- 13 9月, 2012 1 次提交
-
-
由 Alex Shi 提交于
There is no load_balancer to be selected now. It just sets the state of the nohz tick to stop. So rename the function, pass the 'cpu' as a parameter and then remove the useless call from tick_nohz_restart_sched_tick(). [ s/set_nohz_tick_stopped/nohz_balance_enter_idle/g s/clear_nohz_tick_stopped/nohz_balance_exit_idle/g ] Signed-off-by: NAlex Shi <alex.shi@intel.com> Acked-by: NSuresh Siddha <suresh.b.siddha@intel.com> Cc: Venkatesh Pallipadi <venki@google.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1347261059-24747-1-git-send-email-alex.shi@intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 04 9月, 2012 1 次提交
-
-
由 Charles Wang 提交于
Azat Khuzhin reported high loadavg in Linux v3.6 After checking the upstream scheduler code, I found Peter's commit: 5167e8d5 sched/nohz: Rewrite and fix load-avg computation -- again not fully applied, missing the call to calc_load_exit_idle(). After that idle exit in sampling window will always be calculated to non-idle, and the load will be higher than normal. This patch adds the missing call to calc_load_exit_idle(). Signed-off-by: NCharles Wang <muming.wq@taobao.com> Cc: stable@kernel.org Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1345449754-27130-1-git-send-email-muming.wq@gmail.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 06 7月, 2012 1 次提交
-
-
由 Peter Zijlstra 提交于
Thanks to Charles Wang for spotting the defects in the current code: - If we go idle during the sample window -- after sampling, we get a negative bias because we can negate our own sample. - If we wake up during the sample window we get a positive bias because we push the sample to a known active period. So rewrite the entire nohz load-avg muck once again, now adding copious documentation to the code. Reported-and-tested-by: NDoug Smythies <dsmythies@telus.net> Reported-and-tested-by: NCharles Wang <muming.wq@gmail.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: stable@kernel.org Link: http://lkml.kernel.org/r/1340373782.18025.74.camel@twins [ minor edits ] Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
- 03 7月, 2012 1 次提交
-
-
由 Paul E. McKenney 提交于
If the nohz= boot parameter disables nohz, then RCU_FAST_NO_HZ needs to also disable itself. This commit therefore checks for tick_nohz_enabled being zero, disabling rcu_prepare_for_idle() if so. This commit assumes that tick_nohz_enabled can change at runtime: If this is not the case, then a simpler approach suffices. Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
- 12 6月, 2012 5 次提交
-
-
由 Frederic Weisbecker 提交于
The next idle expiry time record and idle sleeps tracking are statistics that only concern idle. Since we want the nohz APIs to become usable further idle context, let's pull up the handling of these statistics to the callers in idle. Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Cc: Alessio Igor Bogani <abogani@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Avi Kivity <avi@redhat.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Christoph Lameter <cl@linux.com> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Cc: Geoff Levand <geoff@infradead.org> Cc: Gilad Ben Yossef <gilad@benyossef.com> Cc: Hakan Akkan <hakanakkan@gmail.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Kevin Hilman <khilman@ti.com> Cc: Max Krasnyansky <maxk@qualcomm.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephen Hemminger <shemminger@vyatta.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Sven-Thorsten Dietrich <thebigcorporation@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de>
-
由 Frederic Weisbecker 提交于
Since we want to prepare for making the nohz API to work further the idle case, we need to pull ts->idle_calls incrementation up to the callers in idle. To perform this, we split tick_nohz_stop_sched_tick() in two parts: a first one that checks if we can really stop the tick for idle, and another that actually stops it. Then from the callers in idle, we check if we can stop the tick and only then we increment idle_calls and finally relay to the nohz API that won't care about these details anymore. Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Cc: Alessio Igor Bogani <abogani@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Avi Kivity <avi@redhat.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Christoph Lameter <cl@linux.com> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Cc: Geoff Levand <geoff@infradead.org> Cc: Gilad Ben Yossef <gilad@benyossef.com> Cc: Hakan Akkan <hakanakkan@gmail.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Kevin Hilman <khilman@ti.com> Cc: Max Krasnyansky <maxk@qualcomm.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephen Hemminger <shemminger@vyatta.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Sven-Thorsten Dietrich <thebigcorporation@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de>
