1. 15 6月, 2016 1 次提交
    • D
      rxrpc: Rework peer object handling to use hash table and RCU · be6e6707
      David Howells 提交于
      Rework peer object handling to use a hash table instead of a flat list and
      to use RCU.  Peer objects are no longer destroyed by passing them to a
      workqueue to process, but rather are just passed to the RCU garbage
      collector as kfree'able objects.
      
      The hash function uses the local endpoint plus all the components of the
      remote address, except for the RxRPC service ID.  Peers thus represent a
      UDP port on the remote machine as contacted by a UDP port on this machine.
      
      The RCU read lock is used to handle non-creating lookups so that they can
      be called from bottom half context in the sk_error_report handler without
      having to lock the hash table against modification.
      rxrpc_lookup_peer_rcu() *does* take a reference on the peer object as in
      the future, this will be passed to a work item for error distribution in
      the error_report path and this function will cease being used in the
      data_ready path.
      
      Creating lookups are done under spinlock rather than mutex as they might be
      set up due to an external stimulus if the local endpoint is a server.
      
      Captured network error messages (ICMP) are handled with respect to this
      struct and MTU size and RTT are cached here.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      be6e6707
  2. 13 6月, 2016 1 次提交
    • D
      rxrpc: Rename files matching ar-*.c to git rid of the "ar-" prefix · 8c3e34a4
      David Howells 提交于
      Rename files matching net/rxrpc/ar-*.c to get rid of the "ar-" prefix.
      This will aid splitting those files by making easier to come up with new
      names.
      
      Note that the not all files are simply renamed from ar-X.c to X.c.  The
      following exceptions are made:
      
       (*) ar-call.c -> call_object.c
           ar-ack.c -> call_event.c
      
           call_object.c is going to contain the core of the call object
           handling.  Call event handling is all going to be in call_event.c.
      
       (*) ar-accept.c -> call_accept.c
      
           Incoming call handling is going to be here.
      
       (*) ar-connection.c -> conn_object.c
           ar-connevent.c -> conn_event.c
      
           The former file is going to have the basic connection object handling,
           but there will likely be some differentiation between client
           connections and service connections in additional files later.  The
           latter file will have all the connection-level event handling.
      
       (*) ar-local.c -> local_object.c
      
           This will have the local endpoint object handling code.  The local
           endpoint event handling code will later be split out into
           local_event.c.
      
       (*) ar-peer.c -> peer_object.c
      
           This will have the peer endpoint object handling code.  Peer event
           handling code will be placed in peer_event.c (for the moment, there is
           none).
      
       (*) ar-error.c -> peer_event.c
      
           This will become the peer event handling code, though for the moment
           it's actually driven from the local endpoint's perspective.
      
      Note that I haven't renamed ar-transport.c to transport_object.c as the
      intention is to delete it when the rxrpc_transport struct is excised.
      
      The only file that actually has its contents changed is net/rxrpc/Makefile.
      
      net/rxrpc/ar-internal.h will need its section marker comments updating, but
      I'll do that in a separate patch to make it easier for git to follow the
      history across the rename.  I may also want to rename ar-internal.h at some
      point - but that would mean updating all the #includes and I'd rather do
      that in a separate step.
      
      Signed-off-by: David Howells <dhowells@redhat.com.
      8c3e34a4
  3. 04 6月, 2016 1 次提交
    • J
      rxrpc: Use pr_<level> and pr_fmt, reduce object size a few KB · 9b6d5398
      Joe Perches 提交于
      Use the more common kernel logging style and reduce object size.
      
      The logging message prefix changes from a mixture of
      "RxRPC:" and "RXRPC:" to "af_rxrpc: ".
      
