- 09 7月, 2016 1 次提交
-
-
由 Christophe Leroy 提交于
This patch provides VIRT_CPU_ACCOUTING to PPC32 architecture. PPC32 doesn't have the PACA structure, so we use the task_info structure to store the accounting data. In order to reuse on PPC32 the PPC64 functions, all u64 data has been replaced by 'unsigned long' so that it is u32 on PPC32 and u64 on PPC64 Signed-off-by: NChristophe Leroy <christophe.leroy@c-s.fr> Signed-off-by: NScott Wood <oss@buserror.net>
-
- 16 6月, 2016 1 次提交
-
-
由 Rashmica Gupta 提交于
THREAD_DSCR: Added in efcac658 "powerpc: Per process DSCR + some fixes (try#4)" Last usage removed in 152d523e "powerpc: Create context switch helpers save_sprs() and restore_sprs()" THREAD_DSCR_INHERIT: Added in 71433285 "powerpc: Restore correct DSCR in context switch" Last usage removed in 152d523e "powerpc: Create context switch helpers save_sprs() and restore_sprs()" THREAD_TAR: Added in 2468dcf6 "powerpc: Add support for context switching the TAR register" Last usage removed in 152d523e "powerpc: Create context switch helpers save_sprs() and restore_sprs()" THREAD_BESCR, THREAD_EBBHR and THREAD_EBBRR: Added in 9353374b "powerpc: Context switch the new EBB SPRs" Last usage removed in 152d523e "powerpc: Create context switch helpers save_sprs() and restore_sprs()" THREAD_SIAR, THREAD_SDAR, THREAD_SIER, THREAD_MMCR0, and THREAD_MMCR2: Added in 59affcd3 "powerpc: Context switch more PMU related SPRs" Last usage removed in b11ae951 "powerpc: Partial revert of "Context switch more PMU related SPRs"" PACA_LOCK_TOKEN: Added in 9e368f29 "KVM: PPC: book3s_hv: Add support for PPC970-family processors" Last usage removed in c17b98cf "KVM: PPC: Book3S HV: Remove code for PPC970 processors" HCALL_STAT_SIZE, HCALL_STAT_CALLS, HCALL_STAT_TB and HCALL_STAT_PURR: Added in 57852a85 "[POWERPC] powerpc: Instrument Hypervisor Calls" Last usage removed in c8cd093a "powerpc: tracing: Add hypervisor call tracepoints" VCPU_EPLC: Added in d30f6e48 "KVM: PPC: booke: category E.HV (GS-mode) support" Never used. CPU_DOWN_FLUSH: Added in e7affb1d "powerpc/cache: add cache flush operation for various e500" Never used. CFG_STAMP_XSEC: Added in 14cf11af "powerpc: Merge enough to start building in arch/powerpc." Last usage removed in 0e469db8 "powerpc: Rework VDSO gettimeofday to prevent time going backwards" KVM_LPCR: Added in aa04b4cc "KVM: PPC: Allocate RMAs (Real Mode Areas) at boot for use by guests" Last usage removed in a0144e2a "KVM: PPC: Book3S HV: Store LPCR value for each virtual core" GPR15, GPR16, GPR17, GPR18, GPR19, GPR20, GPR21, GPR22, GPR23, GPR24, GPR25, GPR26, GPR27, GPR28, GPR29, GPR30 and GPR31: Added in 14cf11af "powerpc: Merge enough to start building in arch/powerpc." Never used. VCPU_SHADOW_FSCR: Added in 616dff86 "KVM: PPC: Book3S PR: Handle Facility interrupt and FSCR" Never used. VCPU_SHADOW_SRR1: Added in a2d56020 "KVM: PPC: Book3S PR: Keep volatile reg values in vcpu rather than shadow_vcpu" Never used. KVM_SPLIT_SIZE: Added in b4deba5c "KVM: PPC: Book3S HV: Implement dynamicmicro-threading on POWER8" Never used. VCPU_VCPUID: Added in de56a948 "KVM: PPC: Add support for Book3S processors in hypervisor mode" Last usage removed 1b400ba0 "KVM: PPC: Book3S HV: Improve handling of local vs. global TLB invalidations" _MQ: Added in 14cf11af "powerpc: Merge enough to start building in arch/powerpc." Never used. AUDITCONTEXT: Added in 14cf11af "powerpc: Merge enough to start building in arch/powerpc." Last usage removed in 401d1f02 "[PATCH] syscall entry/exit revamp" CLONE_VM: Added in 14cf11af "powerpc: Merge enough to start building in arch/powerpc." Currently unused. CLONE_UNTRACED: Added in 14cf11af "powerpc: Merge enough to start building in arch/powerpc." Currently unused. Signed-off-by: NRashmica Gupta <rashmicy@gmail.com> [mpe: Munge change log] Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 01 5月, 2016 1 次提交
-
-
由 Aneesh Kumar K.V 提交于
Radix and hash MMU models support different page table sizes. Make the #defines a variable so that existing code can work with variable sizes. Slice related code is only used by hash, so use hash constants there. We will replicate some of the boundary conditions with resepct to TASK_SIZE using radix values too. Right now we do boundary condition check using hash constants. Swapper pgdir size is initialized in asm code. We select the max pgd size to keep it simple. For now we select hash pgdir. When adding radix we will switch that to radix pgdir which is 64K. BUILD_BUG_ON check which is removed is already done in hugepage_init() using MAYBE_BUILD_BUG_ON(). Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 14 4月, 2016 1 次提交
-
-
由 Michael Ellerman 提交于