-
由 Frederic Weisbecker 提交于
Now that idle and nohz logics are going to be independant each others, ts->idle_tick becomes too much a biased name to describe the field that saves the last scheduled tick on top of which we re-calculate the next tick to schedule when the timer is restarted. We want to reuse this even to stop the tick outside idle cases. So let's rename it to some more generic name: ts->last_tick. This changes a bit the timer list stat export so we need to increase its version. Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Cc: Alessio Igor Bogani <abogani@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Avi Kivity <avi@redhat.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Christoph Lameter <cl@linux.com> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Cc: Geoff Levand <geoff@infradead.org> Cc: Gilad Ben Yossef <gilad@benyossef.com> Cc: Hakan Akkan <hakanakkan@gmail.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Kevin Hilman <khilman@ti.com> Cc: Max Krasnyansky <maxk@qualcomm.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephen Hemminger <shemminger@vyatta.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Sven-Thorsten Dietrich <thebigcorporation@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de>
-
由 Frederic Weisbecker 提交于
When the timer tick fires, it accounts the new jiffy as either part of system, user or idle time. This is how we record the cputime statistics. But when the tick is stopped from the idle task, we still need to record the number of jiffies spent tickless until we restart the tick and fall back to traditional tick-based cputime accounting. To do this, we take a snapshot of jiffies when the tick is stopped and compute the difference against the new value of jiffies when the tick is restarted. Then we account this whole difference to the idle cputime. However we are preparing to be able to stop the tick from other places than idle. So this idle time accounting needs to be performed from the callers of nohz APIs, not from the nohz APIs themselves because we now want them to be agnostic against places that stop/restart tick. Therefore, we pull the tickless idle time accounting out of generic nohz helpers up to idle entry/exit callers. Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Cc: Alessio Igor Bogani <abogani@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Avi Kivity <avi@redhat.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Christoph Lameter <cl@linux.com> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Cc: Geoff Levand <geoff@infradead.org> Cc: Gilad Ben Yossef <gilad@benyossef.com> Cc: Hakan Akkan <hakanakkan@gmail.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Kevin Hilman <khilman@ti.com> Cc: Max Krasnyansky <maxk@qualcomm.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephen Hemminger <shemminger@vyatta.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Sven-Thorsten Dietrich <thebigcorporation@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de>
-
由 Frederic Weisbecker 提交于
As we plan to be able to stop the tick outside the idle task, we need to prepare for separating nohz logic from idle. As a start, this pulls the idle sleeping time accounting out of the tick stop/restart API to the callers on idle entry/exit. Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Cc: Alessio Igor Bogani <abogani@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Avi Kivity <avi@redhat.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Christoph Lameter <cl@linux.com> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Cc: Geoff Levand <geoff@infradead.org> Cc: Gilad Ben Yossef <gilad@benyossef.com> Cc: Hakan Akkan <hakanakkan@gmail.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Kevin Hilman <khilman@ti.com> Cc: Max Krasnyansky <maxk@qualcomm.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephen Hemminger <shemminger@vyatta.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Sven-Thorsten Dietrich <thebigcorporation@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de>
-
- 07 6月, 2012 1 次提交
-
-
由 Paul E. McKenney 提交于