      $ size net/rxrpc/built-in.o*
         text	   data	    bss	    dec	    hex	filename
        64172	   1972	   8304	  74448	  122d0	net/rxrpc/built-in.o.new
        67512	   1972	   8304	  77788	  12fdc	net/rxrpc/built-in.o.old
      
      Miscellanea:
      
      o Consolidate the ASSERT macros to use a single pr_err call with
        decimal and hexadecimal output and a stringified #OP argument
      Signed-off-by: NJoe Perches <joe@perches.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      9b6d5398
  4. 04 3月, 2016 1 次提交
    • D
      rxrpc: Keep the skb private record of the Rx header in host byte order · 0d12f8a4
      David Howells 提交于
      Currently, a copy of the Rx packet header is copied into the the sk_buff
      private data so that we can advance the pointer into the buffer,
      potentially discarding the original.  At the moment, this copy is held in
      network byte order, but this means we're doing a lot of unnecessary
      translations.
      
      The reasons it was done this way are that we need the values in network
      byte order occasionally and we can use the copy, slightly modified, as part
      of an iov array when sending an ack or an abort packet.
      
      However, it seems more reasonable on review that it would be better kept in
      host byte order and that we make up a new header when we want to send
      another packet.
      
      To this end, rename the original header struct to rxrpc_wire_header (with
      BE fields) and institute a variant called rxrpc_host_header that has host
      order fields.  Change the struct in the sk_buff private data into an
      rxrpc_host_header and translate the values when filling it in.
      
      This further allows us to keep values kept in various structures in host
      byte order rather than network byte order and allows removal of some fields
      that are byteswapped duplicates.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      0d12f8a4
  5. 10 7月, 2012 1 次提交
  6. 20 5月, 2011 1 次提交
  7. 04 5月, 2011 1 次提交
  8. 13 3月, 2011 1 次提交
  9. 03 3月, 2011 1 次提交
  10. 18 11月, 2010 1 次提交
  11. 11 6月, 2010 1 次提交
  12. 30 3月, 2010 1 次提交
    • T
      include cleanup: Update gfp.h and slab.h includes to prepare for breaking... · 5a0e3ad6
      Tejun Heo 提交于
      include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
      
      percpu.h is included by sched.h and module.h and thus ends up being
      included when building most .c files.  percpu.h includes slab.h which
      in turn includes gfp.h making everything defined by the two files
      universally available and complicating inclusion dependencies.
      
      percpu.h -> slab.h dependency is about to be removed.  Prepare for
      this change by updating users of gfp and slab facilities include those
      headers directly instead of assuming availability.  As this conversion
      needs to touch large number of source files, the following script is
      used as the basis of conversion.
      
        http://userweb.kernel.org/~tj/misc/slabh-sweep.py
      
      The script does the followings.
      
      * Scan files for gfp and slab usages and update includes such that
        only the necessary includes are there.  ie. if only gfp is used,
        gfp.h, if slab is used, slab.h.
      
      * When the script inserts a new include, it looks at the include
        blocks and try to put the new include such that its order conforms
        to its surrounding.  It's put in the include block which contains
        core kernel includes, in the same order that the rest are ordered -
        alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
        doesn't seem to be any matching order.
      
      * If the script can't find a place to put a new include (mostly
        because the file doesn't have fitting include block), it prints out
        an error message indicating which .h file needs to be added to the
        file.
      
      The conversion was done in the following steps.
      
      1. The initial automatic conversion of all .c files updated slightly
         over 4000 files, deleting around 700 includes and adding ~480 gfp.h
         and ~3000 slab.h inclusions.  The script emitted errors for ~400
         files.
      
      2. Each error was manually checked.  Some didn't need the inclusion,
         some needed manual addition while adding it to implementation .h or
         embedding .c file was more appropriate for others.  This step added
         inclusions to around 150 files.
      
      3. The script was run again and the output was compared to the edits
         from #2 to make sure no file was left behind.
      
      4. Several build tests were done and a couple of problems were fixed.
         e.g. lib/decompress_*.c used malloc/free() wrappers around slab
         APIs requiring slab.h to be added manually.
      
