1. 03 3月, 2018 1 次提交
  2. 21 2月, 2018 12 次提交
    • F
      sched/nohz: Remove the 1 Hz tick code · dcdedb24
      Frederic Weisbecker 提交于
      Now that the 1Hz tick is offloaded to workqueues, we can safely remove
      the residual code that used to handle it locally.
      Signed-off-by: NFrederic Weisbecker <frederic@kernel.org>
      Reviewed-by: NThomas Gleixner <tglx@linutronix.de>
      Acked-by: NPeter Zijlstra <peterz@infradead.org>
      Cc: Chris Metcalf <cmetcalf@mellanox.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Luiz Capitulino <lcapitulino@redhat.com>
      Cc: Mike Galbraith <efault@gmx.de>
      Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Wanpeng Li <kernellwp@gmail.com>
      Link: http://lkml.kernel.org/r/1519186649-3242-7-git-send-email-frederic@kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
      dcdedb24
    • F
      sched/isolation: Offload residual 1Hz scheduler tick · d84b3131
      Frederic Weisbecker 提交于
      When a CPU runs in full dynticks mode, a 1Hz tick remains in order to
      keep the scheduler stats alive. However this residual tick is a burden
      for bare metal tasks that can't stand any interruption at all, or want
      to minimize them.
      
      The usual boot parameters "nohz_full=" or "isolcpus=nohz" will now
      outsource these scheduler ticks to the global workqueue so that a
      housekeeping CPU handles those remotely. The sched_class::task_tick()
      implementations have been audited and look safe to be called remotely
      as the target runqueue and its current task are passed in parameter
      and don't seem to be accessed locally.
      
      Note that in the case of using isolcpus, it's still up to the user to
      affine the global workqueues to the housekeeping CPUs through
      /sys/devices/virtual/workqueue/cpumask or domains isolation
      "isolcpus=nohz,domain".
      Signed-off-by: NFrederic Weisbecker <frederic@kernel.org>
      Reviewed-by: NThomas Gleixner <tglx@linutronix.de>
      Acked-by: NPeter Zijlstra <peterz@infradead.org>
      Cc: Chris Metcalf <cmetcalf@mellanox.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Luiz Capitulino <lcapitulino@redhat.com>
      Cc: Mike Galbraith <efault@gmx.de>
      Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Wanpeng Li <kernellwp@gmail.com>
      Link: http://lkml.kernel.org/r/1519186649-3242-6-git-send-email-frederic@kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
      d84b3131
    • F
      sched/isolation: Isolate workqueues when "nohz_full=" is set · 1bda3f80
      Frederic Weisbecker 提交于
      As we prepare for offloading the residual 1hz scheduler ticks to
      workqueue, let's affine those to housekeepers so that they don't
      interrupt the CPUs that don't want to be disturbed.
      Signed-off-by: NFrederic Weisbecker <frederic@kernel.org>
      Reviewed-by: NThomas Gleixner <tglx@linutronix.de>
      Acked-by: NPeter Zijlstra <peterz@infradead.org>
      Cc: Chris Metcalf <cmetcalf@mellanox.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Luiz Capitulino <lcapitulino@redhat.com>
      Cc: Mike Galbraith <efault@gmx.de>
      Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Wanpeng Li <kernellwp@gmail.com>
      Link: http://lkml.kernel.org/r/1519186649-3242-5-git-send-email-frederic@kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
      1bda3f80
    • F
      nohz: Allow to check if remote CPU tick is stopped · 22ab8bc0
      Frederic Weisbecker 提交于
      This check is racy but provides a good heuristic to determine whether
      a CPU may need a remote tick or not.
      Signed-off-by: NFrederic Weisbecker <frederic@kernel.org>
      Reviewed-by: NThomas Gleixner <tglx@linutronix.de>
      Acked-by: NPeter Zijlstra <peterz@infradead.org>
      Cc: Chris Metcalf <cmetcalf@mellanox.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Luiz Capitulino <lcapitulino@redhat.com>
      Cc: Mike Galbraith <efault@gmx.de>
      Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Wanpeng Li <kernellwp@gmail.com>
      Link: http://lkml.kernel.org/r/1519186649-3242-4-git-send-email-frederic@kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
      22ab8bc0
    • F
      nohz: Convert tick_nohz_tick_stopped() to bool · a3642983
      Frederic Weisbecker 提交于
      It makes this function more self-explanatory about what it does and how
      to use it.
      Reported-by: NThomas Gleixner <tglx@linutronix.de>
      Signed-off-by: NFrederic Weisbecker <frederic@kernel.org>
      Reviewed-by: NThomas Gleixner <tglx@linutronix.de>
      Acked-by: NPeter Zijlstra <peterz@infradead.org>
      Cc: Chris Metcalf <cmetcalf@mellanox.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Luiz Capitulino <lcapitulino@redhat.com>
      Cc: Mike Galbraith <efault@gmx.de>
      Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Wanpeng Li <kernellwp@gmail.com>
      Link: http://lkml.kernel.org/r/1519186649-3242-3-git-send-email-frederic@kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
      a3642983
    • F
      sched/core: Rename init_rq_hrtick() to hrtick_rq_init() · 77a021be
      Frederic Weisbecker 提交于
      Do that rename in order to normalize the hrtick namespace.
      Signed-off-by: NFrederic Weisbecker <frederic@kernel.org>
      Reviewed-by: NThomas Gleixner <tglx@linutronix.de>
      Acked-by: NPeter Zijlstra <peterz@infradead.org>
      Cc: Chris Metcalf <cmetcalf@mellanox.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Luiz Capitulino <lcapitulino@redhat.com>
      Cc: Mike Galbraith <efault@gmx.de>
      Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Wanpeng Li <kernellwp@gmail.com>
      Link: http://lkml.kernel.org/r/1519186649-3242-2-git-send-email-frederic@kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
      77a021be
    • M
      sched/numa: Delay retrying placement for automatic NUMA balance after wake_affine() · 7347fc87
      Mel Gorman 提交于
      If wake_affine() pulls a task to another node for any reason and the node is
      no longer preferred then temporarily stop automatic NUMA balancing pulling
      the task back. Otherwise, tasks with a strong waker/wakee relationship
      may constantly fight automatic NUMA balancing over where a task should
      be placed.
      