When a CPU is entering dyntick-idle mode, tick_nohz_stop_sched_tick() calls rcu_needs_cpu() see if RCU needs that CPU, and, if not, computes the next wakeup time based on the timer wheels. Only later, when actually entering the idle loop, rcu_prepare_for_idle() will be invoked. In some cases, rcu_prepare_for_idle() will post timers to wake the CPU back up. But all for naught: The next wakeup time for the CPU has already been computed, and posting a timer afterwards does not force that wakeup time to be recomputed. This means that rcu_prepare_for_idle()'s have no effect. This is not a problem on a busy system because something else will wake up the CPU soon enough. However, on lightly loaded systems, the CPU might stay asleep for a considerable length of time. If that CPU has a callback that the rest of the system is waiting on, the system might run very slowly or (in theory) even hang. This commit avoids this problem by having rcu_needs_cpu() give tick_nohz_stop_sched_tick() an estimate of when RCU will need the CPU to wake back up, which tick_nohz_stop_sched_tick() takes into account when programming the CPU's wakeup time. An alternative approach is for rcu_prepare_for_idle() to use hrtimers instead of normal timers, but timers are much more efficient than are hrtimers for frequently and repeatedly posting and cancelling a given timer, which is exactly what RCU_FAST_NO_HZ does. Reported-by: NPascal Chapperon <pascal.chapperon@wanadoo.fr> Reported-by: NHeiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Tested-by: NHeiko Carstens <heiko.carstens@de.ibm.com> Tested-by: NPascal Chapperon <pascal.chapperon@wanadoo.fr>
-
- 30 5月, 2012 1 次提交
-
-
由 Peter Zijlstra 提交于
Follow up on commit 556061b0 ("sched/nohz: Fix rq->cpu_load[] calculations") since while that fixed the busy case it regressed the mostly idle case. Add a callback from the nohz exit to also age the rq->cpu_load[] array. This closes the hole where either there was no nohz load balance pass during the nohz, or there was a 'significant' amount of idle time between the last nohz balance and the nohz exit. So we'll update unconditionally from the tick to not insert any accidental 0 load periods while busy, and we try and catch up from nohz idle balance and nohz exit. Both these are still prone to missing a jiffy, but that has always been the case. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: pjt@google.com Cc: Venkatesh Pallipadi <venki@google.com> Link: http://lkml.kernel.org/n/tip-kt0trz0apodbf84ucjfdbr1a@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 25 5月, 2012 2 次提交
-
-
由 Thomas Gleixner 提交于
commit 5307c955 (tick: Add tick skew boot option) broke the !CONFIG_HIGH_RES_TIMERS build. Move the boot option parsing into the CONFIG_HIGH_RES_TIMERS section. Reported-by: NIngo Molnar <mingo@elte.hu> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: Mike Galbraith <mgalbraith@suse.de>
-
由 Mike Galbraith 提交于
Let the user decide whether power consumption or jitter is the more important consideration for their machines. Quoting removal commit af5ab277: "Historically, Linux has tried to make the regular timer tick on the various CPUs not happen at the same time, to avoid contention on xtime_lock. Nowadays, with the tickless kernel, this contention no longer happens since time keeping and updating are done differently. In addition, this skew is actually hurting power consumption in a measurable way on many-core systems." Problems: - Contrary to the above, systems do encounter contention on both xtime_lock and RCU structure locks when the tick is synchronized. - Moderate sized RT systems suffer intolerable jitter due to the tick being synchronized. - SGI reports the same for their large systems. - Fully utilized systems reap no power saving benefit from skew removal, but do suffer from resulting induced lock contention. - 0209f649 rcu: limit rcu_node leaf-level fanout This patch was born to combat lock contention which testing showed to have been _induced by_ skew removal. Skew the tick, contention disappeared virtually completely. Signed-off-by: NMike Galbraith <mgalbraith@suse.de> Link: http://lkml.kernel.org/r/1336472458.21924.78.camel@marge.simpson.netSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 06 4月, 2012 1 次提交
-
-
由 Neal Cardwell 提交于