Add the kconfig logic & assembly support for handling live patched functions. This depends on DYNAMIC_FTRACE_WITH_REGS, which in turn depends on the new -mprofile-kernel ftrace ABI, which is only supported currently on ppc64le. Live patching is handled by a special ftrace handler. This means it runs from ftrace_caller(). The live patch handler modifies the NIP so as to redirect the return from ftrace_caller() to the new patched function. However there is one particularly tricky case we need to handle. If a function A calls another function B, and it is known at link time that they share the same TOC, then A will not save or restore its TOC, and will call the local entry point of B. When we live patch B, we replace it with a new function C, which may not have the same TOC as A. At live patch time it's too late to modify A to do the TOC save/restore, so the live patching code must interpose itself between A and C, and do the TOC save/restore that A omitted. An additionaly complication is that the livepatch code can not create a stack frame in order to save the TOC. That is because if C takes > 8 arguments, or is varargs, A will have written the arguments for C in A's stack frame. To solve this, we introduce a "livepatch stack" which grows upward from the base of the regular stack, and is used to store the TOC & LR when calling a live patched function. When the patched function returns, we retrieve the real LR & TOC from the livepatch stack, restore them, and pop the livepatch "stack frame". Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au> Reviewed-by: NTorsten Duwe <duwe@suse.de> Reviewed-by: NBalbir Singh <bsingharora@gmail.com>
-
- 05 3月, 2016 1 次提交
-
-
由 chenhui zhao 提交于
Various e500 core have different cache architecture, so they need different cache flush operations. Therefore, add a callback function cpu_flush_caches to the struct cpu_spec. The cache flush operation for the specific kind of e500 is selected at init time. The callback function will flush all caches inside the current cpu. Signed-off-by: NChenhui Zhao <chenhui.zhao@freescale.com> Signed-off-by: NTang Yuantian <Yuantian.Tang@feescale.com> Signed-off-by: NScott Wood <oss@buserror.net>
-
- 02 3月, 2016 1 次提交
-
-
由 Cyril Bur 提交于
Currently the FPU, VEC and VSX facilities are lazily loaded. This is not a problem unless a process is using these facilities. Modern versions of GCC are very good at automatically vectorising code, new and modernised workloads make use of floating point and vector facilities, even the kernel makes use of vectorised memcpy. All this combined greatly increases the cost of a syscall since the kernel uses the facilities sometimes even in syscall fast-path making it increasingly common for a thread to take an *_unavailable exception soon after a syscall, not to mention potentially taking all three. The obvious overcompensation to this problem is to simply always load all the facilities on every exit to userspace. Loading up all FPU, VEC and VSX registers every time can be expensive and if a workload does avoid using them, it should not be forced to incur this penalty. An 8bit counter is used to detect if the registers have been used in the past and the registers are always loaded until the value wraps to back to zero. Several versions of the assembly in entry_64.S were tested: 1. Always calling C. 2. Performing a common case check and then calling C. 3. A complex check in asm. After some benchmarking it was determined that avoiding C in the common case is a performance benefit (option 2). The full check in asm (option 3) greatly complicated that codepath for a negligible performance gain and the trade-off was deemed not worth it. Signed-off-by: NCyril Bur <cyrilbur@gmail.com> [mpe: Move load_vec in the struct to fill an existing hole, reword change log] Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au> fixup
-
- 27 12月, 2015 1 次提交
-
-
由 Michael Neuling 提交于
Currently we copy the whole mm_context_t to the paca but only access a few bits of it. This is wasteful of space paca and also takes quite some time in the hot path of context switching. This patch pulls in only the required bits from the mm_context_t to the paca and on context switch, copies only those. Benchmarking this (On top of Anton's recent MSR context switching changes [1]) using processes and yield shows an improvement of almost 3% on POWER8: http://ozlabs.org/~anton/junkcode/context_switch2.c ./context_switch2 --test=yield --process 0 0 1. https://lists.ozlabs.org/pipermail/linuxppc-dev/2015-October/135700.htmlSigned-off-by: NMichael Neuling <mikey@neuling.org> [mpe: Rename paca fields to be mm_ctx_foo rather than context_foo] Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 19 12月, 2015 1 次提交
-
-
由 Michael Neuling 提交于
This adds a function to copy the mm->context to the paca. This is only a basic conversion for now but will be used more extensively in the next patch. This also adds #ifdef CONFIG_PPC_BOOK3S around this code since it's not used elsewhere. Signed-off-by: NMichael Neuling <mikey@neuling.org> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 22 8月, 2015 2 次提交