      Once again netperf is interesting here. The performance barely changes
      but automatic NUMA balancing is interesting:
      
       Hmean     send-64         354.67 (   0.00%)      352.15 (  -0.71%)
       Hmean     send-128        702.91 (   0.00%)      693.84 (  -1.29%)
       Hmean     send-256       1350.07 (   0.00%)     1344.19 (  -0.44%)
       Hmean     send-1024      5124.38 (   0.00%)     4941.24 (  -3.57%)
       Hmean     send-2048      9687.44 (   0.00%)     9624.45 (  -0.65%)
       Hmean     send-3312     14577.64 (   0.00%)    14514.35 (  -0.43%)
       Hmean     send-4096     16393.62 (   0.00%)    16488.30 (   0.58%)
       Hmean     send-8192     26877.26 (   0.00%)    26431.63 (  -1.66%)
       Hmean     send-16384    38683.43 (   0.00%)    38264.91 (  -1.08%)
       Hmean     recv-64         354.67 (   0.00%)      352.15 (  -0.71%)
       Hmean     recv-128        702.91 (   0.00%)      693.84 (  -1.29%)
       Hmean     recv-256       1350.07 (   0.00%)     1344.19 (  -0.44%)
       Hmean     recv-1024      5124.38 (   0.00%)     4941.24 (  -3.57%)
       Hmean     recv-2048      9687.43 (   0.00%)     9624.45 (  -0.65%)
       Hmean     recv-3312     14577.59 (   0.00%)    14514.35 (  -0.43%)
       Hmean     recv-4096     16393.55 (   0.00%)    16488.20 (   0.58%)
       Hmean     recv-8192     26876.96 (   0.00%)    26431.29 (  -1.66%)
       Hmean     recv-16384    38682.41 (   0.00%)    38263.94 (  -1.08%)
      
       NUMA alloc hit                 1465986     1423090
       NUMA alloc miss                      0           0
       NUMA interleave hit                  0           0
       NUMA alloc local               1465897     1423003
       NUMA base PTE updates             1473        1420
       NUMA huge PMD updates                0           0
       NUMA page range updates           1473        1420
       NUMA hint faults                  1383        1312
       NUMA hint local faults             451         124
       NUMA hint local percent             32           9
      
      There is a slight degrading in performance but there are slightly fewer
      NUMA faults. There is a large drop in the percentage of local faults but
      the bulk of migrations for netperf are in small shared libraries so it's
      reflecting the fact that automatic NUMA balancing has backed off. This is
      a case where despite wake_affine() and automatic NUMA balancing fighting
      for placement that there is a marginal benefit to rescheduling to local
      data quickly. However, it should be noted that wake_affine() and automatic
      NUMA balancing fighting each other constantly is undesirable.
      
      However, the benefit in other cases is large. This is the result for NAS
      with the D class sizing on a 4-socket machine:
      
       nas-mpi
                                 4.15.0                 4.15.0
                           sdnuma-v1r23       delayretry-v1r23
       Time cg.D      557.00 (   0.00%)      431.82 (  22.47%)
       Time ep.D       77.83 (   0.00%)       79.01 (  -1.52%)
       Time is.D       26.46 (   0.00%)       26.64 (  -0.68%)
       Time lu.D      727.14 (   0.00%)      597.94 (  17.77%)
       Time mg.D      191.35 (   0.00%)      146.85 (  23.26%)
      
                     4.15.0      4.15.0
               sdnuma-v1r23delayretry-v1r23
       User        75665.20    70413.30
       System      20321.59     8861.67
       Elapsed       766.13      634.92
      
       Minor Faults                  16528502     7127941
       Major Faults                      4553        5068
       NUMA alloc local               6963197     6749135
       NUMA base PTE updates        366409093   107491434
       NUMA huge PMD updates           687556      198880
       NUMA page range updates      718437765   209317994
       NUMA hint faults              13643410     4601187
       NUMA hint local faults         9212593     3063996
       NUMA hint local percent             67          66
      
      Note the massive reduction in system CPU usage even though the percentage
      of local faults is barely affected. There is a massive reduction in the
      number of PTE updates showing that automatic NUMA balancing has backed off.
      A critical observation is also that there is a massive reduction in minor
      faults which is due to far fewer NUMA hinting faults being trapped.
      