Fix tick_nohz_restart() to not use a stale ktime_t "now" value when calling tick_do_update_jiffies64(now). If we reach this point in the loop it means that we crossed a tick boundary since we grabbed the "now" timestamp, so at this point "now" refers to a time in the old jiffy, so using the old value for "now" is incorrect, and is likely to give us a stale jiffies value. In particular, the first time through the loop the tick_do_update_jiffies64(now) call is always a no-op, since the caller, tick_nohz_restart_sched_tick(), will have already called tick_do_update_jiffies64(now) with that "now" value. Note that tick_nohz_stop_sched_tick() already uses the correct approach: when we notice we cross a jiffy boundary, grab a new timestamp with ktime_get(), and *then* update jiffies. Signed-off-by: NNeal Cardwell <ncardwell@google.com> Cc: Ben Segall <bsegall@google.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: stable@vger.kernel.org Link: http://lkml.kernel.org/r/1332875377-23014-1-git-send-email-ncardwell@google.comSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 15 2月, 2012 2 次提交
-
-
由 Frederic Weisbecker 提交于
ts->inidle is set by tick_nohz_idle_enter() and unset by tick_nohz_idle_exit(). However these two calls are assumed to be always paired. This means that by the time we call tick_nohz_idle_exit(), ts->inidle is supposed to be always set to 1. Remove the checks for ts->inidle in tick_nohz_idle_exit(). This simplifies a bit the code and improves its debuggability (ie: ensure the call is paired with a tick_nohz_idle_enter() call). Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Reviewed-by: NYong Zhang <yong.zhang0@gmail.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: John Stultz <john.stultz@linaro.org> Cc: Ingo Molnar <mingo@elte.hu> Link: http://lkml.kernel.org/r/1327427984-23282-2-git-send-email-fweisbec@gmail.comSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
由 Michal Hocko 提交于
There is no reason to call update_ts_time_stat from tick_nohz_start_idle anymore (after e0e37c20 sched: Eliminate the ts->idle_lastupdate field) when we updated idle_lastupdate unconditionally. We haven't set idle_active yet and do not provide last_update_time so the whole call end up being just 2 wasted branches. Signed-off-by: NMichal Hocko <mhocko@suse.cz> Cc: Arjan van de Ven <arjan@linux.intel.com> Link: http://lkml.kernel.org/r/1322755222-6951-1-git-send-email-mhocko@suse.czSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 12 12月, 2011 4 次提交
-
-
由 Frederic Weisbecker 提交于
Those two APIs were provided to optimize the calls of tick_nohz_idle_enter() and rcu_idle_enter() into a single irq disabled section. This way no interrupt happening in-between would needlessly process any RCU job. Now we are talking about an optimization for which benefits have yet to be measured. Let's start simple and completely decouple idle rcu and dyntick idle logics to simplify. Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Reviewed-by: NJosh Triplett <josh@joshtriplett.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Frederic Weisbecker 提交于
It is assumed that rcu won't be used once we switch to tickless mode and until we restart the tick. However this is not always true, as in x86-64 where we dereference the idle notifiers after the tick is stopped. To prepare for fixing this, add two new APIs: tick_nohz_idle_enter_norcu() and tick_nohz_idle_exit_norcu(). If no use of RCU is made in the idle loop between tick_nohz_enter_idle() and tick_nohz_exit_idle() calls, the arch must instead call the new *_norcu() version such that the arch doesn't need to call rcu_idle_enter() and rcu_idle_exit(). Otherwise the arch must call tick_nohz_enter_idle() and tick_nohz_exit_idle() and also call explicitly: - rcu_idle_enter() after its last use of RCU before the CPU is put to sleep. - rcu_idle_exit() before the first use of RCU after the CPU is woken up. Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Cc: Mike Frysinger <vapier@gentoo.org> Cc: Guan Xuetao <gxt@mprc.pku.edu.cn> Cc: David Miller <davem@davemloft.net> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Hans-Christian Egtvedt <hans-christian.egtvedt@atmel.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Russell King <linux@arm.linux.org.uk> Cc: Paul Mackerras <paulus@samba.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Paul Mundt <lethal@linux-sh.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Frederic Weisbecker 提交于