-
-
由 Paul Mackerras 提交于
This builds on the ability to run more than one vcore on a physical core by using the micro-threading (split-core) modes of the POWER8 chip. Previously, only vcores from the same VM could be run together, and (on POWER8) only if they had just one thread per core. With the ability to split the core on guest entry and unsplit it on guest exit, we can run up to 8 vcpu threads from up to 4 different VMs, and we can run multiple vcores with 2 or 4 vcpus per vcore. Dynamic micro-threading is only available if the static configuration of the cores is whole-core mode (unsplit), and only on POWER8. To manage this, we introduce a new kvm_split_mode struct which is shared across all of the subcores in the core, with a pointer in the paca on each thread. In addition we extend the core_info struct to have information on each subcore. When deciding whether to add a vcore to the set already on the core, we now have two possibilities: (a) piggyback the vcore onto an existing subcore, or (b) start a new subcore. Currently, when any vcpu needs to exit the guest and switch to host virtual mode, we interrupt all the threads in all subcores and switch the core back to whole-core mode. It may be possible in future to allow some of the subcores to keep executing in the guest while subcore 0 switches to the host, but that is not implemented in this patch. This adds a module parameter called dynamic_mt_modes which controls which micro-threading (split-core) modes the code will consider, as a bitmap. In other words, if it is 0, no micro-threading mode is considered; if it is 2, only 2-way micro-threading is considered; if it is 4, only 4-way, and if it is 6, both 2-way and 4-way micro-threading mode will be considered. The default is 6. With this, we now have secondary threads which are the primary thread for their subcore and therefore need to do the MMU switch. These threads will need to be started even if they have no vcpu to run, so we use the vcore pointer in the PACA rather than the vcpu pointer to trigger them. It is now possible for thread 0 to find that an exit has been requested before it gets to switch the subcore state to the guest. In that case we haven't added the guest's timebase offset to the timebase, so we need to be careful not to subtract the offset in the guest exit path. In fact we just skip the whole path that switches back to host context, since we haven't switched to the guest context. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
When running a virtual core of a guest that is configured with fewer threads per core than the physical cores have, the extra physical threads are currently unused. This makes it possible to use them to run one or more other virtual cores from the same guest when certain conditions are met. This applies on POWER7, and on POWER8 to guests with one thread per virtual core. (It doesn't apply to POWER8 guests with multiple threads per vcore because they require a 1-1 virtual to physical thread mapping in order to be able to use msgsndp and the TIR.) The idea is that we maintain a list of preempted vcores for each physical cpu (i.e. each core, since the host runs single-threaded). Then, when a vcore is about to run, it checks to see if there are any vcores on the list for its physical cpu that could be piggybacked onto this vcore's execution. If so, those additional vcores are put into state VCORE_PIGGYBACK and their runnable VCPU threads are started as well as the original vcore, which is called the master vcore. After the vcores have exited the guest, the extra ones are put back onto the preempted list if any of their VCPUs are still runnable and not idle. This means that vcpu->arch.ptid is no longer necessarily the same as the physical thread that the vcpu runs on. In order to make it easier for code that wants to send an IPI to know which CPU to target, we now store that in a new field in struct vcpu_arch, called thread_cpu. Reviewed-by: NDavid Gibson <david@gibson.dropbear.id.au> Tested-by: NLaurent Vivier <lvivier@redhat.com> Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
- 18 8月, 2015 1 次提交
-
-
由 Kevin Hao 提交于
Since we moved the "lock" to be the first element of struct tlb_core_data in commit 82d86de2 ("powerpc/e6500: Make TLB lock recursive"), this macro is not used by any code. Just delete it. Signed-off-by: NKevin Hao <haokexin@gmail.com> Signed-off-by: NScott Wood <scottwood@freescale.com>
-
- 07 6月, 2015 1 次提交
-
-
由 Anshuman Khandual 提交于
PACA_DSCR offset macro tracks dscr_default element in the paca structure. Better change the name of this macro to match that of the data element it tracks. Makes the code more readable. Signed-off-by: NAnshuman Khandual <khandual@linux.vnet.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 21 4月, 2015 5 次提交
-
-
