1. 23 2月, 2016 3 次提交
  2. 18 2月, 2016 2 次提交
  3. 11 2月, 2016 2 次提交
  4. 04 2月, 2016 2 次提交
    • F
      Btrfs: fix page reading in extent_same ioctl leading to csum errors · 31314002
      Filipe Manana 提交于
      In the extent_same ioctl, we were grabbing the pages (locked) and
      attempting to read them without bothering about any concurrent IO
      against them. That is, we were not checking for any ongoing ordered
      extents nor waiting for them to complete, which leads to a race where
      the extent_same() code gets a checksum verification error when it
      reads the pages, producing a message like the following in dmesg
      and making the operation fail to user space with -ENOMEM:
      
      [18990.161265] BTRFS warning (device sdc): csum failed ino 259 off 495616 csum 685204116 expected csum 1515870868
      
      Fix this by using btrfs_readpage() for reading the pages instead of
      extent_read_full_page_nolock(), which waits for any concurrent ordered
      extents to complete and locks the io range. Also do better error handling
      and don't treat all failures as -ENOMEM, as that's clearly misleasing,
      becoming identical to the checks and operation of prepare_uptodate_page().
      
      The use of extent_read_full_page_nolock() was required before
      commit f4414602 ("btrfs: fix deadlock with extent-same and readpage"),
      as we had the range locked in an inode's io tree before attempting to
      read the pages.
      
      Fixes: f4414602 ("btrfs: fix deadlock with extent-same and readpage")
      Cc: stable@vger.kernel.org   # 4.2+
      Signed-off-by: NFilipe Manana <fdmanana@suse.com>
      31314002
    • F
      Btrfs: fix invalid page accesses in extent_same (dedup) ioctl · e0bd70c6
      Filipe Manana 提交于
      In the extent_same ioctl we are getting the pages for the source and
      target ranges and unlocking them immediately after, which is incorrect
      because later we attempt to map them (with kmap_atomic) and access their
      contents at btrfs_cmp_data(). When we do such access the pages might have
      been relocated or removed from memory, which leads to an invalid memory
      access. This issue is detected on a kernel with CONFIG_DEBUG_PAGEALLOC=y
      which produces a trace like the following:
      
      186736.677437] general protection fault: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC
      [186736.680382] Modules linked in: btrfs dm_flakey dm_mod ppdev xor raid6_pq sha256_generic hmac drbg ansi_cprng acpi_cpufreq evdev sg aesni_intel aes_x86_64
      parport_pc ablk_helper tpm_tis psmouse parport i2c_piix4 tpm cryptd i2c_core lrw processor button serio_raw pcspkr gf128mul glue_helper loop autofs4 ext4
      crc16 mbcache jbd2 sd_mod sr_mod cdrom ata_generic virtio_scsi ata_piix libata virtio_pci virtio_ring crc32c_intel scsi_mod e1000 virtio floppy [last
      unloaded: btrfs]
      [186736.681319] CPU: 13 PID: 10222 Comm: duperemove Tainted: G        W       4.4.0-rc6-btrfs-next-18+ #1
      [186736.681319] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS by qemu-project.org 04/01/2014
      [186736.681319] task: ffff880132600400 ti: ffff880362284000 task.ti: ffff880362284000
      [186736.681319] RIP: 0010:[<ffffffff81264d00>]  [<ffffffff81264d00>] memcmp+0xb/0x22
      [186736.681319] RSP: 0018:ffff880362287d70  EFLAGS: 00010287
      [186736.681319] RAX: 000002c002468acf RBX: 0000000012345678 RCX: 0000000000000000
      [186736.681319] RDX: 0000000000001000 RSI: 0005d129c5cf9000 RDI: 0005d129c5cf9000
      [186736.681319] RBP: ffff880362287d70 R08: 0000000000000000 R09: 0000000000001000
      [186736.681319] R10: ffff880000000000 R11: 0000000000000476 R12: 0000000000001000
      [186736.681319] R13: ffff8802f91d4c88 R14: ffff8801f2a77830 R15: ffff880352e83e40
      [186736.681319] FS:  00007f27b37fe700(0000) GS:ffff88043dda0000(0000) knlGS:0000000000000000
      [186736.681319] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
      [186736.681319] CR2: 00007f27a406a000 CR3: 0000000217421000 CR4: 00000000001406e0
      [186736.681319] Stack:
      [186736.681319]  ffff880362287ea0 ffffffffa048d0bd 000000000009f000 0000000000001000
      [186736.681319]  0100000000000000 ffff8801f2a77850 ffff8802f91d49b0 ffff880132600400
      [186736.681319]  00000000000004f8 ffff8801c1efbe41 0000000000000000 0000000000000038
      [186736.681319] Call Trace:
      [186736.681319]  [<ffffffffa048d0bd>] btrfs_ioctl+0x24cb/0x2731 [btrfs]
      [186736.681319]  [<ffffffff8108a8b0>] ? arch_local_irq_save+0x9/0xc
      [186736.681319]  [<ffffffff8118b3d4>] ? rcu_read_unlock+0x3e/0x5d
      [186736.681319]  [<ffffffff811822f8>] do_vfs_ioctl+0x42b/0x4ea
      [186736.681319]  [<ffffffff8118b4f3>] ? __fget_light+0x62/0x71
      [186736.681319]  [<ffffffff8118240e>] SyS_ioctl+0x57/0x79
      [186736.681319]  [<ffffffff814872d7>] entry_SYSCALL_64_fastpath+0x12/0x6f
      [186736.681319] Code: 0a 3c 6e 74 0d 3c 79 74 04 3c 59 75 0c c6 06 01 eb 03 c6 06 00 31 c0 eb 05 b8 ea ff ff ff 5d c3 55 31 c9 48 89 e5 48 39 d1 74 13 <0f> b6
      04 0f 44 0f b6 04 0e 48 ff c1 44 29 c0 74 ea eb 02 31 c0
      