The tick_nohz_stop_sched_tick() function, which tries to delay the next timer tick as long as possible, can be called from two places: - From the idle loop to start the dytick idle mode - From interrupt exit if we have interrupted the dyntick idle mode, so that we reprogram the next tick event in case the irq changed some internal state that requires this action. There are only few minor differences between both that are handled by that function, driven by the ts->inidle cpu variable and the inidle parameter. The whole guarantees that we only update the dyntick mode on irq exit if we actually interrupted the dyntick idle mode, and that we enter in RCU extended quiescent state from idle loop entry only. Split this function into: - tick_nohz_idle_enter(), which sets ts->inidle to 1, enters dynticks idle mode unconditionally if it can, and enters into RCU extended quiescent state. - tick_nohz_irq_exit() which only updates the dynticks idle mode when ts->inidle is set (ie: if tick_nohz_idle_enter() has been called). To maintain symmetry, tick_nohz_restart_sched_tick() has been renamed into tick_nohz_idle_exit(). This simplifies the code and micro-optimize the irq exit path (no need for local_irq_save there). This also prepares for the split between dynticks and rcu extended quiescent state logics. We'll need this split to further fix illegal uses of RCU in extended quiescent states in the idle loop. Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Cc: Mike Frysinger <vapier@gentoo.org> Cc: Guan Xuetao <gxt@mprc.pku.edu.cn> Cc: David Miller <davem@davemloft.net> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Hans-Christian Egtvedt <hans-christian.egtvedt@atmel.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Russell King <linux@arm.linux.org.uk> Cc: Paul Mackerras <paulus@samba.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Paul Mundt <lethal@linux-sh.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: NJosh Triplett <josh@joshtriplett.org>
-
由 Paul E. McKenney 提交于
Earlier versions of RCU used the scheduling-clock tick to detect idleness by checking for the idle task, but handled idleness differently for CONFIG_NO_HZ=y. But there are now a number of uses of RCU read-side critical sections in the idle task, for example, for tracing. A more fine-grained detection of idleness is therefore required. This commit presses the old dyntick-idle code into full-time service, so that rcu_idle_enter(), previously known as rcu_enter_nohz(), is always invoked at the beginning of an idle loop iteration. Similarly, rcu_idle_exit(), previously known as rcu_exit_nohz(), is always invoked at the end of an idle-loop iteration. This allows the idle task to use RCU everywhere except between consecutive rcu_idle_enter() and rcu_idle_exit() calls, in turn allowing architecture maintainers to specify exactly where in the idle loop that RCU may be used. Because some of the userspace upcall uses can result in what looks to RCU like half of an interrupt, it is not possible to expect that the irq_enter() and irq_exit() hooks will give exact counts. This patch therefore expands the ->dynticks_nesting counter to 64 bits and uses two separate bitfields to count process/idle transitions and interrupt entry/exit transitions. It is presumed that userspace upcalls do not happen in the idle loop or from usermode execution (though usermode might do a system call that results in an upcall). The counter is hard-reset on each process/idle transition, which avoids the interrupt entry/exit error from accumulating. Overflow is avoided by the 64-bitness of the ->dyntick_nesting counter. This commit also adds warnings if a non-idle task asks RCU to enter idle state (and these checks will need some adjustment before applying Frederic's OS-jitter patches (http://lkml.org/lkml/2011/10/7/246). In addition, validation of ->dynticks and ->dynticks_nesting is added. Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: NJosh Triplett <josh@joshtriplett.org>
-
- 06 12月, 2011 1 次提交
-
-
由 Suresh Siddha 提交于
Introduce nr_busy_cpus in the struct sched_group_power [Not in sched_group because sched groups are duplicated for the SD_OVERLAP scheduler domain] and for each cpu that enters and exits idle, this parameter will be updated in each scheduler group of the scheduler domain that this cpu belongs to. To avoid the frequent update of this state as the cpu enters and exits idle, the update of the stat during idle exit is delayed to the first timer tick that happens after the cpu becomes busy. This is done using NOHZ_IDLE flag in the struct rq's nohz_flags. Signed-off-by: NSuresh Siddha <suresh.b.siddha@intel.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20111202010832.555984323@sbsiddha-desk.sc.intel.comSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
