1. 12 11月, 2016 2 次提交
    • M
      arm64: split thread_info from task stack · c02433dd
      Mark Rutland 提交于
      This patch moves arm64's struct thread_info from the task stack into
      task_struct. This protects thread_info from corruption in the case of
      stack overflows, and makes its address harder to determine if stack
      addresses are leaked, making a number of attacks more difficult. Precise
      detection and handling of overflow is left for subsequent patches.
      
      Largely, this involves changing code to store the task_struct in sp_el0,
      and acquire the thread_info from the task struct. Core code now
      implements current_thread_info(), and as noted in <linux/sched.h> this
      relies on offsetof(task_struct, thread_info) == 0, enforced by core
      code.
      
      This change means that the 'tsk' register used in entry.S now points to
      a task_struct, rather than a thread_info as it used to. To make this
      clear, the TI_* field offsets are renamed to TSK_TI_*, with asm-offsets
      appropriately updated to account for the structural change.
      
      Userspace clobbers sp_el0, and we can no longer restore this from the
      stack. Instead, the current task is cached in a per-cpu variable that we
      can safely access from early assembly as interrupts are disabled (and we
      are thus not preemptible).
      
      Both secondary entry and idle are updated to stash the sp and task
      pointer separately.
      Signed-off-by: NMark Rutland <mark.rutland@arm.com>
      Tested-by: NLaura Abbott <labbott@redhat.com>
      Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
      Cc: Andy Lutomirski <luto@kernel.org>
      Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
      Cc: James Morse <james.morse@arm.com>
      Cc: Kees Cook <keescook@chromium.org>
      Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
      Cc: Will Deacon <will.deacon@arm.com>
      Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
      c02433dd
    • M
      arm64: make cpu number a percpu variable · 57c82954
      Mark Rutland 提交于
      In the absence of CONFIG_THREAD_INFO_IN_TASK, core code maintains
      thread_info::cpu, and low-level architecture code can access this to
      build raw_smp_processor_id(). With CONFIG_THREAD_INFO_IN_TASK, core code
      maintains task_struct::cpu, which for reasons of hte header soup is not
      accessible to low-level arch code.
      
      Instead, we can maintain a percpu variable containing the cpu number.
      
      For both the old and new implementation of raw_smp_processor_id(), we
      read a syreg into a GPR, add an offset, and load the result. As the
      offset is now larger, it may not be folded into the load, but otherwise
      the assembly shouldn't change much.
      Signed-off-by: NMark Rutland <mark.rutland@arm.com>
      Tested-by: NLaura Abbott <labbott@redhat.com>
      Cc: James Morse <james.morse@arm.com>
      Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
      Cc: Will Deacon <will.deacon@arm.com>
      Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
      57c82954
  2. 27 6月, 2016 1 次提交
  3. 22 6月, 2016 1 次提交
  4. 16 4月, 2016 1 次提交
    • S
      arm64: Add cpu_panic_kernel helper · 17eebd1a
      Suzuki K Poulose 提交于
      During the activation of a secondary CPU, we could report serious
      configuration issues and hence request to crash the kernel. We do
      this for CPU ASID bit check now. We will need it also for handling
      mismatched exception levels for the CPUs with VHE. Hence, add a
      helper to do the same for reusability.
      
      Cc: Mark Rutland <mark.rutland@arm.com>
      Cc: Will Deacon <will.deacon@arm.com>
      Cc: Catalin Marinas <catalin.marinas@arm.com>
      Cc: Marc Zyngier <marc.zyngier@arm.com>
      Signed-off-by: NSuzuki K Poulose <suzuki.poulose@arm.com>
      Signed-off-by: NWill Deacon <will.deacon@arm.com>
      17eebd1a
  5. 25 2月, 2016 3 次提交
    • S
      arm64: Handle early CPU boot failures · bb905274
      Suzuki K Poulose 提交于
      A secondary CPU could fail to come online due to insufficient
      capabilities and could simply die or loop in the kernel.
      e.g, a CPU with no support for the selected kernel PAGE_SIZE
      loops in kernel with MMU turned off.
      or a hotplugged CPU which doesn't have one of the advertised
      system capability will die during the activation.
      