      There were questions on NAS OMP and how it behaved related to threads
      being bound to CPUs. First, there are more gains than losses with this
      patch applied and a reduction in system CPU usage:
      
      nas-omp
                            4.16.0-rc1             4.16.0-rc1
                           sdnuma-v2r1        delayretry-v2r1
      Time bt.D      436.71 (   0.00%)      430.05 (   1.53%)
      Time cg.D      201.02 (   0.00%)      180.87 (  10.02%)
      Time ep.D       32.84 (   0.00%)       32.68 (   0.49%)
      Time is.D        9.63 (   0.00%)        9.64 (  -0.10%)
      Time lu.D      331.20 (   0.00%)      304.80 (   7.97%)
      Time mg.D       54.87 (   0.00%)       52.72 (   3.92%)
      Time sp.D     1108.78 (   0.00%)      917.10 (  17.29%)
      Time ua.D      378.81 (   0.00%)      398.83 (  -5.28%)
      
                4.16.0-rc1  4.16.0-rc1
               sdnuma-v2r1delayretry-v2r1
      User       305633.08   296751.91
      System        451.75      357.80
      Elapsed      2595.73     2368.13
      
      However, it does not close the gap between binding and being unbound. There
      is negligible difference between the performance of the baseline and a
      patched kernel when threads are bound so it is not presented here:
      
                            4.16.0-rc1             4.16.0-rc1
                       delayretry-bind     delayretry-unbound
      Time bt.D      385.02 (   0.00%)      430.05 ( -11.70%)
      Time cg.D      144.02 (   0.00%)      180.87 ( -25.59%)
      Time ep.D       32.85 (   0.00%)       32.68 (   0.52%)
      Time is.D       10.52 (   0.00%)        9.64 (   8.37%)
      Time lu.D      285.31 (   0.00%)      304.80 (  -6.83%)
      Time mg.D       43.21 (   0.00%)       52.72 ( -22.01%)
      Time sp.D      820.24 (   0.00%)      917.10 ( -11.81%)
      Time ua.D      337.09 (   0.00%)      398.83 ( -18.32%)
      
                4.16.0-rc1  4.16.0-rc1
              delayretry-binddelayretry-unbound
      User       277731.25   296751.91
      System        261.29      357.80
      Elapsed      2100.55     2368.13
      
      Unfortunately, while performance is improved by the patch, there is still
      quite a long way to go before it's equivalent to hard binding.
      
      Other workloads like hackbench, tbench, dbench and schbench are barely
      affected. dbench shows a mix of gains and losses depending on the machine
      although in general, the results are more stable.
      Signed-off-by: NMel Gorman <mgorman@techsingularity.net>
      Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
      Cc: Giovanni Gherdovich <ggherdovich@suse.cz>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Matt Fleming <matt@codeblueprint.co.uk>
      Cc: Mike Galbraith <efault@gmx.de>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Link: http://lkml.kernel.org/r/20180213133730.24064-7-mgorman@techsingularity.netSigned-off-by: NIngo Molnar <mingo@kernel.org>
      7347fc87
    • M
      sched/fair: Consider SD_NUMA when selecting the most idle group to schedule on · 2c833627
      Mel Gorman 提交于
      find_idlest_group() compares a local group with each other group to select
      the one that is most idle. When comparing groups in different NUMA domains,
      a very slight imbalance is enough to select a remote NUMA node even if the
      runnable load on both groups is 0 or close to 0. This ignores the cost of
      remote accesses entirely and is a problem when selecting the CPU for a
      newly forked task to run on.  This is problematic when a forking server
      is almost guaranteed to run on a remote node incurring numerous remote
      accesses and potentially causing automatic NUMA balancing to try migrate
      the task back or migrate the data to another node. Similar weirdness is
      observed if a basic shell command pipes output to another as each process
      in the pipeline is likely to start on different nodes and then get adjusted
      later by wake_affine().
      
      This patch adds imbalance to remote domains when considering whether to
      select CPUs from remote domains. If the local domain is selected, imbalance
      will still be used to try select a CPU from a lower scheduler domain's group
      instead of stacking tasks on the same CPU.
      