- 29 9月, 2011 1 次提交
-
-
由 Shi, Alex 提交于
RCU no longer uses this global variable, nor does anyone else. This commit therefore removes this variable. This reduces memory footprint and also removes some atomic instructions and memory barriers from the dyntick-idle path. Signed-off-by: NAlex Shi <alex.shi@intel.com> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
- 08 9月, 2011 3 次提交
-
-
由 Heiko Carstens 提交于
When performing cpu hotplug tests the kernel printk log buffer gets flooded with pointless "Switched to NOHz mode..." messages. Especially when afterwards analyzing a dump this might have removed more interesting stuff out of the buffer. Assuming that switching to NOHz mode simply works just remove the printk. Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com> Link: http://lkml.kernel.org/r/20110823112046.GB2540@osiris.boeblingen.de.ibm.comSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
由 Michal Hocko 提交于
get_cpu_{idle,iowait}_time_us update idle/iowait counters unconditionally if the given CPU is in the idle loop. This doesn't work well outside of CPU governors which are singletons so nobody (except for IRQ) can race with them. We will need to use both functions from /proc/stat handler to properly handle nohz idle/iowait times. Make the update depend on a non NULL last_update_time argument. Signed-off-by: NMichal Hocko <mhocko@suse.cz> Cc: Dave Jones <davej@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Alexey Dobriyan <adobriyan@gmail.com> Link: http://lkml.kernel.org/r/11f23179472635ce52e78921d47a20216b872f23.1314172057.git.mhocko@suse.czSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
由 Michal Hocko 提交于
update_ts_time_stat currently updates idle time even if we are in iowait loop at the moment. The only real users of the idle counter (via get_cpu_idle_time_us) are CPU governors and they expect to get cumulative time for both idle and iowait times. The value (idle_sleeptime) is also printed to userspace by print_cpu but it prints both idle and iowait times so the idle part is misleading. Let's clean this up and fix update_ts_time_stat to account both counters properly and update consumers of idle to consider iowait time as well. If we do this we might use get_cpu_{idle,iowait}_time_us from other contexts as well and we will get expected values. Signed-off-by: NMichal Hocko <mhocko@suse.cz> Cc: Dave Jones <davej@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Alexey Dobriyan <adobriyan@gmail.com> Link: http://lkml.kernel.org/r/e9c909c221a8da402c4da07e4cd968c3218f8eb1.1314172057.git.mhocko@suse.czSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 01 2月, 2011 1 次提交
-
-
由 Torben Hohn 提交于
All callers of do_timer() are converted to xtime_update(). The only users of xtime_lock are in kernel/time/. Make both local to kernel/time/ and remove them from the global header files. [ tglx: Reuse tick-internal.h instead of creating another local header file. Massaged changelog ] Signed-off-by: NTorben Hohn <torbenh@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: johnstul@us.ibm.com Cc: yong.zhang0@gmail.com Cc: hch@infradead.org Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 20 1月, 2011 1 次提交
-
-
由 Stephen Boyd 提交于
When NOHZ=y and high res timers are disabled (via cmdline or Kconfig) tick_nohz_switch_to_nohz() will notify the user about switching into NOHZ mode. Nothing is printed for the case where HIGH_RES_TIMERS=y. Fix this for the HIGH_RES_TIMERS=y case by duplicating the printk from the low res NOHZ path in the high res NOHZ path. This confused me since I was thinking 'dmesg | grep -i NOHZ' would tell me if NOHZ was enabled, but if I have hrtimers there is nothing. Signed-off-by: NStephen Boyd <sboyd@codeaurora.org> Acked-by: NThomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <1295419594-13085-1-git-send-email-sboyd@codeaurora.org> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 03 8月, 2010 1 次提交
-
-
由 Arjan van de Ven 提交于
Historically, Linux has tried to make the regular timer tick on the various CPUs not happen at the same time, to avoid contention on xtime_lock. Nowadays, with the tickless kernel, this contention no longer happens since time keeping and updating are done differently. In addition, this skew is actually hurting power consumption in a measurable way on many-core systems. Signed-off-by: NArjan van de Ven <arjan@linux.intel.com> LKML-Reference: <20100727210210.58d3118c@infradead.org> Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 17 7月, 2010 1 次提交