      There is no way to synchronise the status of the failing CPU
      back to the master. This patch solves the issue by adding a
      field to the secondary_data which can be updated by the failing
      CPU. If the secondary CPU fails even before turning the MMU on,
      it updates the status in a special variable reserved in the head.txt
      section to make sure that the update can be cache invalidated safely
      without possible sharing of cache write back granule.
      
      Here are the possible states :
      
       -1. CPU_MMU_OFF - Initial value set by the master CPU, this value
      indicates that the CPU could not turn the MMU on, hence the status
      could not be reliably updated in the secondary_data. Instead, the
      CPU has updated the status @ __early_cpu_boot_status.
      
       0. CPU_BOOT_SUCCESS - CPU has booted successfully.
      
       1. CPU_KILL_ME - CPU has invoked cpu_ops->die, indicating the
      master CPU to synchronise by issuing a cpu_ops->cpu_kill.
      
       2. CPU_STUCK_IN_KERNEL - CPU couldn't invoke die(), instead is
      looping in the kernel. This information could be used by say,
      kexec to check if it is really safe to do a kexec reboot.
      
       3. CPU_PANIC_KERNEL - CPU detected some serious issues which
      requires kernel to crash immediately. The secondary CPU cannot
      call panic() until it has initialised the GIC. This flag can
      be used to instruct the master to do so.
      
      Cc: Mark Rutland <mark.rutland@arm.com>
      Acked-by: NWill Deacon <will.deacon@arm.com>
      Signed-off-by: NSuzuki K Poulose <suzuki.poulose@arm.com>
      [catalin.marinas@arm.com: conflict resolution]
      [catalin.marinas@arm.com: converted "status" from int to long]
      [catalin.marinas@arm.com: updated update_early_cpu_boot_status to use str_l]
      Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
      bb905274
    • S
      arm64: Move cpu_die_early to smp.c · fce6361f
      Suzuki K Poulose 提交于
      This patch moves cpu_die_early to smp.c, where it fits better.
      No functional changes, except for adding the necessary checks
      for CONFIG_HOTPLUG_CPU.
      
      Cc: Mark Rutland <mark.rutland@arm.com>
      Acked-by: NWill Deacon <will.deacon@arm.com>
      Signed-off-by: NSuzuki K Poulose <suzuki.poulose@arm.com>
      Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
      fce6361f
    • S
      arm64: Add a helper for parking CPUs in a loop · c4bc34d2
      Suzuki K Poulose 提交于
      Adds a routine which can be used to park CPUs (spinning in kernel)
      when they can't be killed.
      
      Cc: Mark Rutland <mark.rutland@arm.com>
      Acked-by: NWill Deacon <will.deacon@arm.com>
      Signed-off-by: NSuzuki K Poulose <suzuki.poulose@arm.com>
      Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
      c4bc34d2
  6. 16 2月, 2016 1 次提交
    • L
      arm64: kernel: implement ACPI parking protocol · 5e89c55e
      Lorenzo Pieralisi 提交于
      The SBBR and ACPI specifications allow ACPI based systems that do not
      implement PSCI (eg systems with no EL3) to boot through the ACPI parking
      protocol specification[1].
      
      This patch implements the ACPI parking protocol CPU operations, and adds
      code that eases parsing the parking protocol data structures to the
      ARM64 SMP initializion carried out at the same time as cpus enumeration.
      
      To wake-up the CPUs from the parked state, this patch implements a
      wakeup IPI for ARM64 (ie arch_send_wakeup_ipi_mask()) that mirrors the
      ARM one, so that a specific IPI is sent for wake-up purpose in order
      to distinguish it from other IPI sources.
      
      Given the current ACPI MADT parsing API, the patch implements a glue
      layer that helps passing MADT GICC data structure from SMP initialization
      code to the parking protocol implementation somewhat overriding the CPU
      operations interfaces. This to avoid creating a completely trasparent
      DT/ACPI CPU operations layer that would require creating opaque
      structure handling for CPUs data (DT represents CPU through DT nodes, ACPI
      through static MADT table entries), which seems overkill given that ACPI
      on ARM64 mandates only two booting protocols (PSCI and parking protocol),
      so there is no need for further protocol additions.
      