      A variety of workloads and machines were tested and as expected, there is no
      difference on UMA. The difference on NUMA can be dramatic. This is a comparison
      of elapsed times running the git regression test suite. It's fork-intensive with
      short-lived processes:
      
                                        4.15.0                 4.15.0
                                  noexit-v1r23           sdnuma-v1r23
       Elapsed min          1706.06 (   0.00%)     1435.94 (  15.83%)
       Elapsed mean         1709.53 (   0.00%)     1436.98 (  15.94%)
       Elapsed stddev          2.16 (   0.00%)        1.01 (  53.38%)
       Elapsed coeffvar        0.13 (   0.00%)        0.07 (  44.54%)
       Elapsed max          1711.59 (   0.00%)     1438.01 (  15.98%)
      
                     4.15.0      4.15.0
               noexit-v1r23 sdnuma-v1r23
       User         5434.12     5188.41
       System       4878.77     3467.09
       Elapsed     10259.06     8624.21
      
      That shows a considerable reduction in elapsed times. It's important to
      note that automatic NUMA balancing does not affect this load as processes
      are too short-lived.
      
      There is also a noticable impact on hackbench such as this example using
      processes and pipes:
      
       hackbench-process-pipes
                                     4.15.0                 4.15.0
                               noexit-v1r23           sdnuma-v1r23
       Amean     1        1.0973 (   0.00%)      0.9393 (  14.40%)
       Amean     4        1.3427 (   0.00%)      1.3730 (  -2.26%)
       Amean     7        1.4233 (   0.00%)      1.6670 ( -17.12%)
       Amean     12       3.0250 (   0.00%)      3.3013 (  -9.13%)
       Amean     21       9.0860 (   0.00%)      9.5343 (  -4.93%)
       Amean     30      14.6547 (   0.00%)     13.2433 (   9.63%)
       Amean     48      22.5447 (   0.00%)     20.4303 (   9.38%)
       Amean     79      29.2010 (   0.00%)     26.7853 (   8.27%)
       Amean     110     36.7443 (   0.00%)     35.8453 (   2.45%)
       Amean     141     45.8533 (   0.00%)     42.6223 (   7.05%)
       Amean     172     55.1317 (   0.00%)     50.6473 (   8.13%)
       Amean     203     64.4420 (   0.00%)     58.3957 (   9.38%)
       Amean     234     73.2293 (   0.00%)     67.1047 (   8.36%)
       Amean     265     80.5220 (   0.00%)     75.7330 (   5.95%)
       Amean     296     88.7567 (   0.00%)     82.1533 (   7.44%)
      
      It's not a universal win as there are occasions when spreading wide and
      quickly is a benefit but it's more of a win than it is a loss. For other
      workloads, there is little difference but netperf is interesting. Without
      the patch, the server and client starts on different nodes but quickly get
      migrated due to wake_affine. Hence, the difference is overall performance
      is marginal but detectable:
      
                                            4.15.0                 4.15.0
                                      noexit-v1r23           sdnuma-v1r23
       Hmean     send-64         349.09 (   0.00%)      354.67 (   1.60%)
       Hmean     send-128        699.16 (   0.00%)      702.91 (   0.54%)
       Hmean     send-256       1316.34 (   0.00%)     1350.07 (   2.56%)
       Hmean     send-1024      5063.99 (   0.00%)     5124.38 (   1.19%)
       Hmean     send-2048      9705.19 (   0.00%)     9687.44 (  -0.18%)
       Hmean     send-3312     14359.48 (   0.00%)    14577.64 (   1.52%)
       Hmean     send-4096     16324.20 (   0.00%)    16393.62 (   0.43%)
       Hmean     send-8192     26112.61 (   0.00%)    26877.26 (   2.93%)
       Hmean     send-16384    37208.44 (   0.00%)    38683.43 (   3.96%)
       Hmean     recv-64         349.09 (   0.00%)      354.67 (   1.60%)
       Hmean     recv-128        699.16 (   0.00%)      702.91 (   0.54%)
       Hmean     recv-256       1316.34 (   0.00%)     1350.07 (   2.56%)
       Hmean     recv-1024      5063.99 (   0.00%)     5124.38 (   1.19%)
       Hmean     recv-2048      9705.16 (   0.00%)     9687.43 (  -0.18%)
       Hmean     recv-3312     14359.42 (   0.00%)    14577.59 (   1.52%)
       Hmean     recv-4096     16323.98 (   0.00%)    16393.55 (   0.43%)
       Hmean     recv-8192     26111.85 (   0.00%)    26876.96 (   2.93%)
       Hmean     recv-16384    37206.99 (   0.00%)    38682.41 (   3.97%)
      
      However, what is very interesting is how automatic NUMA balancing behaves.
      Each netperf instance runs long enough for balancing to activate:
      
       NUMA base PTE updates             4620        1473
       NUMA huge PMD updates                0           0
       NUMA page range updates           4620        1473
       NUMA hint faults                  4301        1383
       NUMA hint local faults            1309         451
       NUMA hint local percent             30          32
       NUMA pages migrated               1335         491
       AutoNUMA cost                      21%          6%
      