由 Paul Mackerras 提交于
This uses msgsnd where possible for signalling other threads within the same core on POWER8 systems, rather than IPIs through the XICS interrupt controller. This includes waking secondary threads to run the guest, the interrupts generated by the virtual XICS, and the interrupts to bring the other threads out of the guest when exiting. Aggregated statistics from debugfs across vcpus for a guest with 32 vcpus, 8 threads/vcore, running on a POWER8, show this before the change: rm_entry: 3387.6ns (228 - 86600, 1008969 samples) rm_exit: 4561.5ns (12 - 3477452, 1009402 samples) rm_intr: 1660.0ns (12 - 553050, 3600051 samples) and this after the change: rm_entry: 3060.1ns (212 - 65138, 953873 samples) rm_exit: 4244.1ns (12 - 9693408, 954331 samples) rm_intr: 1342.3ns (12 - 1104718, 3405326 samples) for a test of booting Fedora 20 big-endian to the login prompt. The time taken for a H_PROD hcall (which is handled in the host kernel) went down from about 35 microseconds to about 16 microseconds with this change. The noinline added to kvmppc_run_core turned out to be necessary for good performance, at least with gcc 4.9.2 as packaged with Fedora 21 and a little-endian POWER8 host. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
Currently, the entry_exit_count field in the kvmppc_vcore struct contains two 8-bit counts, one of the threads that have started entering the guest, and one of the threads that have started exiting the guest. This changes it to an entry_exit_map field which contains two bitmaps of 8 bits each. The advantage of doing this is that it gives us a bitmap of which threads need to be signalled when exiting the guest. That means that we no longer need to use the trick of setting the HDEC to 0 to pull the other threads out of the guest, which led in some cases to a spurious HDEC interrupt on the next guest entry. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
We can tell when a secondary thread has finished running a guest by the fact that it clears its kvm_hstate.kvm_vcpu pointer, so there is no real need for the nap_count field in the kvmppc_vcore struct. This changes kvmppc_wait_for_nap to poll the kvm_hstate.kvm_vcpu pointers of the secondary threads rather than polling vc->nap_count. Besides reducing the size of the kvmppc_vcore struct by 8 bytes, this also means that we can tell which secondary threads have got stuck and thus print a more informative error message. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
* Remove unused kvmppc_vcore::n_busy field. * Remove setting of RMOR, since it was only used on PPC970 and the PPC970 KVM support has been removed. * Don't use r1 or r2 in setting the runlatch since they are conventionally reserved for other things; use r0 instead. * Streamline the code a little and remove the ext_interrupt_to_host label. * Add some comments about register usage. * hcall_try_real_mode doesn't need to be global, and can't be called from C code anyway. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
This reads the timebase at various points in the real-mode guest entry/exit code and uses that to accumulate total, minimum and maximum time spent in those parts of the code. Currently these times are accumulated per vcpu in 5 parts of the code: * rm_entry - time taken from the start of kvmppc_hv_entry() until just before entering the guest. * rm_intr - time from when we take a hypervisor interrupt in the guest until we either re-enter the guest or decide to exit to the host. This includes time spent handling hcalls in real mode. * rm_exit - time from when we decide to exit the guest until the return from kvmppc_hv_entry(). * guest - time spend in the guest * cede - time spent napping in real mode due to an H_CEDE hcall while other threads in the same vcore are active. These times are exposed in debugfs in a directory per vcpu that contains a file called "timings". This file contains one line for each of the 5 timings above, with the name followed by a colon and 4 numbers, which are the count (number of times the code has been executed), the total time, the minimum time, and the maximum time, all in nanoseconds. The overhead of the extra code amounts to about 30ns for an hcall that is handled in real mode (e.g. H_SET_DABR), which is about 25%. Since production environments may not wish to incur this overhead, the new code is conditional on a new config symbol, CONFIG_KVM_BOOK3S_HV_EXIT_TIMING. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
- 29 12月, 2014 1 次提交
-
-
由 Michael Ellerman 提交于
We have two arrays in kvm_host_state that contain register values for the PMU. Currently we only create an asm-offsets symbol for the base of the arrays, and do the array offset in the assembly code. Creating an asm-offsets symbol for each field individually makes the code much nicer to read, particularly for the MMCRx/SIxR/SDAR fields, and might have helped us notice the recent double restore bug we had in this code. Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au> Acked-by: NAlexander Graf <agraf@suse.de>