      (gdb) list *(btrfs_ioctl+0x24cb)
      0x5e0e1 is in btrfs_ioctl (fs/btrfs/ioctl.c:2972).
      2967                    dst_addr = kmap_atomic(dst_page);
      2968
      2969                    flush_dcache_page(src_page);
      2970                    flush_dcache_page(dst_page);
      2971
      2972                    if (memcmp(addr, dst_addr, cmp_len))
      2973                            ret = BTRFS_SAME_DATA_DIFFERS;
      2974
      2975                    kunmap_atomic(addr);
      2976                    kunmap_atomic(dst_addr);
      
      So fix this by making sure we keep the pages locked and respect the same
      locking order as everywhere else: get and lock the pages first and then
      lock the range in the inode's io tree (like for example at
      __btrfs_buffered_write() and extent_readpages()). If an ordered extent
      is found after locking the range in the io tree, unlock the range,
      unlock the pages, wait for the ordered extent to complete and repeat the
      entire locking process until no overlapping ordered extents are found.
      
      Cc: stable@vger.kernel.org   # 4.2+
      Signed-off-by: NFilipe Manana <fdmanana@suse.com>
      e0bd70c6
  5. 02 2月, 2016 1 次提交
  6. 30 1月, 2016 1 次提交
  7. 23 1月, 2016 1 次提交
    • A
      wrappers for ->i_mutex access · 5955102c
      Al Viro 提交于
      parallel to mutex_{lock,unlock,trylock,is_locked,lock_nested},
      inode_foo(inode) being mutex_foo(&inode->i_mutex).
      
      Please, use those for access to ->i_mutex; over the coming cycle
      ->i_mutex will become rwsem, with ->lookup() done with it held
      only shared.
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      5955102c
  8. 22 1月, 2016 1 次提交
  9. 16 1月, 2016 1 次提交
    • C
      Btrfs: Initialize btrfs_root->highest_objectid when loading tree root and subvolume roots · f32e48e9
      Chandan Rajendra 提交于
      The following call trace is seen when btrfs/031 test is executed in a loop,
      
      [  158.661848] ------------[ cut here ]------------
      [  158.662634] WARNING: CPU: 2 PID: 890 at /home/chandan/repos/linux/fs/btrfs/ioctl.c:558 create_subvol+0x3d1/0x6ea()
      [  158.664102] BTRFS: Transaction aborted (error -2)
      [  158.664774] Modules linked in:
      [  158.665266] CPU: 2 PID: 890 Comm: btrfs Not tainted 4.4.0-rc6-g511711af #2
      [  158.666251] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011
      [  158.667392]  ffffffff81c0a6b0 ffff8806c7c4f8e8 ffffffff81431fc8 ffff8806c7c4f930
      [  158.668515]  ffff8806c7c4f920 ffffffff81051aa1 ffff880c85aff000 ffff8800bb44d000
      [  158.669647]  ffff8808863b5c98 0000000000000000 00000000fffffffe ffff8806c7c4f980
      [  158.670769] Call Trace:
      [  158.671153]  [<ffffffff81431fc8>] dump_stack+0x44/0x5c
      [  158.671884]  [<ffffffff81051aa1>] warn_slowpath_common+0x81/0xc0
      [  158.672769]  [<ffffffff81051b27>] warn_slowpath_fmt+0x47/0x50
      [  158.673620]  [<ffffffff813bc98d>] create_subvol+0x3d1/0x6ea
      [  158.674440]  [<ffffffff813777c9>] btrfs_mksubvol.isra.30+0x369/0x520
      [  158.675376]  [<ffffffff8108a4aa>] ? percpu_down_read+0x1a/0x50
      [  158.676235]  [<ffffffff81377a81>] btrfs_ioctl_snap_create_transid+0x101/0x180
      [  158.677268]  [<ffffffff81377b52>] btrfs_ioctl_snap_create+0x52/0x70
      [  158.678183]  [<ffffffff8137afb4>] btrfs_ioctl+0x474/0x2f90
      [  158.678975]  [<ffffffff81144b8e>] ? vma_merge+0xee/0x300
      [  158.679751]  [<ffffffff8115be31>] ? alloc_pages_vma+0x91/0x170
      [  158.680599]  [<ffffffff81123f62>] ? lru_cache_add_active_or_unevictable+0x22/0x70
      [  158.681686]  [<ffffffff813d99cf>] ? selinux_file_ioctl+0xff/0x1d0
      [  158.682581]  [<ffffffff8117b791>] do_vfs_ioctl+0x2c1/0x490
      [  158.683399]  [<ffffffff813d3cde>] ? security_file_ioctl+0x3e/0x60
      [  158.684297]  [<ffffffff8117b9d4>] SyS_ioctl+0x74/0x80
      [  158.685051]  [<ffffffff819b2bd7>] entry_SYSCALL_64_fastpath+0x12/0x6a
      [  158.685958] ---[ end trace 4b63312de5a2cb76 ]---
      [  158.686647] BTRFS: error (device loop0) in create_subvol:558: errno=-2 No such entry
      [  158.709508] BTRFS info (device loop0): forced readonly
      [  158.737113] BTRFS info (device loop0): disk space caching is enabled
      [  158.738096] BTRFS error (device loop0): Remounting read-write after error is not allowed
      [  158.851303] BTRFS error (device loop0): cleaner transaction attach returned -30
      