      5. The script was run on all .h files but without automatically
         editing them as sprinkling gfp.h and slab.h inclusions around .h
         files could easily lead to inclusion dependency hell.  Most gfp.h
         inclusion directives were ignored as stuff from gfp.h was usually
         wildly available and often used in preprocessor macros.  Each
         slab.h inclusion directive was examined and added manually as
         necessary.
      
      6. percpu.h was updated not to include slab.h.
      
      7. Build test were done on the following configurations and failures
         were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
         distributed build env didn't work with gcov compiles) and a few
         more options had to be turned off depending on archs to make things
         build (like ipr on powerpc/64 which failed due to missing writeq).
      
         * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
         * powerpc and powerpc64 SMP allmodconfig
         * sparc and sparc64 SMP allmodconfig
         * ia64 SMP allmodconfig
         * s390 SMP allmodconfig
         * alpha SMP allmodconfig
         * um on x86_64 SMP allmodconfig
      
      8. percpu.h modifications were reverted so that it could be applied as
         a separate patch and serve as bisection point.
      
      Given the fact that I had only a couple of failures from tests on step
      6, I'm fairly confident about the coverage of this conversion patch.
      If there is a breakage, it's likely to be something in one of the arch
      headers which should be easily discoverable easily on most builds of
      the specific arch.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Guess-its-ok-by: NChristoph Lameter <cl@linux-foundation.org>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
      5a0e3ad6
  13. 31 10月, 2008 1 次提交
  14. 29 1月, 2008 1 次提交
  15. 11 5月, 2007 1 次提交
  16. 05 5月, 2007 1 次提交
    • D
      [AF_RXRPC]: Sort out MTU handling. · 224711df
      David Howells 提交于
      Sort out the MTU determination and handling in AF_RXRPC:
      
       (1) If it's present, parse the additional information supplied by the peer at
           the end of the ACK packet (struct ackinfo) to determine the MTU sizes
           that peer is willing to support.
      
       (2) Initialise the MTU size to that peer from the kernel's routing records.
      
       (3) Send ACKs rather than ACKALLs as the former carry the additional info,
           and the latter do not.
      
       (4) Declare the interface MTU size in outgoing ACKs as a maximum amount of
           data that can be stuffed into an RxRPC packet without it having to be
           fragmented to come in this computer's NIC.
      
       (5) If sendmsg() is given MSG_MORE then it should allocate an skb of the
           maximum size rather than one just big enough for the data it's got left
           to process on the theory that there is more data to come that it can
           append to that packet.
      
           This means, for example, that if AFS does a large StoreData op, all the
           packets barring the last will be filled to the maximum unfragmented size.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      224711df
  17. 27 4月, 2007 2 次提交
    • D
      [AF_RXRPC]: Add an interface to the AF_RXRPC module for the AFS filesystem to use · 651350d1
      David Howells 提交于
      Add an interface to the AF_RXRPC module so that the AFS filesystem module can
      more easily make use of the services available.  AFS still opens a socket but
      then uses the action functions in lieu of sendmsg() and registers an intercept
      functions to grab messages before they're queued on the socket Rx queue.
      
      This permits AFS (or whatever) to:
      
       (1) Avoid the overhead of using the recvmsg() call.
      
       (2) Use different keys directly on individual client calls on one socket
           rather than having to open a whole slew of sockets, one for each key it
           might want to use.
      
       (3) Avoid calling request_key() at the point of issue of a call or opening of
           a socket.  This is done instead by AFS at the point of open(), unlink() or
           other VFS operation and the key handed through.
      
       (4) Request the use of something other than GFP_KERNEL to allocate memory.
      
      Furthermore:
      
       (*) The socket buffer markings used by RxRPC are made available for AFS so
           that it can interpret the cooked RxRPC messages itself.
      
       (*) rxgen (un)marshalling abort codes are made available.
      
      
      The following documentation for the kernel interface is added to
      Documentation/networking/rxrpc.txt:
      
      =========================
      AF_RXRPC KERNEL INTERFACE
      =========================
      
      The AF_RXRPC module also provides an interface for use by in-kernel utilities
      such as the AFS filesystem.  This permits such a utility to:
      
       (1) Use different keys directly on individual client calls on one socket
           rather than having to open a whole slew of sockets, one for each key it
           might want to use.
      