-
- 17 12月, 2014 2 次提交
-
-
由 Paul Mackerras 提交于
There are two ways in which a guest instruction can be obtained from the guest in the guest exit code in book3s_hv_rmhandlers.S. If the exit was caused by a Hypervisor Emulation interrupt (i.e. an illegal instruction), the offending instruction is in the HEIR register (Hypervisor Emulation Instruction Register). If the exit was caused by a load or store to an emulated MMIO device, we load the instruction from the guest by turning data relocation on and loading the instruction with an lwz instruction. Unfortunately, in the case where the guest has opposite endianness to the host, these two methods give results of different endianness, but both get put into vcpu->arch.last_inst. The HEIR value has been loaded using guest endianness, whereas the lwz will load the instruction using host endianness. The rest of the code that uses vcpu->arch.last_inst assumes it was loaded using host endianness. To fix this, we define a new vcpu field to store the HEIR value. Then, in kvmppc_handle_exit_hv(), we transfer the value from this new field to vcpu->arch.last_inst, doing a byte-swap if the guest and host endianness differ. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
This removes the code that was added to enable HV KVM to work on PPC970 processors. The PPC970 is an old CPU that doesn't support virtualizing guest memory. Removing PPC970 support also lets us remove the code for allocating and managing contiguous real-mode areas, the code for the !kvm->arch.using_mmu_notifiers case, the code for pinning pages of guest memory when first accessed and keeping track of which pages have been pinned, and the code for handling H_ENTER hypercalls in virtual mode. Book3S HV KVM is now supported only on POWER7 and POWER8 processors. The KVM_CAP_PPC_RMA capability now always returns 0. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
- 15 12月, 2014 2 次提交
-
-
由 Shreyas B. Prabhu 提交于
Winkle is a deep idle state supported in power8 chips. A core enters winkle when all the threads of the core enter winkle. In this state power supply to the entire chiplet i.e core, private L2 and private L3 is turned off. As a result it gives higher powersavings compared to sleep. But entering winkle results in a total hypervisor state loss. Hence the hypervisor context has to be preserved before entering winkle and restored upon wake up. Power-on Reset Engine (PORE) is a dedicated engine which is responsible for powering on the chiplet during wake up. It can be programmed to restore the register contests of a few specific registers. This patch uses PORE to restore register state wherever possible and uses stack to save and restore rest of the necessary registers. With hypervisor state restore things fall under three categories- per-core state, per-subcore state and per-thread state. To manage this, extend the infrastructure introduced for sleep. Mainly we add a paca variable subcore_sibling_mask. Using this and the core_idle_state we can distingush first thread in core and subcore. Signed-off-by: NShreyas B. Prabhu <shreyas@linux.vnet.ibm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: linuxppc-dev@lists.ozlabs.org Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Shreyas B. Prabhu 提交于
Deep idle states like sleep and winkle are per core idle states. A core enters these states only when all the threads enter either the particular idle state or a deeper one. There are tasks like fastsleep hardware bug workaround and hypervisor core state save which have to be done only by the last thread of the core entering deep idle state and similarly tasks like timebase resync, hypervisor core register restore that have to be done only by the first thread waking up from these state. The current idle state management does not have a way to distinguish the first/last thread of the core waking/entering idle states. Tasks like timebase resync are done for all the threads. This is not only is suboptimal, but can cause functionality issues when subcores and kvm is involved. This patch adds the necessary infrastructure to track idle states of threads in a per-core structure. It uses this info to perform tasks like fastsleep workaround and timebase resync only once per core. Signed-off-by: NShreyas B. Prabhu <shreyas@linux.vnet.ibm.com> Originally-by: NPreeti U. Murthy <preeti@linux.vnet.ibm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Rafael J. Wysocki <rjw@rjwysocki.net> Cc: linux-pm@vger.kernel.org Cc: linuxppc-dev@lists.ozlabs.org Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 02 12月, 2014 1 次提交
-
-
由 Mahesh Salgaonkar 提交于