-
-
由 Peter Zijlstra 提交于
Norbert reported that nohz_ratelimit() causes his laptop to burn about 4W (40%) extra. For now back out the change and see if we can adjust the power management code to make better decisions. Reported-by: NNorbert Preining <preining@logic.at> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: NMike Galbraith <efault@gmx.de> Cc: Arjan van de Ven <arjan@infradead.org> LKML-Reference: <new-submission> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 01 7月, 2010 1 次提交
-
-
由 Peter Zijlstra 提交于
Commit 0224cf4c (sched: Intoduce get_cpu_iowait_time_us()) broke things by not making sure preemption was indeed disabled by the callers of nr_iowait_cpu() which took the iowait value of the current cpu. This resulted in a heap of preempt warnings. Cure this by making nr_iowait_cpu() take a cpu number and fix up the callers to pass in the right number. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Arjan van de Ven <arjan@infradead.org> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Rafael J. Wysocki <rjw@sisk.pl> Cc: Maxim Levitsky <maximlevitsky@gmail.com> Cc: Len Brown <len.brown@intel.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: Jiri Slaby <jslaby@suse.cz> Cc: linux-pm@lists.linux-foundation.org LKML-Reference: <1277968037.1868.120.camel@laptop> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 18 6月, 2010 1 次提交
-
-
由 Peter Zijlstra 提交于
Chris Wedgwood reports that 39c0cbe2 (sched: Rate-limit nohz) causes a serial console regression, unresponsiveness, and indeed it does. The reason is that the nohz code is skipped even when the tick was already stopped before the nohz_ratelimit(cpu) condition changed. Move the nohz_ratelimit() check to the other conditions which prevent long idle sleeps. Reported-by: NChris Wedgwood <cw@f00f.org> Tested-by: NBrian Bloniarz <bmb@athenacr.com> Signed-off-by: NMike Galbraith <efault@gmx.de> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Greg KH <gregkh@suse.de> Cc: Alan Cox <alan@lxorguk.ukuu.org.uk> Cc: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp> Cc: Jef Driesen <jefdriesen@telenet.be> LKML-Reference: <1276790557.27822.516.camel@twins> Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 09 6月, 2010 1 次提交
-
-
由 Venkatesh Pallipadi 提交于
In the new push model, all idle CPUs indeed go into nohz mode. There is still the concept of idle load balancer (performing the load balancing on behalf of all the idle cpu's in the system). Busy CPU kicks the nohz balancer when any of the nohz CPUs need idle load balancing. The kickee CPU does the idle load balancing on behalf of all idle CPUs instead of the normal idle balance. This addresses the below two problems with the current nohz ilb logic: * the idle load balancer continued to have periodic ticks during idle and wokeup frequently, even though it did not have any rebalancing to do on behalf of any of the idle CPUs. * On x86 and CPUs that have APIC timer stoppage on idle CPUs, this periodic wakeup can result in a periodic additional interrupt on a CPU doing the timer broadcast. Also currently we are migrating the unpinned timers from an idle to the cpu doing idle load balancing (when all the cpus in the system are idle, there is no idle load balancing cpu and timers get added to the same idle cpu where the request was made. So the existing optimization works only on semi idle system). And In semi idle system, we no longer have periodic ticks on the idle load balancer CPU. Using that cpu will add more delays to the timers than intended (as that cpu's timer base may not be uptodate wrt jiffies etc). This was causing mysterious slowdowns during boot etc. For now, in the semi idle case, use the nearest busy cpu for migrating timers from an idle cpu. This is good for power-savings anyway. Signed-off-by: NVenkatesh Pallipadi <venki@google.com> Signed-off-by: NSuresh Siddha <suresh.b.siddha@intel.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Thomas Gleixner <tglx@linutronix.de> LKML-Reference: <1274486981.2840.46.camel@sbs-t61.sc.intel.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 10 5月, 2010 6 次提交
-
-
由 Arjan van de Ven 提交于
For the ondemand cpufreq governor, it is desired that the iowait time is microaccounted in a similar way as idle time is. This patch introduces the infrastructure to account and expose this information via the get_cpu_iowait_time_us() function. [akpm@linux-foundation.org: fix CONFIG_NO_HZ=n build] Signed-off-by: NArjan van de Ven <arjan@linux.intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Reviewed-by: NRik van Riel <riel@redhat.com> Acked-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: davej@redhat.com LKML-Reference: <20100509082523.284feab6@infradead.org> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Arjan van de Ven 提交于