      This occurs because,
      
      Mount filesystem
      Create subvol with ID 257
      Unmount filesystem
      Mount filesystem
      Delete subvol with ID 257
        btrfs_drop_snapshot()
          Add root corresponding to subvol 257 into
          btrfs_transaction->dropped_roots list
      Create new subvol (i.e. create_subvol())
        257 is returned as the next free objectid
        btrfs_read_fs_root_no_name()
          Finds the btrfs_root instance corresponding to the old subvol with ID 257
          in btrfs_fs_info->fs_roots_radix.
          Returns error since btrfs_root_item->refs has the value of 0.
      
      To fix the issue the commit initializes tree root's and subvolume root's
      highest_objectid when loading the roots from disk.
      Signed-off-by: NChandan Rajendra <chandan@linux.vnet.ibm.com>
      Signed-off-by: NDavid Sterba <dsterba@suse.com>
      f32e48e9
  10. 07 1月, 2016 6 次提交
  11. 01 1月, 2016 1 次提交
  12. 08 12月, 2015 1 次提交
    • C
      vfs: pull btrfs clone API to vfs layer · 04b38d60
      Christoph Hellwig 提交于
      The btrfs clone ioctls are now adopted by other file systems, with NFS
      and CIFS already having support for them, and XFS being under active
      development.  To avoid growth of various slightly incompatible
      implementations, add one to the VFS.  Note that clones are different from
      file copies in several ways:
      
       - they are atomic vs other writers
       - they support whole file clones
       - they support 64-bit legth clones
       - they do not allow partial success (aka short writes)
       - clones are expected to be a fast metadata operation
      
      Because of that it would be rather cumbersome to try to piggyback them on
      top of the recent clone_file_range infrastructure.  The converse isn't
      true and the clone_file_range system call could try clone file range as
      a first attempt to copy, something that further patches will enable.
      
      Based on earlier work from Peng Tao.
      Signed-off-by: NChristoph Hellwig <hch@lst.de>
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      04b38d60
  13. 03 12月, 2015 2 次提交
  14. 02 12月, 2015 1 次提交
  15. 27 10月, 2015 1 次提交
    • D
      btrfs: check unsupported filters in balance arguments · 849ef928
      David Sterba 提交于
      We don't verify that all the balance filter arguments supplemented by
      the flags are actually known to the kernel. Thus we let it silently pass
      and do nothing.
      
      At the moment this means only the 'limit' filter, but we're going to add
      a few more soon so it's better to have that fixed. Also in older stable
      kernels so that it works with newer userspace tools.
      
      Cc: stable@vger.kernel.org # 3.16+
      Signed-off-by: NDavid Sterba <dsterba@suse.com>
      Signed-off-by: NChris Mason <clm@fb.com>
      849ef928
  16. 26 10月, 2015 1 次提交
    • F
      Btrfs: fix regression running delayed references when using qgroups · b06c4bf5
      Filipe Manana 提交于
      In the kernel 4.2 merge window we had a big changes to the implementation
      of delayed references and qgroups which made the no_quota field of delayed
      references not used anymore. More specifically the no_quota field is not
      used anymore as of:
      
        commit 0ed4792a ("btrfs: qgroup: Switch to new extent-oriented qgroup mechanism.")
      
      Leaving the no_quota field actually prevents delayed references from
      getting merged, which in turn cause the following BUG_ON(), at
      fs/btrfs/extent-tree.c, to be hit when qgroups are enabled:
      
        static int run_delayed_tree_ref(...)
        {
           (...)
           BUG_ON(node->ref_mod != 1);
           (...)
        }
      
      This happens on a scenario like the following:
      
        1) Ref1 bytenr X, action = BTRFS_ADD_DELAYED_REF, no_quota = 1, added.
      
        2) Ref2 bytenr X, action = BTRFS_DROP_DELAYED_REF, no_quota = 0, added.
           It's not merged with Ref1 because Ref1->no_quota != Ref2->no_quota.
      