Cleanup OpalMCE_* definitions/declarations and other related code which is not used anymore. Signed-off-by: NMahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Acked-by: NBenjamin Herrrenschmidt <benh@kernel.crashing.org> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
- 28 7月, 2014 3 次提交
-
-
由 Bharat Bhushan 提交于
SPRN_SPRG is used by debug interrupt handler, so this is required for debug support. Signed-off-by: NBharat Bhushan <Bharat.Bhushan@freescale.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
This provides a way for userspace controls which sPAPR hcalls get handled in the kernel. Each hcall can be individually enabled or disabled for in-kernel handling, except for H_RTAS. The exception for H_RTAS is because userspace can already control whether individual RTAS functions are handled in-kernel or not via the KVM_PPC_RTAS_DEFINE_TOKEN ioctl, and because the numeric value for H_RTAS is out of the normal sequence of hcall numbers. Hcalls are enabled or disabled using the KVM_ENABLE_CAP ioctl for the KVM_CAP_PPC_ENABLE_HCALL capability on the file descriptor for the VM. The args field of the struct kvm_enable_cap specifies the hcall number in args[0] and the enable/disable flag in args[1]; 0 means disable in-kernel handling (so that the hcall will always cause an exit to userspace) and 1 means enable. Enabling or disabling in-kernel handling of an hcall is effective across the whole VM. The ability for KVM_ENABLE_CAP to be used on a VM file descriptor on PowerPC is new, added by this commit. The KVM_CAP_ENABLE_CAP_VM capability advertises that this ability exists. When a VM is created, an initial set of hcalls are enabled for in-kernel handling. The set that is enabled is the set that have an in-kernel implementation at this point. Any new hcall implementations from this point onwards should not be added to the default set without a good reason. No distinction is made between real-mode and virtual-mode hcall implementations; the one setting controls them both. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Michael Ellerman 提交于
Old cpus didn't have a Segment Lookaside Buffer (SLB), instead they had a Segment Table (STAB). Now that we've dropped support for those cpus, we can remove the STAB support entirely. Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
- 30 5月, 2014 4 次提交
-
-
由 Alexander Graf 提交于
POWER8 implements a new register called TAR. This register has to be enabled in FSCR and then from KVM's point of view is mere storage. This patch enables the guest to use TAR. Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Alexander Graf 提交于
POWER8 introduced a new interrupt type called "Facility unavailable interrupt" which contains its status message in a new register called FSCR. Handle these exits and try to emulate instructions for unhandled facilities. Follow-on patches enable KVM to expose specific facilities into the guest. Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Alexander Graf 提交于
The shared (magic) page is a data structure that contains often used supervisor privileged SPRs accessible via memory to the user to reduce the number of exits we have to take to read/write them. When we actually share this structure with the guest we have to maintain it in guest endianness, because some of the patch tricks only work with native endian load/store operations. Since we only share the structure with either host or guest in little endian on book3s_64 pr mode, we don't have to worry about booke or book3s hv. For booke, the shared struct stays big endian. For book3s_64 hv we maintain the struct in host native endian, since it never gets shared with the guest. For book3s_64 pr we introduce a variable that tells us which endianness the shared struct is in and route every access to it through helper inline functions that evaluate this variable. Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Aneesh Kumar K.V 提交于
This patch make sure we inherit the LE bit correctly in different case so that we can run Little Endian distro in PR mode Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
- 28 5月, 2014 1 次提交
-
-
由 Sam bobroff 提交于
Since commit "efcac658 powerpc: Per process DSCR + some fixes (try#4)" it is no longer possible to set the DSCR on a per-CPU basis. The old behaviour was to minipulate the DSCR SPR directly but this is no longer sufficient: the value is quickly overwritten by context switching. This patch stores the per-CPU DSCR value in a kernel variable rather than directly in the SPR and it is used whenever a process has not set the DSCR itself. The sysfs interface (/sys/devices/system/cpu/cpuN/dscr) is unchanged. Writes to the old global default (/sys/devices/system/cpu/dscr_default) now set all of the per-CPU values and reads return the last written value. The new per-CPU default is added to the paca_struct and is used everywhere outside of sysfs.c instead of the old global default. Signed-off-by: NSam Bobroff <sam.bobroff@au1.ibm.com> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