      Based on the original work by Mark Salter <msalter@redhat.com>
      
      [1] https://acpica.org/sites/acpica/files/MP%20Startup%20for%20ARM%20platforms.docxSigned-off-by: NLorenzo Pieralisi <lorenzo.pieralisi@arm.com>
      Tested-by: NLoc Ho <lho@apm.com>
      Cc: Will Deacon <will.deacon@arm.com>
      Cc: Hanjun Guo <hanjun.guo@linaro.org>
      Cc: Sudeep Holla <sudeep.holla@arm.com>
      Cc: Mark Rutland <mark.rutland@arm.com>
      Cc: Mark Salter <msalter@redhat.com>
      Cc: Al Stone <ahs3@redhat.com>
      [catalin.marinas@arm.com: Added WARN_ONCE(!acpi_parking_protocol_valid() on the IPI]
      Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
      5e89c55e
  7. 27 7月, 2015 1 次提交
  8. 19 5月, 2015 1 次提交
  9. 25 3月, 2015 1 次提交
  10. 14 9月, 2014 1 次提交
  11. 25 10月, 2013 3 次提交
    • M
      arm64: add CPU_HOTPLUG infrastructure · 9327e2c6
      Mark Rutland 提交于
      This patch adds the basic infrastructure necessary to support
      CPU_HOTPLUG on arm64, based on the arm implementation. Actual hotplug
      support will depend on an implementation's cpu_operations (e.g. PSCI).
      Signed-off-by: NMark Rutland <mark.rutland@arm.com>
      Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
      9327e2c6
    • M
      arm64: factor out spin-table boot method · 652af899
      Mark Rutland 提交于
      The arm64 kernel has an internal holding pen, which is necessary for
      some systems where we can't bring CPUs online individually and must hold
      multiple CPUs in a safe area until the kernel is able to handle them.
      The current SMP infrastructure for arm64 is closely coupled to this
      holding pen, and alternative boot methods must launch CPUs into the pen,
      where they sit before they are launched into the kernel proper.
      
      With PSCI (and possibly other future boot methods), we can bring CPUs
      online individually, and need not perform the secondary_holding_pen
      dance. Instead, this patch factors the holding pen management code out
      to the spin-table boot method code, as it is the only boot method
      requiring the pen.
      
      A new entry point for secondaries, secondary_entry is added for other
      boot methods to use, which bypasses the holding pen and its associated
      overhead when bringing CPUs online. The smp.pen.text section is also
      removed, as the pen can live in head.text without problem.
      
      The cpu_operations structure is extended with two new functions,
      cpu_boot and cpu_postboot, for bringing a cpu into the kernel and
      performing any post-boot cleanup required by a bootmethod (e.g.
      resetting the secondary_holding_pen_release to INVALID_HWID).
      Documentation is added for cpu_operations.
      Signed-off-by: NMark Rutland <mark.rutland@arm.com>
      Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
      652af899
    • M
      arm64: reorganise smp_enable_ops · cd1aebf5
      Mark Rutland 提交于
      For hotplug support, we're going to want a place to store operations
      that do more than bring CPUs online, and it makes sense to group these
      with our current smp_enable_ops. For cpuidle support, we'll want to
      group additional functions, and we may want them even for UP kernels.
      
      This patch renames smp_enable_ops to the more general cpu_operations,
      and pulls the definitions out of smp code such that they can be used in
      UP kernels. While we're at it, fix up instances of the cpu parameter to
      be an unsigned int, drop the init markings and rename the *_cpu
      functions to cpu_* to reduce future churn when cpu_operations is
      extended.
      Signed-off-by: NMark Rutland <mark.rutland@arm.com>
      Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
      cd1aebf5
  12. 30 1月, 2013 2 次提交
  13. 17 9月, 2012 1 次提交