- 09 2月, 2016 9 次提交
-
-
由 Dave Chinner 提交于
Move the di_mode value from the xfs_icdinode to the VFS inode, reducing the xfs_icdinode byte another 2 bytes and collapsing another 2 byte hole in the structure. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Dave Chinner 提交于
We can store the di_changecount in the i_version field of the VFS inode and remove another 8 bytes from the xfs_icdinode. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Dave Chinner 提交于
Pull another 4 bytes out of the xfs_icdinode. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Dave Chinner 提交于
The VFS tracks the inode nlink just like the xfs_icdinode. We can remove the variable from the icdinode and use the VFS inode variable everywhere, reducing the size of the xfs_icdinode by a further 4 bytes. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Dave Chinner 提交于
We are going to keep certain on-disk information in the VFS inode rather than in a separate XFS specific stucture, so we have to be careful of the VFS code clearing that information when we re-initialise reclaimable cached inodes during lookup. If we don't do this, then we lose critical information from the inode and that results in corruption being detected. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Dave Chinner 提交于
So we don't have to carry an di_onlink variable around anymore, move the inode conversion from v1 inode format to v2 inode format into xfs_inode_from_disk(). This means we can remove the di_onlink fields from the struct xfs_icdinode. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Dave Chinner 提交于
Now that the struct xfs_icdinode is not directly related to the on-disk format, we can cull things in it we really don't need to store: - magic number never changes - padding is not necessary - next_unlinked is never used - inode number is redundant - uuid is redundant - lsn is accessed directly from dinode - inode CRC is only accessed directly from dinode Hence we can remove these from the struct xfs_icdinode and redirect the code that uses them to the xfs_dinode appripriately. This reduces the size of the struct icdinode from 152 bytes to 88 bytes, and removes a fair chunk of unnecessary code, too. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Dave Chinner 提交于
The struct xfs_inode has two copies of the current timestamps in it, one in the vfs inode and one in the struct xfs_icdinode. Now that we no longer log the struct xfs_icdinode directly, we don't need to keep the timestamps in this structure. instead we can copy them straight out of the VFS inode when formatting the inode log item or the on-disk inode. This reduces the struct xfs_inode in size by 24 bytes. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Dave Chinner 提交于
We currently carry around and log an entire inode core in the struct xfs_inode. A lot of the information in the inode core is duplicated in the VFS inode, but we cannot remove this duplication of infomration because the inode core is logged directly in xfs_inode_item_format(). Add a new function xfs_inode_item_format_core() that copies the inode core data into a struct xfs_icdinode that is pulled directly from the log vector buffer. This means we no longer directly copy the inode core, but copy the structures one member at a time. This will be slightly less efficient than copying, but will allow us to remove duplicate and unnecessary items from the struct xfs_inode. To enable us to do this, call the new structure a xfs_log_dinode, so that we know it's different to the physical xfs_dinode and the in-core xfs_icdinode. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 30 1月, 2016 1 次提交
-
-
由 Chris Mason 提交于
This reverts commit 14e46e04. This ends up doing sysfs operations from deep in balance (where we should be GFP_NOFS) and under heavy balance load, we're making races against sysfs internals. Revert it for now while we figure things out. Signed-off-by: NChris Mason <clm@fb.com>
-
- 27 1月, 2016 2 次提交
-
-
由 Chris Mason 提交于
This was copied incorrectly from the __vmalloc call. Signed-off-by: NChris Mason <clm@fb.com>
-
由 David Sterba 提交于