Now that the only user of ts->idle_lastupdate is update_ts_time_stats(), the entire field can be eliminated. In update_ts_time_stats(), idle_lastupdate is first set to "now", and a few lines later, the only user is an if() statement that assigns a variable either to "now" or to ts->idle_lastupdate, which has the value of "now" at that point. Signed-off-by: NArjan van de Ven <arjan@linux.intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Reviewed-by: NRik van Riel <riel@redhat.com> Acked-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: davej@redhat.com LKML-Reference: <20100509082439.2fab0b4f@infradead.org> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Arjan van de Ven 提交于
This patch folds the updating of the last_update_time into the update_ts_time_stats() function, and updates the callers. This allows for further cleanups that are done in the next patch. Signed-off-by: NArjan van de Ven <arjan@linux.intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Reviewed-by: NRik van Riel <riel@redhat.com> Acked-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: davej@redhat.com LKML-Reference: <20100509082403.60072967@infradead.org> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Arjan van de Ven 提交于
Right now, get_cpu_idle_time_us() only reports the idle statistics upto the point the CPU entered last idle; not what is valid right now. This patch adds an update of the idle statistics to get_cpu_idle_time_us(), so that calling this function always returns statistics that are accurate at the point of the call. This includes resetting the start of the idle time for accounting purposes to avoid double accounting. Signed-off-by: NArjan van de Ven <arjan@linux.intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Reviewed-by: NRik van Riel <riel@redhat.com> Acked-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: davej@redhat.com LKML-Reference: <20100509082323.2d2f1945@infradead.org> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Arjan van de Ven 提交于
Currently, two places update the idle statistics (and more to come later in this series). This patch creates a helper function for updating these statistics. Signed-off-by: NArjan van de Ven <arjan@linux.intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Reviewed-by: NRik van Riel <riel@redhat.com> Acked-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: davej@redhat.com LKML-Reference: <20100509082245.163e67ed@infradead.org> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Arjan van de Ven 提交于
The exported function get_cpu_idle_time_us() has no comment describing it; add a kerneldoc comment Signed-off-by: NArjan van de Ven <arjan@linux.intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Reviewed-by: NRik van Riel <riel@redhat.com> Acked-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: davej@redhat.com LKML-Reference: <20100509082208.7cb721f0@infradead.org> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 12 3月, 2010 1 次提交
-
-
由 Mike Galbraith 提交于
Entering nohz code on every micro-idle is costing ~10% throughput for netperf TCP_RR when scheduling cross-cpu. Rate limiting entry fixes this, but raises ticks a bit. On my Q6600, an idle box goes from ~85 interrupts/sec to 128. The higher the context switch rate, the more nohz entry costs. With this patch and some cycle recovery patches in my tree, max cross cpu context switch rate is improved by ~16%, a large portion of which of which is this ratelimiting. Signed-off-by: NMike Galbraith <efault@gmx.de> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <1268301003.6785.28.camel@marge.simson.net> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 14 11月, 2009 1 次提交
-
-
由 Thomas Gleixner 提交于
The previous patch which limits the sleep time to the maximum deferment time of the time keeping clocksource has some limitations on SMP machines: if all CPUs are idle then for all CPUs the maximum sleep time is limited. Solve this by keeping track of which cpu had the do_timer() duty assigned last and limit the sleep time only for this cpu. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> LKML-Reference: <new-submission> Cc: Jon Hunter <jon-hunter@ti.com> Cc: John Stultz <johnstul@us.ibm.com>
-