        3) Ref3 bytenr X, action = BTRFS_ADD_DELAYED_REF, no_quota = 1, added.
           It's not merged with the reference at the tail of the list of refs
           for bytenr X because the reference at the tail, Ref2 is incompatible
           due to Ref2->no_quota != Ref3->no_quota.
      
        4) Ref4 bytenr X, action = BTRFS_DROP_DELAYED_REF, no_quota = 0, added.
           It's not merged with the reference at the tail of the list of refs
           for bytenr X because the reference at the tail, Ref3 is incompatible
           due to Ref3->no_quota != Ref4->no_quota.
      
        5) We run delayed references, trigger merging of delayed references,
           through __btrfs_run_delayed_refs() -> btrfs_merge_delayed_refs().
      
        6) Ref1 and Ref3 are merged as Ref1->no_quota = Ref3->no_quota and
           all other conditions are satisfied too. So Ref1 gets a ref_mod
           value of 2.
      
        7) Ref2 and Ref4 are merged as Ref2->no_quota = Ref4->no_quota and
           all other conditions are satisfied too. So Ref2 gets a ref_mod
           value of 2.
      
        8) Ref1 and Ref2 aren't merged, because they have different values
           for their no_quota field.
      
        9) Delayed reference Ref1 is picked for running (select_delayed_ref()
           always prefers references with an action == BTRFS_ADD_DELAYED_REF).
           So run_delayed_tree_ref() is called for Ref1 which triggers the
           BUG_ON because Ref1->red_mod != 1 (equals 2).
      
      So fix this by removing the no_quota field, as it's not used anymore as
      of commit 0ed4792a ("btrfs: qgroup: Switch to new extent-oriented
      qgroup mechanism.").
      
      The use of no_quota was also buggy in at least two places:
      
      1) At delayed-refs.c:btrfs_add_delayed_tree_ref() - we were setting
         no_quota to 0 instead of 1 when the following condition was true:
         is_fstree(ref_root) || !fs_info->quota_enabled
      
      2) At extent-tree.c:__btrfs_inc_extent_ref() - we were attempting to
         reset a node's no_quota when the condition "!is_fstree(root_objectid)
         || !root->fs_info->quota_enabled" was true but we did it only in
         an unused local stack variable, that is, we never reset the no_quota
         value in the node itself.
      
      This fixes the remainder of problems several people have been having when
      running delayed references, mostly while a balance is running in parallel,
      on a 4.2+ kernel.
      
      Very special thanks to Stéphane Lesimple for helping debugging this issue
      and testing this fix on his multi terabyte filesystem (which took more
      than one day to balance alone, plus fsck, etc).
      
      Also, this fixes deadlock issue when using the clone ioctl with qgroups
      enabled, as reported by Elias Probst in the mailing list. The deadlock
      happens because after calling btrfs_insert_empty_item we have our path
      holding a write lock on a leaf of the fs/subvol tree and then before
      releasing the path we called check_ref() which did backref walking, when
      qgroups are enabled, and tried to read lock the same leaf. The trace for
      this case is the following:
      
        INFO: task systemd-nspawn:6095 blocked for more than 120 seconds.
        (...)
        Call Trace:
          [<ffffffff86999201>] schedule+0x74/0x83
          [<ffffffff863ef64c>] btrfs_tree_read_lock+0xc0/0xea
          [<ffffffff86137ed7>] ? wait_woken+0x74/0x74
          [<ffffffff8639f0a7>] btrfs_search_old_slot+0x51a/0x810
          [<ffffffff863a129b>] btrfs_next_old_leaf+0xdf/0x3ce
          [<ffffffff86413a00>] ? ulist_add_merge+0x1b/0x127
          [<ffffffff86411688>] __resolve_indirect_refs+0x62a/0x667
          [<ffffffff863ef546>] ? btrfs_clear_lock_blocking_rw+0x78/0xbe
          [<ffffffff864122d3>] find_parent_nodes+0xaf3/0xfc6
          [<ffffffff86412838>] __btrfs_find_all_roots+0x92/0xf0
          [<ffffffff864128f2>] btrfs_find_all_roots+0x45/0x65
          [<ffffffff8639a75b>] ? btrfs_get_tree_mod_seq+0x2b/0x88
          [<ffffffff863e852e>] check_ref+0x64/0xc4
          [<ffffffff863e9e01>] btrfs_clone+0x66e/0xb5d
          [<ffffffff863ea77f>] btrfs_ioctl_clone+0x48f/0x5bb
          [<ffffffff86048a68>] ? native_sched_clock+0x28/0x77
          [<ffffffff863ed9b0>] btrfs_ioctl+0xabc/0x25cb
        (...)
      