      There is an unfortunate number of remote faults although tracing indicated
      that the vast majority are in shared libraries. However, the tendency to
      start tasks on the same node if there is capacity means that there were
      far fewer PTE updates and faults incurred overall.
      Signed-off-by: NMel Gorman <mgorman@techsingularity.net>
      Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
      Cc: Giovanni Gherdovich <ggherdovich@suse.cz>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Matt Fleming <matt@codeblueprint.co.uk>
      Cc: Mike Galbraith <efault@gmx.de>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Link: http://lkml.kernel.org/r/20180213133730.24064-6-mgorman@techsingularity.netSigned-off-by: NIngo Molnar <mingo@kernel.org>
      2c833627
    • P
      sched/fair: Do not migrate due to a sync wakeup on exit · 24d0c1d6
      Peter Zijlstra 提交于
      When a task exits, it notifies the parent that it has exited. This is a
      sync wakeup and the exiting task may pull the parent towards the wakers
      CPU. For simple workloads like using a shell, it was observed that the
      shell is pulled across nodes by exiting processes. This is daft as the
      parent may be long-lived and properly placed. This patch special cases a
      sync wakeup on exit to avoid pulling tasks across nodes. Testing on a range
      of workloads and machines showed very little differences in performance
      although there was a small 3% boost on some machines running a shellscript
      intensive workload (git regression test suite).
      Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
      Signed-off-by: NMel Gorman <mgorman@techsingularity.net>
      Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
      Cc: Giovanni Gherdovich <ggherdovich@suse.cz>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Matt Fleming <matt@codeblueprint.co.uk>
      Cc: Mike Galbraith <efault@gmx.de>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Link: http://lkml.kernel.org/r/20180213133730.24064-5-mgorman@techsingularity.netSigned-off-by: NIngo Molnar <mingo@kernel.org>
      24d0c1d6
    • M
      sched/fair: Do not migrate on wake_affine_weight() if weights are equal · 082f764a
      Mel Gorman 提交于
      wake_affine_weight() will consider migrating a task to, or near, the current
      CPU if there is a load imbalance. If the CPUs share LLC then either CPU
      is valid as a search-for-idle-sibling target and equally appropriate for
      stacking two tasks on one CPU if an idle sibling is unavailable. If they do
      not share cache then a cross-node migration potentially impacts locality
      so while they are equal from a CPU capacity point of view, they are not
      equal in terms of memory locality. In either case, it's more appropriate
      to migrate only if there is a difference in their effective load.
      
      This patch modifies wake_affine_weight() to only consider migrating a task
      if there is a load imbalance for normal wakeups but will allow potential
      stacking if the loads are equal and it's a sync wakeup.
      
      For the most part, the different in performance is marginal. For example,
      on a 4-socket server running netperf UDP_STREAM on localhost the differences
      are as follows:
      
                                            4.15.0                 4.15.0
                                             16rc0          noequal-v1r23
       Hmean     send-64         355.47 (   0.00%)      349.50 (  -1.68%)
       Hmean     send-128        697.98 (   0.00%)      693.35 (  -0.66%)
       Hmean     send-256       1328.02 (   0.00%)     1318.77 (  -0.70%)
       Hmean     send-1024      5051.83 (   0.00%)     5051.11 (  -0.01%)
       Hmean     send-2048      9637.02 (   0.00%)     9601.34 (  -0.37%)
       Hmean     send-3312     14355.37 (   0.00%)    14414.51 (   0.41%)
       Hmean     send-4096     16464.97 (   0.00%)    16301.37 (  -0.99%)
       Hmean     send-8192     26722.42 (   0.00%)    26428.95 (  -1.10%)
       Hmean     send-16384    38137.81 (   0.00%)    38046.11 (  -0.24%)
       Hmean     recv-64         355.47 (   0.00%)      349.50 (  -1.68%)
       Hmean     recv-128        697.98 (   0.00%)      693.35 (  -0.66%)
       Hmean     recv-256       1328.02 (   0.00%)     1318.77 (  -0.70%)
       Hmean     recv-1024      5051.83 (   0.00%)     5051.11 (  -0.01%)
       Hmean     recv-2048      9636.95 (   0.00%)     9601.30 (  -0.37%)
       Hmean     recv-3312     14355.32 (   0.00%)    14414.48 (   0.41%)
       Hmean     recv-4096     16464.74 (   0.00%)    16301.16 (  -0.99%)
       Hmean     recv-8192     26721.63 (   0.00%)    26428.17 (  -1.10%)
       Hmean     recv-16384    38136.00 (   0.00%)    38044.88 (  -0.24%)
       Stddev    send-64           7.30 (   0.00%)        4.75 (  34.96%)
       Stddev    send-128         15.15 (   0.00%)       22.38 ( -47.66%)
       Stddev    send-256         13.99 (   0.00%)       19.14 ( -36.81%)
       Stddev    send-1024       105.73 (   0.00%)       67.38 (  36.27%)
       Stddev    send-2048       294.57 (   0.00%)      223.88 (  24.00%)
       Stddev    send-3312       302.28 (   0.00%)      271.74 (  10.10%)
       Stddev    send-4096       195.92 (   0.00%)      121.10 (  38.19%)
       Stddev    send-8192       399.71 (   0.00%)      563.77 ( -41.04%)
       Stddev    send-16384     1163.47 (   0.00%)     1103.68 (   5.14%)
       Stddev    recv-64           7.30 (   0.00%)        4.75 (  34.96%)
       Stddev    recv-128         15.15 (   0.00%)       22.38 ( -47.66%)
       Stddev    recv-256         13.99 (   0.00%)       19.14 ( -36.81%)
       Stddev    recv-1024       105.73 (   0.00%)       67.38 (  36.27%)
       Stddev    recv-2048       294.59 (   0.00%)      223.89 (  24.00%)
       Stddev    recv-3312       302.24 (   0.00%)      271.75 (  10.09%)
       Stddev    recv-4096       196.03 (   0.00%)      121.14 (  38.20%)
       Stddev    recv-8192       399.86 (   0.00%)      563.65 ( -40.96%)
       Stddev    recv-16384     1163.79 (   0.00%)     1103.86 (   5.15%)
      