If the mount phase is not finished, we can't update the sysfs files. Reported-by: NChris Mason <clm@fb.com> Signed-off-by: NDavid Sterba <dsterba@suse.com> Signed-off-by: NChris Mason <clm@fb.com>
-
- 26 1月, 2016 3 次提交
-
-
由 David Sterba 提交于
This reverts commit 69624913. The cleaner thread can block freezing when there's a snapshot cleaning in progress and the other threads get suspended first. From the logs provided by Martin we're waiting for reading extent pages: kernel: PM: Syncing filesystems ... done. kernel: Freezing user space processes ... (elapsed 0.015 seconds) done. kernel: Freezing remaining freezable tasks ... kernel: Freezing of tasks failed after 20.003 seconds (1 tasks refusing to freeze, wq_busy=0): kernel: btrfs-cleaner D ffff88033dd13bc0 0 152 2 0x00000000 kernel: ffff88032ebc2e00 ffff88032e750000 ffff88032e74fa50 7fffffffffffffff kernel: ffffffff814a58df 0000000000000002 ffffea000934d580 ffffffff814a5451 kernel: 7fffffffffffffff ffffffff814a6e8f 0000000000000000 0000000000000020 kernel: Call Trace: kernel: [<ffffffff814a58df>] ? bit_wait+0x2c/0x2c kernel: [<ffffffff814a5451>] ? schedule+0x6f/0x7c kernel: [<ffffffff814a6e8f>] ? schedule_timeout+0x2f/0xd8 kernel: [<ffffffff81076f94>] ? timekeeping_get_ns+0xa/0x2e kernel: [<ffffffff81077603>] ? ktime_get+0x36/0x44 kernel: [<ffffffff814a4f6c>] ? io_schedule_timeout+0x94/0xf2 kernel: [<ffffffff814a4f6c>] ? io_schedule_timeout+0x94/0xf2 kernel: [<ffffffff814a590b>] ? bit_wait_io+0x2c/0x30 kernel: [<ffffffff814a5694>] ? __wait_on_bit+0x41/0x73 kernel: [<ffffffff8109eba8>] ? wait_on_page_bit+0x6d/0x72 kernel: [<ffffffff8105d718>] ? autoremove_wake_function+0x2a/0x2a kernel: [<ffffffff811a02d7>] ? read_extent_buffer_pages+0x1bd/0x203 kernel: [<ffffffff8117d9e9>] ? free_root_pointers+0x4c/0x4c kernel: [<ffffffff8117e831>] ? btree_read_extent_buffer_pages.constprop.57+0x5a/0xe9 kernel: [<ffffffff8117f4f3>] ? read_tree_block+0x2d/0x45 kernel: [<ffffffff8116782a>] ? read_block_for_search.isra.34+0x22a/0x26b kernel: [<ffffffff811656c3>] ? btrfs_set_path_blocking+0x1e/0x4a kernel: [<ffffffff8116919b>] ? btrfs_search_slot+0x648/0x736 kernel: [<ffffffff81170559>] ? btrfs_lookup_extent_info+0xb7/0x2c7 kernel: [<ffffffff81170ee5>] ? walk_down_proc+0x9c/0x1ae kernel: [<ffffffff81171c9d>] ? walk_down_tree+0x40/0xa4 kernel: [<ffffffff8117375f>] ? btrfs_drop_snapshot+0x2da/0x664 kernel: [<ffffffff8104ff21>] ? finish_task_switch+0x126/0x167 kernel: [<ffffffff811850f8>] ? btrfs_clean_one_deleted_snapshot+0xa6/0xb0 kernel: [<ffffffff8117eaba>] ? cleaner_kthread+0x13e/0x17b kernel: [<ffffffff8117e97c>] ? btrfs_item_end+0x33/0x33 kernel: [<ffffffff8104d256>] ? kthread+0x95/0x9d kernel: [<ffffffff8104d1c1>] ? kthread_parkme+0x16/0x16 kernel: [<ffffffff814a7b5f>] ? ret_from_fork+0x3f/0x70 kernel: [<ffffffff8104d1c1>] ? kthread_parkme+0x16/0x16 As this affects a released kernel (4.4) we need a minimal fix for stable kernels. Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=108361Reported-by: NMartin Ziegler <ziegler@uni-freiburg.de> CC: stable@vger.kernel.org # 4.4 CC: Jiri Kosina <jkosina@suse.cz> Signed-off-by: NDavid Sterba <dsterba@suse.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Qu Wenruo 提交于
Parameter of trace_btrfs_work_queued() can be freed in its workqueue. So no one use use that pointer after queue_work(). Fix the user-after-free bug by move the trace line before queue_work(). Reported-by: NDave Jones <davej@codemonkey.org.uk> Signed-off-by: NQu Wenruo <quwenruo@cn.fujitsu.com> Reviewed-by: NDavid Sterba <dsterba@suse.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Filipe Manana 提交于
An fsync, using the fast path, can race with a concurrent lockless direct IO write and end up logging a file extent item that points to an extent that wasn't written to yet. This is because the fast fsync path collects ordered extents into a local list and then collects all the new extent maps to log file extent items based on them, while the direct IO write path creates the new extent map before it creates the corresponding ordered extent (and submitting the respective bio(s)). So fix this by making the direct IO write path create ordered extents before the extent maps and make the fast fsync path collect any new ordered extents after it collects the extent maps. Note that making the fsync handler call inode_dio_wait() (after acquiring the inode's i_mutex) would not work and lead to a deadlock when doing AIO, as through AIO we end up in a path where the fsync handler is called (through dio_aio_complete_work() -> dio_complete() -> vfs_fsync_range()) before the inode's dio counter is decremented (inode_dio_wait() waits for this counter to have a value of zero). Signed-off-by: NFilipe Manana <fdmanana@suse.com> Signed-off-by: NChris Mason <clm@fb.com>