      The problem goes away by eleminating check_ref(), which no longer is
      needed as its purpose was to get a value for the no_quota field of
      a delayed reference (this patch removes the no_quota field as mentioned
      earlier).
      Reported-by: NStéphane Lesimple <stephane_btrfs@lesimple.fr>
      Tested-by: NStéphane Lesimple <stephane_btrfs@lesimple.fr>
      Reported-by: NElias Probst <mail@eliasprobst.eu>
      Reported-by: NPeter Becker <floyd.net@gmail.com>
      Reported-by: NMalte Schröder <malte@tnxip.de>
      Reported-by: NDerek Dongray <derek@valedon.co.uk>
      Reported-by: NErkki Seppala <flux-btrfs@inside.org>
      Cc: stable@vger.kernel.org  # 4.2+
      Signed-off-by: NFilipe Manana <fdmanana@suse.com>
      Reviewed-by: NQu Wenruo <quwenruo@cn.fujitsu.com>
      b06c4bf5
  17. 22 10月, 2015 4 次提交
  18. 14 10月, 2015 2 次提交
    • F
      Btrfs: fix file corruption and data loss after cloning inline extents · 8039d87d
      Filipe Manana 提交于
      Currently the clone ioctl allows to clone an inline extent from one file
      to another that already has other (non-inlined) extents. This is a problem
      because btrfs is not designed to deal with files having inline and regular
      extents, if a file has an inline extent then it must be the only extent
      in the file and must start at file offset 0. Having a file with an inline
      extent followed by regular extents results in EIO errors when doing reads
      or writes against the first 4K of the file.
      
      Also, the clone ioctl allows one to lose data if the source file consists
      of a single inline extent, with a size of N bytes, and the destination
      file consists of a single inline extent with a size of M bytes, where we
      have M > N. In this case the clone operation removes the inline extent
      from the destination file and then copies the inline extent from the
      source file into the destination file - we lose the M - N bytes from the
      destination file, a read operation will get the value 0x00 for any bytes
      in the the range [N, M] (the destination inode's i_size remained as M,
      that's why we can read past N bytes).
      
      So fix this by not allowing such destructive operations to happen and
      return errno EOPNOTSUPP to user space.
      
      Currently the fstest btrfs/035 tests the data loss case but it totally
      ignores this - i.e. expects the operation to succeed and does not check
      the we got data loss.
      
      The following test case for fstests exercises all these cases that result
      in file corruption and data loss:
      
        seq=`basename $0`
        seqres=$RESULT_DIR/$seq
        echo "QA output created by $seq"
        tmp=/tmp/$$
        status=1	# failure is the default!
        trap "_cleanup; exit \$status" 0 1 2 3 15
      
        _cleanup()
        {
            rm -f $tmp.*
        }
      
        # get standard environment, filters and checks
        . ./common/rc
        . ./common/filter
      
        # real QA test starts here
        _need_to_be_root
        _supported_fs btrfs
        _supported_os Linux
        _require_scratch
        _require_cloner
        _require_btrfs_fs_feature "no_holes"
        _require_btrfs_mkfs_feature "no-holes"
      
        rm -f $seqres.full
      
        test_cloning_inline_extents()
        {
            local mkfs_opts=$1
            local mount_opts=$2
      
            _scratch_mkfs $mkfs_opts >>$seqres.full 2>&1
            _scratch_mount $mount_opts
      
            # File bar, the source for all the following clone operations, consists
            # of a single inline extent (50 bytes).
            $XFS_IO_PROG -f -c "pwrite -S 0xbb 0 50" $SCRATCH_MNT/bar \
                | _filter_xfs_io
      
            # Test cloning into a file with an extent (non-inlined) where the
            # destination offset overlaps that extent. It should not be possible to
            # clone the inline extent from file bar into this file.
            $XFS_IO_PROG -f -c "pwrite -S 0xaa 0K 16K" $SCRATCH_MNT/foo \
                | _filter_xfs_io
            $CLONER_PROG -s 0 -d 0 -l 0 $SCRATCH_MNT/bar $SCRATCH_MNT/foo
      
            # Doing IO against any range in the first 4K of the file should work.
            # Due to a past clone ioctl bug which allowed cloning the inline extent,
            # these operations resulted in EIO errors.
            echo "File foo data after clone operation:"
            # All bytes should have the value 0xaa (clone operation failed and did
            # not modify our file).
            od -t x1 $SCRATCH_MNT/foo
            $XFS_IO_PROG -c "pwrite -S 0xcc 0 100" $SCRATCH_MNT/foo | _filter_xfs_io
      
            # Test cloning the inline extent against a file which has a hole in its
            # first 4K followed by a non-inlined extent. It should not be possible
            # as well to clone the inline extent from file bar into this file.
            $XFS_IO_PROG -f -c "pwrite -S 0xdd 4K 12K" $SCRATCH_MNT/foo2 \
                | _filter_xfs_io
            $CLONER_PROG -s 0 -d 0 -l 0 $SCRATCH_MNT/bar $SCRATCH_MNT/foo2
      
            # Doing IO against any range in the first 4K of the file should work.
            # Due to a past clone ioctl bug which allowed cloning the inline extent,
            # these operations resulted in EIO errors.
            echo "File foo2 data after clone operation:"
            # All bytes should have the value 0x00 (clone operation failed and did
            # not modify our file).
            od -t x1 $SCRATCH_MNT/foo2
            $XFS_IO_PROG -c "pwrite -S 0xee 0 90" $SCRATCH_MNT/foo2 | _filter_xfs_io
      