      The difference in overall performance is marginal but note that most
      measurements are less variable. There were similar observations for other
      netperf comparisons. hackbench with sockets or threads with processes or
      threads showed minor difference with some reduction of migration. tbench
      showed only marginal differences that were within the noise. dbench,
      regardless of filesystem, showed minor differences all of which are
      within noise. Multiple machines, both UMA and NUMA were tested without
      any regressions showing up.
      
      The biggest risk with a patch like this is affecting wakeup latencies.
      However, the schbench load from Facebook which is very sensitive to wakeup
      latency showed a mixed result with mostly improvements in wakeup latency:
      
                                            4.15.0                 4.15.0
                                             16rc0          noequal-v1r23
       Lat 50.00th-qrtle-1        38.00 (   0.00%)       38.00 (   0.00%)
       Lat 75.00th-qrtle-1        49.00 (   0.00%)       41.00 (  16.33%)
       Lat 90.00th-qrtle-1        52.00 (   0.00%)       50.00 (   3.85%)
       Lat 95.00th-qrtle-1        54.00 (   0.00%)       51.00 (   5.56%)
       Lat 99.00th-qrtle-1        63.00 (   0.00%)       60.00 (   4.76%)
       Lat 99.50th-qrtle-1        66.00 (   0.00%)       61.00 (   7.58%)
       Lat 99.90th-qrtle-1        78.00 (   0.00%)       65.00 (  16.67%)
       Lat 50.00th-qrtle-2        38.00 (   0.00%)       38.00 (   0.00%)
       Lat 75.00th-qrtle-2        42.00 (   0.00%)       43.00 (  -2.38%)
       Lat 90.00th-qrtle-2        46.00 (   0.00%)       48.00 (  -4.35%)
       Lat 95.00th-qrtle-2        49.00 (   0.00%)       50.00 (  -2.04%)
       Lat 99.00th-qrtle-2        55.00 (   0.00%)       57.00 (  -3.64%)
       Lat 99.50th-qrtle-2        58.00 (   0.00%)       60.00 (  -3.45%)
       Lat 99.90th-qrtle-2        65.00 (   0.00%)       68.00 (  -4.62%)
       Lat 50.00th-qrtle-4        41.00 (   0.00%)       41.00 (   0.00%)
       Lat 75.00th-qrtle-4        45.00 (   0.00%)       46.00 (  -2.22%)
       Lat 90.00th-qrtle-4        50.00 (   0.00%)       50.00 (   0.00%)
       Lat 95.00th-qrtle-4        54.00 (   0.00%)       53.00 (   1.85%)
       Lat 99.00th-qrtle-4        61.00 (   0.00%)       61.00 (   0.00%)
       Lat 99.50th-qrtle-4        65.00 (   0.00%)       64.00 (   1.54%)
       Lat 99.90th-qrtle-4        76.00 (   0.00%)       82.00 (  -7.89%)
       Lat 50.00th-qrtle-8        48.00 (   0.00%)       46.00 (   4.17%)
       Lat 75.00th-qrtle-8        55.00 (   0.00%)       54.00 (   1.82%)
       Lat 90.00th-qrtle-8        60.00 (   0.00%)       59.00 (   1.67%)
       Lat 95.00th-qrtle-8        63.00 (   0.00%)       63.00 (   0.00%)
       Lat 99.00th-qrtle-8        71.00 (   0.00%)       69.00 (   2.82%)
       Lat 99.50th-qrtle-8        74.00 (   0.00%)       73.00 (   1.35%)
       Lat 99.90th-qrtle-8        98.00 (   0.00%)       90.00 (   8.16%)
       Lat 50.00th-qrtle-16       56.00 (   0.00%)       55.00 (   1.79%)
       Lat 75.00th-qrtle-16       68.00 (   0.00%)       67.00 (   1.47%)
       Lat 90.00th-qrtle-16       77.00 (   0.00%)       78.00 (  -1.30%)
       Lat 95.00th-qrtle-16       82.00 (   0.00%)       84.00 (  -2.44%)
       Lat 99.00th-qrtle-16       90.00 (   0.00%)       93.00 (  -3.33%)
       Lat 99.50th-qrtle-16       93.00 (   0.00%)       97.00 (  -4.30%)
       Lat 99.90th-qrtle-16      110.00 (   0.00%)      110.00 (   0.00%)
       Lat 50.00th-qrtle-32       68.00 (   0.00%)       62.00 (   8.82%)
       Lat 75.00th-qrtle-32       90.00 (   0.00%)       83.00 (   7.78%)
       Lat 90.00th-qrtle-32      110.00 (   0.00%)      100.00 (   9.09%)