-
- 25 1月, 2016 2 次提交
-
-
由 David Sterba 提交于
Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 David Sterba 提交于
Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
- 23 1月, 2016 13 次提交
-
-
由 Darrick J. Wong 提交于
If the program running dedupe receives a fatal signal during the dedupe loop, we should bail out to avoid tying up the system. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 Tetsuo Handa 提交于
There are many locations that do if (memory_was_allocated_by_vmalloc) vfree(ptr); else kfree(ptr); but kvfree() can handle both kmalloc()ed memory and vmalloc()ed memory using is_vmalloc_addr(). Unless callers have special reasons, we can replace this branch with kvfree(). Please check and reply if you found problems. Signed-off-by: NTetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Acked-by: NMichal Hocko <mhocko@suse.com> Acked-by: NJan Kara <jack@suse.com> Acked-by: NRussell King <rmk+kernel@arm.linux.org.uk> Reviewed-by: NAndreas Dilger <andreas.dilger@intel.com> Acked-by: N"Rafael J. Wysocki" <rjw@rjwysocki.net> Acked-by: NDavid Rientjes <rientjes@google.com> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Oleg Drokin <oleg.drokin@intel.com> Cc: Boris Petkov <bp@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ross Zwisler 提交于
Previously in DAX we assumed that calls to get_block() would set bh.b_bdev, and we would then use that value even in error cases for debugging. This caused a NULL pointer dereference in __dax_dbg() which was fixed by a previous commit, but that commit only changed the one place where we were hitting an error. Instead, update dax.c so that we always initialize bh.b_bdev as best we can based on the information that DAX has. get_block() may or may not update to a new value, but this at least lets us get something helpful from bh.b_bdev for error messages and not have to worry about whether it was set by get_block() or not. Signed-off-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Reported-by: NJan Kara <jack@suse.cz> Reviewed-by: NJan Kara <jack@suse.cz> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ross Zwisler 提交于
To properly support the new DAX fsync/msync infrastructure filesystems need to call dax_pfn_mkwrite() so that DAX can track when user pages are dirtied. Signed-off-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "J. Bruce Fields" <bfields@fieldses.org> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Dave Chinner <david@fromorbit.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jan Kara <jack@suse.com> Cc: Jeff Layton <jlayton@poochiereds.net> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Matthew Wilcox <matthew.r.wilcox@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ross Zwisler 提交于
To properly support the new DAX fsync/msync infrastructure filesystems need to call dax_pfn_mkwrite() so that DAX can track when user pages are dirtied. Signed-off-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "J. Bruce Fields" <bfields@fieldses.org> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Dave Chinner <david@fromorbit.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jan Kara <jack@suse.com> Cc: Jeff Layton <jlayton@poochiereds.net> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Matthew Wilcox <matthew.r.wilcox@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ross Zwisler 提交于
