never took advantage of having
      read_cache_page_async().  While there are filler callbacks that do async
      reads (such as the block one), we always called it with the
      read_cache_page().
      
      This patch adds a mandatory wait for read to complete when adding a new
      page to the cache, and removes read_cache_page_async() and its wrappers.
      Signed-off-by: NSasha Levin <sasha.levin@oracle.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      67f9fd91