            # Test cloning the inline extent against a file which has a size of zero
            # but has a prealloc extent. It should not be possible as well to clone
            # the inline extent from file bar into this file.
            $XFS_IO_PROG -f -c "falloc -k 0 1M" $SCRATCH_MNT/foo3 | _filter_xfs_io
            $CLONER_PROG -s 0 -d 0 -l 0 $SCRATCH_MNT/bar $SCRATCH_MNT/foo3
      
            # Doing IO against any range in the first 4K of the file should work.
            # Due to a past clone ioctl bug which allowed cloning the inline extent,
            # these operations resulted in EIO errors.
            echo "First 50 bytes of foo3 after clone operation:"
            # Should not be able to read any bytes, file has 0 bytes i_size (the
            # clone operation failed and did not modify our file).
            od -t x1 $SCRATCH_MNT/foo3
            $XFS_IO_PROG -c "pwrite -S 0xff 0 90" $SCRATCH_MNT/foo3 | _filter_xfs_io
      
            # Test cloning the inline extent against a file which consists of a
            # single inline extent that has a size not greater than the size of
            # bar's inline extent (40 < 50).
            # It should be possible to do the extent cloning from bar to this file.
            $XFS_IO_PROG -f -c "pwrite -S 0x01 0 40" $SCRATCH_MNT/foo4 \
                | _filter_xfs_io
            $CLONER_PROG -s 0 -d 0 -l 0 $SCRATCH_MNT/bar $SCRATCH_MNT/foo4
      
            # Doing IO against any range in the first 4K of the file should work.
            echo "File foo4 data after clone operation:"
            # Must match file bar's content.
            od -t x1 $SCRATCH_MNT/foo4
            $XFS_IO_PROG -c "pwrite -S 0x02 0 90" $SCRATCH_MNT/foo4 | _filter_xfs_io
      
            # Test cloning the inline extent against a file which consists of a
            # single inline extent that has a size greater than the size of bar's
            # inline extent (60 > 50).
            # It should not be possible to clone the inline extent from file bar
            # into this file.
            $XFS_IO_PROG -f -c "pwrite -S 0x03 0 60" $SCRATCH_MNT/foo5 \
                | _filter_xfs_io
            $CLONER_PROG -s 0 -d 0 -l 0 $SCRATCH_MNT/bar $SCRATCH_MNT/foo5
      
            # Reading the file should not fail.
            echo "File foo5 data after clone operation:"
            # Must have a size of 60 bytes, with all bytes having a value of 0x03
            # (the clone operation failed and did not modify our file).
            od -t x1 $SCRATCH_MNT/foo5
      
            # Test cloning the inline extent against a file which has no extents but
            # has a size greater than bar's inline extent (16K > 50).
            # It should not be possible to clone the inline extent from file bar
            # into this file.
            $XFS_IO_PROG -f -c "truncate 16K" $SCRATCH_MNT/foo6 | _filter_xfs_io
            $CLONER_PROG -s 0 -d 0 -l 0 $SCRATCH_MNT/bar $SCRATCH_MNT/foo6
      
            # Reading the file should not fail.
            echo "File foo6 data after clone operation:"
            # Must have a size of 16K, with all bytes having a value of 0x00 (the
            # clone operation failed and did not modify our file).
            od -t x1 $SCRATCH_MNT/foo6
      
            # Test cloning the inline extent against a file which has no extents but
            # has a size not greater than bar's inline extent (30 < 50).
            # It should be possible to clone the inline extent from file bar into
            # this file.
            $XFS_IO_PROG -f -c "truncate 30" $SCRATCH_MNT/foo7 | _filter_xfs_io
            $CLONER_PROG -s 0 -d 0 -l 0 $SCRATCH_MNT/bar $SCRATCH_MNT/foo7
      
            # Reading the file should not fail.
            echo "File foo7 data after clone operation:"
            # Must have a size of 50 bytes, with all bytes having a value of 0xbb.
            od -t x1 $SCRATCH_MNT/foo7
      
            # Test cloning the inline extent against a file which has a size not
            # greater than the size of bar's inline extent (20 < 50) but has
            # a prealloc extent that goes beyond the file's size. It should not be
            # possible to clone the inline extent from bar into this file.
            $XFS_IO_PROG -f -c "falloc -k 0 1M" \
                            -c "pwrite -S 0x88 0 20" \
                            $SCRATCH_MNT/foo8 | _filter_xfs_io
            $CLONER_PROG -s 0 -d 0 -l 0 $SCRATCH_MNT/bar $SCRATCH_MNT/foo8
      
            echo "File foo8 data after clone operation:"
            # Must have a size of 20 bytes, with all bytes having a value of 0x88
            # (the clone operation did not modify our file).
            od -t x1 $SCRATCH_MNT/foo8
      
            _scratch_unmount
        }
      
        echo -e "\nTesting without compression and without the no-holes feature...\n"
        test_cloning_inline_extents
      
        echo -e "\nTesting with compression and without the no-holes feature...\n"
        test_cloning_inline_extents "" "-o compress"
      
        echo -e "\nTesting without compression and with the no-holes feature...\n"
        test_cloning_inline_extents "-O no-holes" ""
      
        echo -e "\nTesting with compression and with the no-holes feature...\n"
        test_cloning_inline_extents "-O no-holes" "-o compress"
      
        status=0
        exit
      
      Cc: stable@vger.kernel.org
      Signed-off-by: NFilipe Manana <fdmanana@suse.com>
      8039d87d
    • D
      btrfs: check unsupported filters in balance arguments · 8eb93459
      David Sterba 提交于
      We don't verify that all the balance filter arguments supplemented by
      the flags are actually known to the kernel. Thus we let it silently pass
      and do nothing.
      