       Lat 95.00th-qrtle-32      122.00 (   0.00%)      111.00 (   9.02%)
       Lat 99.00th-qrtle-32      145.00 (   0.00%)      133.00 (   8.28%)
       Lat 99.50th-qrtle-32      154.00 (   0.00%)      143.00 (   7.14%)
       Lat 99.90th-qrtle-32     2316.00 (   0.00%)      515.00 (  77.76%)
       Lat 50.00th-qrtle-35       69.00 (   0.00%)       72.00 (  -4.35%)
       Lat 75.00th-qrtle-35       92.00 (   0.00%)       95.00 (  -3.26%)
       Lat 90.00th-qrtle-35      111.00 (   0.00%)      114.00 (  -2.70%)
       Lat 95.00th-qrtle-35      122.00 (   0.00%)      124.00 (  -1.64%)
       Lat 99.00th-qrtle-35      142.00 (   0.00%)      144.00 (  -1.41%)
       Lat 99.50th-qrtle-35      150.00 (   0.00%)      154.00 (  -2.67%)
       Lat 99.90th-qrtle-35     6104.00 (   0.00%)     5640.00 (   7.60%)
      Signed-off-by: NMel Gorman <mgorman@techsingularity.net>
      Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
      Cc: Giovanni Gherdovich <ggherdovich@suse.cz>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Matt Fleming <matt@codeblueprint.co.uk>
      Cc: Mike Galbraith <efault@gmx.de>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Link: http://lkml.kernel.org/r/20180213133730.24064-4-mgorman@techsingularity.netSigned-off-by: NIngo Molnar <mingo@kernel.org>
      082f764a
    • M
      sched/fair: Defer calculation of 'prev_eff_load' in wake_affine_weight() until needed · eeb60398
      Mel Gorman 提交于
      On sync wakeups, the previous CPU effective load may not be used so delay
      the calculation until it's needed.
      Signed-off-by: NMel Gorman <mgorman@techsingularity.net>
      Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
      Cc: Giovanni Gherdovich <ggherdovich@suse.cz>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Matt Fleming <matt@codeblueprint.co.uk>
      Cc: Mike Galbraith <efault@gmx.de>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Link: http://lkml.kernel.org/r/20180213133730.24064-3-mgorman@techsingularity.netSigned-off-by: NIngo Molnar <mingo@kernel.org>
      eeb60398
    • M
      sched/fair: Avoid an unnecessary lookup of current CPU ID during wake_affine · 7ebb66a1
      Mel Gorman 提交于
      The only caller of wake_affine() knows the CPU ID. Pass it in instead of
      rechecking it.
      Signed-off-by: NMel Gorman <mgorman@techsingularity.net>
      Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
      Cc: Giovanni Gherdovich <ggherdovich@suse.cz>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Matt Fleming <matt@codeblueprint.co.uk>
      Cc: Mike Galbraith <efault@gmx.de>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Link: http://lkml.kernel.org/r/20180213133730.24064-2-mgorman@techsingularity.netSigned-off-by: NIngo Molnar <mingo@kernel.org>
      7ebb66a1
  3. 16 2月, 2018 3 次提交
    • A
      irqdomain: Re-use DEFINE_SHOW_ATTRIBUTE() macro · 0b24a0bb
      Andy Shevchenko 提交于
      ...instead of open coding file operations followed by custom ->open()
      callbacks per each attribute.
      Signed-off-by: NAndy Shevchenko <andriy.shevchenko@linux.intel.com>
      Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
      0b24a0bb
    • J
      kprobes: Propagate error from disarm_kprobe_ftrace() · 297f9233
      Jessica Yu 提交于
      Improve error handling when disarming ftrace-based kprobes. Like with
      arm_kprobe_ftrace(), propagate any errors from disarm_kprobe_ftrace() so
      that we do not disable/unregister kprobes that are still armed. In other
      words, unregister_kprobe() and disable_kprobe() should not report success
      if the kprobe could not be disarmed.
      
      disarm_all_kprobes() keeps its current behavior and attempts to
      disarm all kprobes. It returns the last encountered error and gives a
      warning if not all probes could be disarmed.
      