- 20 3月, 2014 1 次提交
-
-
由 Scott Wood 提交于
Previously SPRG3 was marked for use by both VDSO and critical interrupts (though critical interrupts were not fully implemented). In commit 8b64a9df ("powerpc/booke64: Use SPRG0/3 scratch for bolted TLB miss & crit int"), Mihai Caraman made an attempt to resolve this conflict by restoring the VDSO value early in the critical interrupt, but this has some issues: - It's incompatible with EXCEPTION_COMMON which restores r13 from the by-then-overwritten scratch (this cost me some debugging time). - It forces critical exceptions to be a special case handled differently from even machine check and debug level exceptions. - It didn't occur to me that it was possible to make this work at all (by doing a final "ld r13, PACA_EXCRIT+EX_R13(r13)") until after I made (most of) this patch. :-) It might be worth investigating using a load rather than SPRG on return from all exceptions (except TLB misses where the scratch never leaves the SPRG) -- it could save a few cycles. Until then, let's stick with SPRG for all exceptions. Since we cannot use SPRG4-7 for scratch without corrupting the state of a KVM guest, move VDSO to SPRG7 on book3e. Since neither SPRG4-7 nor critical interrupts exist on book3s, SPRG3 is still used for VDSO there. Signed-off-by: NScott Wood <scottwood@freescale.com> Cc: Mihai Caraman <mihai.caraman@freescale.com> Cc: Anton Blanchard <anton@samba.org> Cc: Paul Mackerras <paulus@samba.org> Cc: kvm-ppc@vger.kernel.org
-
- 27 1月, 2014 5 次提交
-
-
由 Michael Neuling 提交于
Add new state for transactional memory (TM) to kvm_vcpu_arch. Also add asm-offset bits that are going to be required. This also moves the existing TFHAR, TFIAR and TEXASR SPRs into a CONFIG_PPC_TRANSACTIONAL_MEM section. This requires some code changes to ensure we still compile with CONFIG_PPC_TRANSACTIONAL_MEM=N. Much of the added the added #ifdefs are removed in a later patch when the bulk of the TM code is added. Signed-off-by: NMichael Neuling <mikey@neuling.org> Signed-off-by: NPaul Mackerras <paulus@samba.org> [agraf: fix merge conflict] Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Anton Blanchard 提交于
We create a guest MSR from scratch when delivering exceptions in a few places. Instead of extracting LPCR[ILE] and inserting it into MSR_LE each time, we simply create a new variable intr_msr which contains the entire MSR to use. For a little-endian guest, userspace needs to set the ILE (interrupt little-endian) bit in the LPCR for each vcpu (or at least one vcpu in each virtual core). [paulus@samba.org - removed H_SET_MODE implementation from original version of the patch, and made kvmppc_set_lpcr update vcpu->arch.intr_msr.] Signed-off-by: NAnton Blanchard <anton@samba.org> Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
The DABRX (DABR extension) register on POWER7 processors provides finer control over which accesses cause a data breakpoint interrupt. It contains 3 bits which indicate whether to enable accesses in user, kernel and hypervisor modes respectively to cause data breakpoint interrupts, plus one bit that enables both real mode and virtual mode accesses to cause interrupts. Currently, KVM sets DABRX to allow both kernel and user accesses to cause interrupts while in the guest. This adds support for the guest to specify other values for DABRX. PAPR defines a H_SET_XDABR hcall to allow the guest to set both DABR and DABRX with one call. This adds a real-mode implementation of H_SET_XDABR, which shares most of its code with the existing H_SET_DABR implementation. To support this, we add a per-vcpu field to store the DABRX value plus code to get and set it via the ONE_REG interface. For Linux guests to use this new hcall, userspace needs to add "hcall-xdabr" to the set of strings in the /chosen/hypertas-functions property in the device tree. If userspace does this and then migrates the guest to a host where the kernel doesn't include this patch, then userspace will need to implement H_SET_XDABR by writing the specified DABR value to the DABR using the ONE_REG interface. In that case, the old kernel will set DABRX to DABRX_USER | DABRX_KERNEL. That should still work correctly, at least for Linux guests, since Linux guests cope with getting data breakpoint interrupts in modes that weren't requested by just ignoring the interrupt, and Linux guests never set DABRX_BTI. The other thing this does is to make H_SET_DABR and H_SET_XDABR work on POWER8, which has the DAWR and DAWRX instead of DABR/X. Guests that know about POWER8 should use H_SET_MODE rather than H_SET_[X]DABR, but guests running in POWER7 compatibility mode will still use H_SET_[X]DABR. For them, this adds the logic to convert DABR/X values into DAWR/X values on POWER8. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Michael Neuling 提交于