      At the moment this means only the 'limit' filter, but we're going to add
      a few more soon so it's better to have that fixed. Also in older stable
      kernels so that it works with newer userspace tools.
      
      Cc: stable@vger.kernel.org # 3.16+
      Signed-off-by: NDavid Sterba <dsterba@suse.com>
      Signed-off-by: NChris Mason <clm@fb.com>
      8eb93459
  19. 08 10月, 2015 2 次提交
  20. 29 9月, 2015 1 次提交
  21. 09 8月, 2015 3 次提交
    • M
      btrfs: fix clone / extent-same deadlocks · 293a8489
      Mark Fasheh 提交于
      Clone and extent same lock their source and target inodes in opposite order.
      In addition to this, the range locking in clone doesn't take ordering into
      account. Fix this by having clone use the same locking helpers as
      btrfs-extent-same.
      
      In addition, I do a small cleanup of the locking helpers, removing a case
      (both inodes being the same) which was poorly accounted for and never
      actually used by the callers.
      Signed-off-by: NMark Fasheh <mfasheh@suse.de>
      Reviewed-by: NDavid Sterba <dsterba@suse.cz>
      Signed-off-by: NChris Mason <clm@fb.com>
      293a8489
    • L
      Btrfs: fix defrag to merge tail file extent · 4a3560c4
      Liu Bo 提交于
      The file layout is
      
      [extent 1]...[extent n][4k extent][HOLE][extent x]
      
      extent 1~n and 4k extent can be merged during defrag, and the whole
      defrag bytes is larger than our defrag thresh(256k), 4k extent as a
      tail is left unmerged since we check if its next extent can be merged
      (the next one is a hole, so the check will fail), the layout thus can
      be
      
      [new extent][4k extent][HOLE][extent x]
       (1~n)
      
      To fix it, beside looking at the next one, this also looks at the
      previous one by checking @defrag_end, which is set to 0 when we
      decide to stop merging contiguous extents, otherwise, we can merge
      the previous one with our extent.
      
      Also, this makes btrfs behave consistent with how xfs and ext4 do.
      Signed-off-by: NLiu Bo <bo.li.liu@oracle.com>
      Signed-off-by: NChris Mason <clm@fb.com>
      4a3560c4
    • N
      btrfs: fix search key advancing condition · dd81d459
      Naohiro Aota 提交于
      The search key advancing condition used in copy_to_sk() is loose. It can
      advance the key even if it reaches sk->max_*: e.g. when the max key = (512,
      1024, -1) and the current key = (512, 1025, 10), it increments the
      offset by 1, continues hopeless search from (512, 1025, 11). This issue
      make ioctl() to take unexpectedly long time scanning all the leaf a blocks
      one by one.
      
      This commit fix the problem using standard way of key comparison:
      btrfs_comp_cpu_keys()
      Signed-off-by: NNaohiro Aota <naota@elisp.net>
      Reviewed-by: NFilipe Manana <fdmanana@suse.com>
      Signed-off-by: NChris Mason <clm@fb.com>
      dd81d459
  22. 14 7月, 2015 1 次提交
    • F
      Btrfs: fix file corruption after cloning inline extents · ed958762
      Filipe Manana 提交于
      Using the clone ioctl (or extent_same ioctl, which calls the same extent
      cloning function as well) we end up allowing copy an inline extent from
      the source file into a non-zero offset of the destination file. This is
      something not expected and that the btrfs code is not prepared to deal
      with - all inline extents must be at a file offset equals to 0.
      
      For example, the following excerpt of a test case for fstests triggers
      a crash/BUG_ON() on a write operation after an inline extent is cloned
      into a non-zero offset:
      
        _scratch_mkfs >>$seqres.full 2>&1
        _scratch_mount
      
        # Create our test files. File foo has the same 2K of data at offset 4K
        # as file bar has at its offset 0.
        $XFS_IO_PROG -f -s -c "pwrite -S 0xaa 0 4K" \
            -c "pwrite -S 0xbb 4k 2K" \
            -c "pwrite -S 0xcc 8K 4K" \
            $SCRATCH_MNT/foo | _filter_xfs_io
      
        # File bar consists of a single inline extent (2K size).
        $XFS_IO_PROG -f -s -c "pwrite -S 0xbb 0 2K" \
           $SCRATCH_MNT/bar | _filter_xfs_io
      