To properly support the new DAX fsync/msync infrastructure filesystems need to call dax_pfn_mkwrite() so that DAX can track when user pages are dirtied. Signed-off-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "J. Bruce Fields" <bfields@fieldses.org> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Dave Chinner <david@fromorbit.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jan Kara <jack@suse.com> Cc: Jeff Layton <jlayton@poochiereds.net> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Matthew Wilcox <matthew.r.wilcox@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ross Zwisler 提交于
To properly handle fsync/msync in an efficient way DAX needs to track dirty pages so it is able to flush them durably to media on demand. The tracking of dirty pages is done via the radix tree in struct address_space. This radix tree is already used by the page writeback infrastructure for tracking dirty pages associated with an open file, and it already has support for exceptional (non struct page*) entries. We build upon these features to add exceptional entries to the radix tree for DAX dirty PMD or PTE pages at fault time. [dan.j.williams@intel.com: fix dax_pmd_dbg build warning] Signed-off-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "J. Bruce Fields" <bfields@fieldses.org> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Dave Chinner <david@fromorbit.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jan Kara <jack@suse.com> Cc: Jeff Layton <jlayton@poochiereds.net> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Matthew Wilcox <matthew.r.wilcox@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: NDan Williams <dan.j.williams@intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ross Zwisler 提交于
Add support for tracking dirty DAX entries in the struct address_space radix tree. This tree is already used for dirty page writeback, and it already supports the use of exceptional (non struct page*) entries. In order to properly track dirty DAX pages we will insert new exceptional entries into the radix tree that represent dirty DAX PTE or PMD pages. These exceptional entries will also contain the writeback addresses for the PTE or PMD faults that we can use at fsync/msync time. There are currently two types of exceptional entries (shmem and shadow) that can be placed into the radix tree, and this adds a third. We rely on the fact that only one type of exceptional entry can be found in a given radix tree based on its usage. This happens for free with DAX vs shmem but we explicitly prevent shadow entries from being added to radix trees for DAX mappings. The only shadow entries that would be generated for DAX radix trees would be to track zero page mappings that were created for holes. These pages would receive minimal benefit from having shadow entries, and the choice to have only one type of exceptional entry in a given radix tree makes the logic simpler both in clear_exceptional_entry() and in the rest of DAX. Signed-off-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "J. Bruce Fields" <bfields@fieldses.org> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Dave Chinner <david@fromorbit.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jan Kara <jack@suse.com> Cc: Jeff Layton <jlayton@poochiereds.net> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Matthew Wilcox <matthew.r.wilcox@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ross Zwisler 提交于
When we get a DAX PMD fault for a write it is possible that there could be some number of 4k zero pages already present for the same range that were inserted to service reads from a hole. These 4k zero pages need to be unmapped from the VMAs and removed from the struct address_space radix tree before the real DAX PMD entry can be inserted. For PTE faults this same use case also exists and is handled by a combination of unmap_mapping_range() to unmap the VMAs and delete_from_page_cache() to remove the page from the address_space radix tree. For PMD faults we do have a call to unmap_mapping_range() (protected by a buffer_new() check), but nothing clears out the radix tree entry. The buffer_new() check is also incorrect as the current ext4 and XFS filesystem code will never return a buffer_head with BH_New set, even when allocating new blocks over a hole. Instead the filesystem will zero the blocks manually and return a buffer_head with only BH_Mapped set. Fix this situation by removing the buffer_new() check and adding a call to truncate_inode_pages_range() to clear out the radix tree entries before we insert the DAX PMD. Signed-off-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Reported-by: NDan Williams <dan.j.williams@intel.com> Tested-by: NDan Williams <dan.j.williams@intel.com> Reviewed-by: NJan Kara <jack@suse.cz> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "J. Bruce Fields" <bfields@fieldses.org> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Dave Chinner <david@fromorbit.