This adds fields to the struct kvm_vcpu_arch to store the new guest-accessible SPRs on POWER8, adds code to the get/set_one_reg functions to allow userspace to access this state, and adds code to the guest entry and exit to context-switch these SPRs between host and guest. Note that DPDES (Directed Privileged Doorbell Exception State) is shared between threads on a core; hence we store it in struct kvmppc_vcore and have the master thread save and restore it. Signed-off-by: NMichael Neuling <mikey@neuling.org> Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
On a threaded processor such as POWER7, we group VCPUs into virtual cores and arrange that the VCPUs in a virtual core run on the same physical core. Currently we don't enforce any correspondence between virtual thread numbers within a virtual core and physical thread numbers. Physical threads are allocated starting at 0 on a first-come first-served basis to runnable virtual threads (VCPUs). POWER8 implements a new "msgsndp" instruction which guest kernels can use to interrupt other threads in the same core or sub-core. Since the instruction takes the destination physical thread ID as a parameter, it becomes necessary to align the physical thread IDs with the virtual thread IDs, that is, to make sure virtual thread N within a virtual core always runs on physical thread N. This means that it's possible that thread 0, which is where we call __kvmppc_vcore_entry, may end up running some other vcpu than the one whose task called kvmppc_run_core(), or it may end up running no vcpu at all, if for example thread 0 of the virtual core is currently executing in userspace. However, we do need thread 0 to be responsible for switching the MMU -- a previous version of this patch that had other threads switching the MMU was found to be responsible for occasional memory corruption and machine check interrupts in the guest on POWER7 machines. To accommodate this, we no longer pass the vcpu pointer to __kvmppc_vcore_entry, but instead let the assembly code load it from the PACA. Since the assembly code will need to know the kvm pointer and the thread ID for threads which don't have a vcpu, we move the thread ID into the PACA and we add a kvm pointer to the virtual core structure. In the case where thread 0 has no vcpu to run, it still calls into kvmppc_hv_entry in order to do the MMU switch, and then naps until either its vcpu is ready to run in the guest, or some other thread needs to exit the guest. In the latter case, thread 0 jumps to the code that switches the MMU back to the host. This control flow means that now we switch the MMU before loading any guest vcpu state. Similarly, on guest exit we now save all the guest vcpu state before switching the MMU back to the host. This has required substantial code movement, making the diff rather large. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
- 10 1月, 2014 1 次提交
-
-
由 Scott Wood 提交于
There are a few things that make the existing hw tablewalk handlers unsuitable for e6500: - Indirect entries go in TLB1 (though the resulting direct entries go in TLB0). - It has threads, but no "tlbsrx." -- so we need a spinlock and a normal "tlbsx". Because we need this lock, hardware tablewalk is mandatory on e6500 unless we want to add spinlock+tlbsx to the normal bolted TLB miss handler. - TLB1 has no HES (nor next-victim hint) so we need software round robin (TODO: integrate this round robin data with hugetlb/KVM) - The existing tablewalk handlers map half of a page table at a time, because IBM hardware has a fixed 1MiB indirect page size. e6500 has variable size indirect entries, with a minimum of 2MiB. So we can't do the half-page indirect mapping, and even if we could it would be less efficient than mapping the full page. - Like on e5500, the linear mapping is bolted, so we don't need the overhead of supporting nested tlb misses. Note that hardware tablewalk does not work in rev1 of e6500. We do not expect to support e6500 rev1 in mainline Linux. Signed-off-by: NScott Wood <scottwood@freescale.com> Cc: Mihai Caraman <mihai.caraman@freescale.com>
-
- 09 1月, 2014 2 次提交
-
-
由 Paul Mackerras 提交于
This modifies kvmppc_load_fp and kvmppc_save_fp to use the generic FP/VSX and VMX load/store functions instead of open-coding the FP/VSX/VMX load/store instructions. Since kvmppc_load/save_fp don't follow C calling conventions, we make them private symbols within book3s_hv_rmhandlers.S. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
This uses struct thread_fp_state and struct thread_vr_state to store the floating-point, VMX/Altivec and VSX state, rather than flat arrays. This makes transferring the state to/from the thread_struct simpler and allows us to unify the get/set_one_reg implementations for the VSX registers. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-