        # Now call the clone ioctl to clone the extent of file bar into file
        # foo at its offset 4K. This made file foo have an inline extent at
        # offset 4K, something which the btrfs code can not deal with in future
        # IO operations because all inline extents are supposed to start at an
        # offset of 0, resulting in all sorts of chaos.
        # So here we validate that clone ioctl returns an EOPNOTSUPP, which is
        # what it returns for other cases dealing with inlined extents.
        $CLONER_PROG -s 0 -d $((4 * 1024)) -l $((2 * 1024)) \
            $SCRATCH_MNT/bar $SCRATCH_MNT/foo
      
        # Because of the inline extent at offset 4K, the following write made
        # the kernel crash with a BUG_ON().
        $XFS_IO_PROG -c "pwrite -S 0xdd 6K 2K" $SCRATCH_MNT/foo | _filter_xfs_io
      
        status=0
        exit
      
      The stack trace of the BUG_ON() triggered by the last write is:
      
        [152154.035903] ------------[ cut here ]------------
        [152154.036424] kernel BUG at mm/page-writeback.c:2286!
        [152154.036424] invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC
        [152154.036424] Modules linked in: btrfs dm_flakey dm_mod crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop fuse parport_pc acpi_cpu$
        [152154.036424] CPU: 2 PID: 17873 Comm: xfs_io Tainted: G        W       4.1.0-rc6-btrfs-next-11+ #2
        [152154.036424] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.8.1-0-g4adadbd-20150316_085822-nilsson.home.kraxel.org 04/01/2014
        [152154.036424] task: ffff880429f70990 ti: ffff880429efc000 task.ti: ffff880429efc000
        [152154.036424] RIP: 0010:[<ffffffff8111a9d5>]  [<ffffffff8111a9d5>] clear_page_dirty_for_io+0x1e/0x90
        [152154.036424] RSP: 0018:ffff880429effc68  EFLAGS: 00010246
        [152154.036424] RAX: 0200000000000806 RBX: ffffea0006a6d8f0 RCX: 0000000000000001
        [152154.036424] RDX: 0000000000000000 RSI: ffffffff81155d1b RDI: ffffea0006a6d8f0
        [152154.036424] RBP: ffff880429effc78 R08: ffff8801ce389fe0 R09: 0000000000000001
        [152154.036424] R10: 0000000000002000 R11: ffffffffffffffff R12: ffff8800200dce68
        [152154.036424] R13: 0000000000000000 R14: ffff8800200dcc88 R15: ffff8803d5736d80
        [152154.036424] FS:  00007fbf119f6700(0000) GS:ffff88043d280000(0000) knlGS:0000000000000000
        [152154.036424] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
        [152154.036424] CR2: 0000000001bdc000 CR3: 00000003aa555000 CR4: 00000000000006e0
        [152154.036424] Stack:
        [152154.036424]  ffff8803d5736d80 0000000000000001 ffff880429effcd8 ffffffffa04e97c1
        [152154.036424]  ffff880429effd68 ffff880429effd60 0000000000000001 ffff8800200dc9c8
        [152154.036424]  0000000000000001 ffff8800200dcc88 0000000000000000 0000000000001000
        [152154.036424] Call Trace:
        [152154.036424]  [<ffffffffa04e97c1>] lock_and_cleanup_extent_if_need+0x147/0x18d [btrfs]
        [152154.036424]  [<ffffffffa04ea82c>] __btrfs_buffered_write+0x245/0x4c8 [btrfs]
        [152154.036424]  [<ffffffffa04ed14b>] ? btrfs_file_write_iter+0x150/0x3e0 [btrfs]
        [152154.036424]  [<ffffffffa04ed15a>] ? btrfs_file_write_iter+0x15f/0x3e0 [btrfs]
        [152154.036424]  [<ffffffffa04ed2c7>] btrfs_file_write_iter+0x2cc/0x3e0 [btrfs]
        [152154.036424]  [<ffffffff81165a4a>] __vfs_write+0x7c/0xa5
        [152154.036424]  [<ffffffff81165f89>] vfs_write+0xa0/0xe4
        [152154.036424]  [<ffffffff81166855>] SyS_pwrite64+0x64/0x82
        [152154.036424]  [<ffffffff81465197>] system_call_fastpath+0x12/0x6f
        [152154.036424] Code: 48 89 c7 e8 0f ff ff ff 5b 41 5c 5d c3 0f 1f 44 00 00 55 48 89 e5 41 54 53 48 89 fb e8 ae ef 00 00 49 89 c4 48 8b 03 a8 01 75 02 <0f> 0b 4d 85 e4 74 59 49 8b 3c 2$
        [152154.036424] RIP  [<ffffffff8111a9d5>] clear_page_dirty_for_io+0x1e/0x90
        [152154.036424]  RSP <ffff880429effc68>
        [152154.242621] ---[ end trace e3d3376b23a57041 ]---
      
      Fix this by returning the error EOPNOTSUPP if an attempt to copy an
      inline extent into a non-zero offset happens, just like what is done for
      other scenarios that would require copying/splitting inline extents,
      which were introduced by the following commits:
      
         00fdf13a ("Btrfs: fix a crash of clone with inline extents's split")
         3f9e3df8 ("btrfs: replace error code from btrfs_drop_extents")
      
      Cc: stable@vger.kernel.org
      Signed-off-by: NFilipe Manana <fdmanana@suse.com>
      ed958762