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jeff Layton <jlayton@poochiereds.net> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Matthew Wilcox <matthew.r.wilcox@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ross Zwisler 提交于
In __dax_pmd_fault() we currently assume that get_block() will always set bh.b_bdev and we unconditionally dereference it in __dax_dbg(). This assumption isn't always true - when called for reads of holes ext4_dax_mmap_get_block() returns a buffer head where bh->b_bdev is never set. I hit this BUG while testing the DAX PMD fault path. Instead, initialize bh.b_bdev before passing bh into get_block(). It is possible that the filesystem's get_block() will update bh.b_bdev, and this is fine - we just want to initialize bh.b_bdev to something reasonable so that the calls to __dax_dbg() work and print something useful. Signed-off-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Reported-by: NDan Williams <dan.j.williams@intel.com> Cc: Jan Kara <jack@suse.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Al Viro 提交于
parallel to mutex_{lock,unlock,trylock,is_locked,lock_nested}, inode_foo(inode) being mutex_foo(&inode->i_mutex). Please, use those for access to ->i_mutex; over the coming cycle ->i_mutex will become rwsem, with ->lookup() done with it held only shared. Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 David Sterba 提交于
The requested bitmap size varies, observed numbers were < 4K up to 16K. Using vmalloc unconditionally would be too heavy, we'll try contiguous allocations first and fall back to vmalloc if there's no contig memory. Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 Trond Myklebust 提交于
We must not skip encoding the statistics, or the server will see an XDR encoding error. Signed-off-by: NTrond Myklebust <trond.myklebust@primarydata.com> Cc: stable@vger.kernel.org # 4.0+
-
- 22 1月, 2016 10 次提交
-
-
由 David Sterba 提交于
There's no reason to do GFP_NOFS in tests, it's not data-heavy and memory allocation failures would affect only developers or testers. Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 Tariq Saeed 提交于
NFS on a 2 node ocfs2 cluster each node exporting dir. The lock causing the hang is the global bit map inode lock. Node 1 is master, has the lock granted in PR mode; Node 2 is in the converting list (PR -> EX). There are no holders of the lock on the master node so it should downconvert to NL and grant EX to node 2 but that does not happen. BLOCKED + QUEUED in lock res are set and it is on osb blocked list. Threads are waiting in __ocfs2_cluster_lock on BLOCKED. One thread wants EX, rest want PR. So it is as though the downconvert thread needs to be kicked to complete the conv. The hang is caused by an EX req coming into __ocfs2_cluster_lock on the heels of a PR req after it sets BUSY (drops l_lock, releasing EX thread), forcing the incoming EX to wait on BUSY without doing anything. PR has called ocfs2_dlm_lock, which sets the node 1 lock from NL -> PR, queues ast. At this time, upconvert (PR ->EX) arrives from node 2, finds conflict with node 1 lock in PR, so the lock res is put on dlm thread's dirty listt. After ret from ocf2_dlm_lock, PR thread now waits behind EX on BUSY till awoken by ast. Now it is dlm_thread that serially runs dlm_shuffle_lists, ast, bast, in that order. dlm_shuffle_lists ques a bast on behalf of node 2 (which will be run by dlm_thread right after the ast). ast does its part, sets UPCONVERT_FINISHING, clears BUSY and wakes its waiters. Next, dlm_thread runs bast. It sets BLOCKED and kicks dc thread. dc thread runs ocfs2_unblock_lock, but