       (2) Avoid having RxRPC call request_key() at the point of issue of a call or
           opening of a socket.  Instead the utility is responsible for requesting a
           key at the appropriate point.  AFS, for instance, would do this during VFS
           operations such as open() or unlink().  The key is then handed through
           when the call is initiated.
      
       (3) Request the use of something other than GFP_KERNEL to allocate memory.
      
       (4) Avoid the overhead of using the recvmsg() call.  RxRPC messages can be
           intercepted before they get put into the socket Rx queue and the socket
           buffers manipulated directly.
      
      To use the RxRPC facility, a kernel utility must still open an AF_RXRPC socket,
      bind an addess as appropriate and listen if it's to be a server socket, but
      then it passes this to the kernel interface functions.
      
      The kernel interface functions are as follows:
      
       (*) Begin a new client call.
      
      	struct rxrpc_call *
      	rxrpc_kernel_begin_call(struct socket *sock,
      				struct sockaddr_rxrpc *srx,
      				struct key *key,
      				unsigned long user_call_ID,
      				gfp_t gfp);
      
           This allocates the infrastructure to make a new RxRPC call and assigns
           call and connection numbers.  The call will be made on the UDP port that
           the socket is bound to.  The call will go to the destination address of a
           connected client socket unless an alternative is supplied (srx is
           non-NULL).
      
           If a key is supplied then this will be used to secure the call instead of
           the key bound to the socket with the RXRPC_SECURITY_KEY sockopt.  Calls
           secured in this way will still share connections if at all possible.
      
           The user_call_ID is equivalent to that supplied to sendmsg() in the
           control data buffer.  It is entirely feasible to use this to point to a
           kernel data structure.
      
           If this function is successful, an opaque reference to the RxRPC call is
           returned.  The caller now holds a reference on this and it must be
           properly ended.
      
       (*) End a client call.
      
      	void rxrpc_kernel_end_call(struct rxrpc_call *call);
      
           This is used to end a previously begun call.  The user_call_ID is expunged
           from AF_RXRPC's knowledge and will not be seen again in association with
           the specified call.
      
       (*) Send data through a call.
      
      	int rxrpc_kernel_send_data(struct rxrpc_call *call, struct msghdr *msg,
      				   size_t len);
      
           This is used to supply either the request part of a client call or the
           reply part of a server call.  msg.msg_iovlen and msg.msg_iov specify the
           data buffers to be used.  msg_iov may not be NULL and must point
           exclusively to in-kernel virtual addresses.  msg.msg_flags may be given
           MSG_MORE if there will be subsequent data sends for this call.
      
           The msg must not specify a destination address, control data or any flags
           other than MSG_MORE.  len is the total amount of data to transmit.
      
       (*) Abort a call.
      
      	void rxrpc_kernel_abort_call(struct rxrpc_call *call, u32 abort_code);
      
           This is used to abort a call if it's still in an abortable state.  The
           abort code specified will be placed in the ABORT message sent.
      
       (*) Intercept received RxRPC messages.
      
      	typedef void (*rxrpc_interceptor_t)(struct sock *sk,
      					    unsigned long user_call_ID,
      					    struct sk_buff *skb);
      
      	void
      	rxrpc_kernel_intercept_rx_messages(struct socket *sock,
      					   rxrpc_interceptor_t interceptor);
      
           This installs an interceptor function on the specified AF_RXRPC socket.
           All messages that would otherwise wind up in the socket's Rx queue are
           then diverted to this function.  Note that care must be taken to process
           the messages in the right order to maintain DATA message sequentiality.
      
           The interceptor function itself is provided with the address of the socket
           and handling the incoming message, the ID assigned by the kernel utility
           to the call and the socket buffer containing the message.
      