      This patch is based on Petr Mladek's original patchset (patches 2 and 3)
      back in 2015, which improved kprobes error handling, found here:
      
         https://lkml.org/lkml/2015/2/26/452
      
      However, further work on this had been paused since then and the patches
      were not upstreamed.
      Based-on-patches-by: NPetr Mladek <pmladek@suse.com>
      Signed-off-by: NJessica Yu <jeyu@kernel.org>
      Acked-by: NMasami Hiramatsu <mhiramat@kernel.org>
      Cc: Ananth N Mavinakayanahalli <ananth@linux.vnet.ibm.com>
      Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
      Cc: David S . Miller <davem@davemloft.net>
      Cc: Jiri Kosina <jikos@kernel.org>
      Cc: Joe Lawrence <joe.lawrence@redhat.com>
      Cc: Josh Poimboeuf <jpoimboe@redhat.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Miroslav Benes <mbenes@suse.cz>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Petr Mladek <pmladek@suse.com>
      Cc: Steven Rostedt <rostedt@goodmis.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: live-patching@vger.kernel.org
      Link: http://lkml.kernel.org/r/20180109235124.30886-3-jeyu@kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
      297f9233
    • J
      kprobes: Propagate error from arm_kprobe_ftrace() · 12310e34
      Jessica Yu 提交于
      Improve error handling when arming ftrace-based kprobes. Specifically, if
      we fail to arm a ftrace-based kprobe, register_kprobe()/enable_kprobe()
      should report an error instead of success. Previously, this has lead to
      confusing situations where register_kprobe() would return 0 indicating
      success, but the kprobe would not be functional if ftrace registration
      during the kprobe arming process had failed. We should therefore take any
      errors returned by ftrace into account and propagate this error so that we
      do not register/enable kprobes that cannot be armed. This can happen if,
      for example, register_ftrace_function() finds an IPMODIFY conflict (since
      kprobe_ftrace_ops has this flag set) and returns an error. Such a conflict
      is possible since livepatches also set the IPMODIFY flag for their ftrace_ops.
      
      arm_all_kprobes() keeps its current behavior and attempts to arm all
      kprobes. It returns the last encountered error and gives a warning if
      not all probes could be armed.
      
      This patch is based on Petr Mladek's original patchset (patches 2 and 3)
      back in 2015, which improved kprobes error handling, found here:
      
         https://lkml.org/lkml/2015/2/26/452
      
      However, further work on this had been paused since then and the patches
      were not upstreamed.
      Based-on-patches-by: NPetr Mladek <pmladek@suse.com>
      Signed-off-by: NJessica Yu <jeyu@kernel.org>
      Acked-by: NMasami Hiramatsu <mhiramat@kernel.org>
      Cc: Ananth N Mavinakayanahalli <ananth@linux.vnet.ibm.com>
      Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
      Cc: David S . Miller <davem@davemloft.net>
      Cc: Jiri Kosina <jikos@kernel.org>
      Cc: Joe Lawrence <joe.lawrence@redhat.com>
      Cc: Josh Poimboeuf <jpoimboe@redhat.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Miroslav Benes <mbenes@suse.cz>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Petr Mladek <pmladek@suse.com>
      Cc: Steven Rostedt <rostedt@goodmis.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: live-patching@vger.kernel.org
      Link: http://lkml.kernel.org/r/20180109235124.30886-2-jeyu@kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
      12310e34
  4. 13 2月, 2018 7 次提交
  5. 12 2月, 2018 1 次提交
    • L
      vfs: do bulk POLL* -> EPOLL* replacement · a9a08845
      Linus Torvalds 提交于
      This is the mindless scripted replacement of kernel use of POLL*
      variables as described by Al, done by this script:
      
          for V in IN OUT PRI ERR RDNORM RDBAND WRNORM WRBAND HUP RDHUP NVAL MSG; do
              L=`git grep -l -w POLL$V | grep -v '^t' | grep -v /um/ | grep -v '^sa' | grep -v '/poll.h$'|grep -v '^D'`
              for f in $L; do sed -i "-es/^\([^\"]*\)\(\<POLL$V\>\)/\\1E\\2/" $f; done
          done
      
      with de-mangling cleanups yet to come.
      
      NOTE! On almost all architectures, the EPOLL* constants have the same
      values as the POLL* constants do.  But they keyword here is "almost".
      For various bad reasons they aren't the same, and epoll() doesn't
      actually work quite correctly in some cases due to this on Sparc et al.
      
      The next patch from Al will sort out the final differences, and we
      should be all done.
      Scripted-by: NAl Viro <viro@zeniv.linux.org.uk>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      a9a08845
  6. 08 2月, 2018 2 次提交
  7. 07 2月, 2018 14 次提交