since UPCONVERT_FINISHING set, skips doing anything and reques. Inside of __ocfs2_cluster_lock, since EX has been waiting on BUSY ahead of PR, it wakes up first, finds BLOCKED set and skips doing anything but clearing UPCONVERT_FINISHING (which was actually "meant" for the PR thread), and this time waits on BLOCKED. Next, the PR thread comes out of wait but since UPCONVERT_FINISHING is not set, it skips updating the l_ro_holders and goes straight to wait on BLOCKED. So there, we have a hang! Threads in __ocfs2_cluster_lock wait on BLOCKED, lock res in osb blocked list. Only when dc thread is awoken, it will run ocfs2_unblock_lock and things will unhang. One way to fix this is to wake the dc thread on the flag after clearing UPCONVERT_FINISHING Orabug: 20933419 Signed-off-by: NTariq Saeed <tariq.x.saeed@oracle.com> Signed-off-by: NSantosh Shilimkar <santosh.shilimkar@oracle.com> Reviewed-by: NWengang Wang <wen.gang.wang@oracle.com> Reviewed-by: NMark Fasheh <mfasheh@suse.de> Cc: Joel Becker <jlbec@evilplan.org> Cc: Junxiao Bi <junxiao.bi@oracle.com> Reviewed-by: NJoseph Qi <joseph.qi@huawei.com> Cc: Eric Ren <zren@suse.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Sudip Mukherjee 提交于
reiserfs_iget() returns either NULL or error code in ERR_PTR. And we were only checking for NULL, so in case of some other error we will try to dereference the ERR_PTR(-errno) thinking it to be a valid pointer. Signed-off-by: NSudip Mukherjee <sudip@vectorindia.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Kirill A. Shutemov 提交于
After THP refcounting rework we have only two possible return values from pmd_trans_huge_lock(): success and failure. Return-by-pointer for ptl doesn't make much sense in this case. Let's convert pmd_trans_huge_lock() to return ptl on success and NULL on failure. Signed-off-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Suggested-by: NLinus Torvalds <torvalds@linux-foundation.org> Cc: Minchan Kim <minchan@kernel.org> Acked-by: NMichal Hocko <mhocko@suse.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Al Viro 提交于
it's "bugger off if we got ERR_PTR", not the other way round... Signed-off-by: NBob Peterson <rpeterso@redhat.com> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 Anna Schumaker 提交于
I noticed that all the callers of this function pass cinfo->mds->list as an argument in addition to the cinfo structure itself. Let's get rid of the extra argument, since it doesn't seem to be adding anything. Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com> Signed-off-by: NTrond Myklebust <trond.myklebust@primarydata.com>
-
由 Trond Myklebust 提交于
When we hit 22 errors, we start to overflow the memory buffers allocated to the LAYOUTRETURN errors. The issue is that currently, RPC call reply ordering determines how successful we are in merging errors that refer to contiguous READ or WRITE requests. Fix is to use an insertion sort to help detect contiguity. Signed-off-by: NTrond Myklebust <trond.myklebust@primarydata.com>
-
由 Yan, Zheng 提交于
Cap message from MDS can update i_size. In that case, we don't hold i_mutex. So it's unsafe to directly access inode->i_size while holding i_mutex. Signed-off-by: NYan, Zheng <zyan@redhat.com>
-
由 Yan, Zheng 提交于
When receiving -EOLDSNAP from OSD, we need to re-send corresponding write request. Due to locking issue, we can send new request inside another OSD request's complete callback. So we use worker to re-send request for AIO write. Signed-off-by: NYan, Zheng <zyan@redhat.com>
-
由 Yan, Zheng 提交于
The basic idea of AIO support is simple, just call kiocb::ki_complete() in OSD request's complete callback. But there are several special cases. when IO span multiple objects, we need to wait until all OSD requests are complete, then call kiocb::ki_complete(). Error handling in this case is tricky too. For simplify, AIO both span multiple objects and extends i_size are not allowed. Another special case is check EOF for reading (other client can write to the file and extend i_size concurrently). For simplify, the direct-IO/AIO code path does do the check, fallback to normal syn read instead. Signed-off-by: NYan, Zheng <zyan@redhat.com>
-