           The skb->mark field indicates the type of message:
      
      	MARK				MEANING
      	===============================	=======================================
      	RXRPC_SKB_MARK_DATA		Data message
      	RXRPC_SKB_MARK_FINAL_ACK	Final ACK received for an incoming call
      	RXRPC_SKB_MARK_BUSY		Client call rejected as server busy
      	RXRPC_SKB_MARK_REMOTE_ABORT	Call aborted by peer
      	RXRPC_SKB_MARK_NET_ERROR	Network error detected
      	RXRPC_SKB_MARK_LOCAL_ERROR	Local error encountered
      	RXRPC_SKB_MARK_NEW_CALL		New incoming call awaiting acceptance
      
           The remote abort message can be probed with rxrpc_kernel_get_abort_code().
           The two error messages can be probed with rxrpc_kernel_get_error_number().
           A new call can be accepted with rxrpc_kernel_accept_call().
      
           Data messages can have their contents extracted with the usual bunch of
           socket buffer manipulation functions.  A data message can be determined to
           be the last one in a sequence with rxrpc_kernel_is_data_last().  When a
           data message has been used up, rxrpc_kernel_data_delivered() should be
           called on it..
      
           Non-data messages should be handled to rxrpc_kernel_free_skb() to dispose
           of.  It is possible to get extra refs on all types of message for later
           freeing, but this may pin the state of a call until the message is finally
           freed.
      
       (*) Accept an incoming call.
      
      	struct rxrpc_call *
      	rxrpc_kernel_accept_call(struct socket *sock,
      				 unsigned long user_call_ID);
      
           This is used to accept an incoming call and to assign it a call ID.  This
           function is similar to rxrpc_kernel_begin_call() and calls accepted must
           be ended in the same way.
      
           If this function is successful, an opaque reference to the RxRPC call is
           returned.  The caller now holds a reference on this and it must be
           properly ended.
      
       (*) Reject an incoming call.
      
      	int rxrpc_kernel_reject_call(struct socket *sock);
      
           This is used to reject the first incoming call on the socket's queue with
           a BUSY message.  -ENODATA is returned if there were no incoming calls.
           Other errors may be returned if the call had been aborted (-ECONNABORTED)
           or had timed out (-ETIME).
      
       (*) Record the delivery of a data message and free it.
      
      	void rxrpc_kernel_data_delivered(struct sk_buff *skb);
      
           This is used to record a data message as having been delivered and to
           update the ACK state for the call.  The socket buffer will be freed.
      
       (*) Free a message.
      
      	void rxrpc_kernel_free_skb(struct sk_buff *skb);
      
           This is used to free a non-DATA socket buffer intercepted from an AF_RXRPC
           socket.
      
       (*) Determine if a data message is the last one on a call.
      
      	bool rxrpc_kernel_is_data_last(struct sk_buff *skb);
      
           This is used to determine if a socket buffer holds the last data message
           to be received for a call (true will be returned if it does, false
           if not).
      
           The data message will be part of the reply on a client call and the
           request on an incoming call.  In the latter case there will be more
           messages, but in the former case there will not.
      
       (*) Get the abort code from an abort message.
      
      	u32 rxrpc_kernel_get_abort_code(struct sk_buff *skb);
      
           This is used to extract the abort code from a remote abort message.
      
       (*) Get the error number from a local or network error message.
      
      	int rxrpc_kernel_get_error_number(struct sk_buff *skb);
      
           This is used to extract the error number from a message indicating either
           a local error occurred or a network error occurred.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      651350d1
    • D
      [AF_RXRPC]: Provide secure RxRPC sockets for use by userspace and kernel both · 17926a79
      David Howells 提交于
      Provide AF_RXRPC sockets that can be used to talk to AFS servers, or serve
      answers to AFS clients.  KerberosIV security is fully supported.  The patches
      and some example test programs can be found in:
      
      	http://people.redhat.com/~dhowells/rxrpc/
      
      This will eventually replace the old implementation of kernel-only RxRPC
      currently resident in net/rxrpc/.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      17926a79