- 06 11月, 2015 5 次提交
-
-
由 Yaowei Bai 提交于
Make mem_cgroup_inactive_anon_is_low return bool due to this particular function only using either one or zero as its return value. No functional change. Signed-off-by: NYaowei Bai <bywxiaobai@163.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Tejun Heo 提交于
__memcg_kmem_bypass() decides whether a kmem allocation should be bypassed to the root memcg. Some conditions that it tests are valid criteria regarding who should be held accountable; however, there are a couple unnecessary tests for cold paths - __GFP_FAIL and fatal_signal_pending(). The previous patch updated try_charge() to handle both __GFP_FAIL and dying tasks correctly and the only thing these two tests are doing is making accounting less accurate and sprinkling tests for cold path conditions in the hot paths. There's nothing meaningful gained by these extra tests. This patch removes the two unnecessary tests from __memcg_kmem_bypass(). Signed-off-by: NTejun Heo <tj@kernel.org> Reviewed-by: NVladimir Davydov <vdavydov@parallels.com> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Tejun Heo 提交于
memcg_kmem_newpage_charge() and memcg_kmem_get_cache() are testing the same series of conditions to decide whether to bypass kmem accounting. Collect the tests into __memcg_kmem_bypass(). This is pure refactoring. Signed-off-by: NTejun Heo <tj@kernel.org> Reviewed-by: NVladimir Davydov <vdavydov@parallels.com> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Tejun Heo 提交于
Currently, try_charge() tries to reclaim memory synchronously when the high limit is breached; however, if the allocation doesn't have __GFP_WAIT, synchronous reclaim is skipped. If a process performs only speculative allocations, it can blow way past the high limit. This is actually easily reproducible by simply doing "find /". slab/slub allocator tries speculative allocations first, so as long as there's memory which can be consumed without blocking, it can keep allocating memory regardless of the high limit. This patch makes try_charge() always punt the over-high reclaim to the return-to-userland path. If try_charge() detects that high limit is breached, it adds the overage to current->memcg_nr_pages_over_high and schedules execution of mem_cgroup_handle_over_high() which performs synchronous reclaim from the return-to-userland path. As long as kernel doesn't have a run-away allocation spree, this should provide enough protection while making kmemcg behave more consistently. It also has the following benefits. - All over-high reclaims can use GFP_KERNEL regardless of the specific gfp mask in use, e.g. GFP_NOFS, when the limit was breached. - It copes with prio inversion. Previously, a low-prio task with small memory.high might perform over-high reclaim with a bunch of locks held. If a higher prio task needed any of these locks, it would have to wait until the low prio task finished reclaim and released the locks. By handing over-high reclaim to the task exit path this issue can be avoided. Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NMichal Hocko <mhocko@kernel.org> Reviewed-by: NVladimir Davydov <vdavydov@parallels.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Tejun Heo 提交于
task_struct->memcg_oom is a sub-struct containing fields which are used for async memcg oom handling. Most task_struct fields aren't packaged this way and it can lead to unnecessary alignment paddings. This patch flattens it. * task.memcg_oom.memcg -> task.memcg_in_oom * task.memcg_oom.gfp_mask -> task.memcg_oom_gfp_mask * task.memcg_oom.order -> task.memcg_oom_order * task.memcg_oom.may_oom -> task.memcg_may_oom In addition, task.memcg_may_oom is relocated to where other bitfields are which reduces the size of task_struct. Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NMichal Hocko <mhocko@suse.com> Reviewed-by: NVladimir Davydov <vdavydov@parallels.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 13 10月, 2015 1 次提交
-
-
由 Tejun Heo 提交于
For memcg domains, the amount of available memory was calculated as min(the amount currently in use + headroom according to memcg, total clean memory) This isn't quite correct as what should be capped by the amount of clean memory is the headroom, not the sum of memory in use and headroom. For example, if a memcg domain has a significant amount of dirty memory, the above can lead to a value which is lower than the current amount in use which doesn't make much sense. In most circumstances, the above leads to a number which is somewhat but not drastically lower. As the amount of memory which can be readily allocated to the memcg domain is capped by the amount of system-wide clean memory which is not already assigned to the memcg itself, the number we want is the amount currently in use + min(headroom according to memcg, clean memory elsewhere in the system) This patch updates mem_cgroup_wb_stats() to return the number of filepages and headroom instead of the calculated available pages. mdtc_cap_avail() is renamed to mdtc_calc_avail() and performs the above calculation from file, headroom, dirty and globally clean pages. v2: Dummy mem_cgroup_wb_stats() implementation wasn't updated leading to build failure when !CGROUP_WRITEBACK. Fixed. Signed-off-by: NTejun Heo <tj@kernel.org> Fixes: c2aa723a ("writeback: implement memcg writeback domain based throttling") Signed-off-by: NJens Axboe <axboe@fb.com>
-
- 02 10月, 2015 1 次提交
-
-
由 Greg Thelen 提交于
Commit 733a572e ("memcg: make mem_cgroup_read_{stat|event}() iterate possible cpus instead of online") removed the last use of the per memcg pcp_counter_lock but forgot to remove the variable. Kill the vestigial variable. Signed-off-by: NGreg Thelen <gthelen@google.com> Acked-by: NMichal Hocko <mhocko@suse.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 11 9月, 2015 2 次提交
-
-
由 Vladimir Davydov 提交于
It is only used in mem_cgroup_try_charge, so fold it in and zap it. Signed-off-by: NVladimir Davydov <vdavydov@parallels.com> Reviewed-by: NAndres Lagar-Cavilla <andreslc@google.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Greg Thelen <gthelen@google.com> Cc: Michel Lespinasse <walken@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Pavel Emelyanov <xemul@parallels.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vladimir Davydov 提交于
This patchset introduces a new user API for tracking user memory pages that have not been used for a given period of time. The purpose of this is to provide the userspace with the means of tracking a workload's working set, i.e. the set of pages that are actively used by the workload. Knowing the working set size can be useful for partitioning the system more efficiently, e.g. by tuning memory cgroup limits appropriately, or for job placement within a compute cluster. ==== USE CASES ==== The unified cgroup hierarchy has memory.low and memory.high knobs, which are defined as the low and high boundaries for the workload working set size. However, the working set size of a workload may be unknown or change in time. With this patch set, one can periodically estimate the amount of memory unused by each cgroup and tune their memory.low and memory.high parameters accordingly, therefore optimizing the overall memory utilization. Another use case is balancing workloads within a compute cluster. Knowing how much memory is not really used by a workload unit may help take a more optimal decision when considering migrating the unit to another node within the cluster. Also, as noted by Minchan, this would be useful for per-process reclaim (https://lwn.net/Articles/545668/). With idle tracking, we could reclaim idle pages only by smart user memory manager. ==== USER API ==== The user API consists of two new files: * /sys/kernel/mm/page_idle/bitmap. This file implements a bitmap where each bit corresponds to a page, indexed by PFN. When the bit is set, the corresponding page is idle. A page is considered idle if it has not been accessed since it was marked idle. To mark a page idle one should set the bit corresponding to the page by writing to the file. A value written to the file is OR-ed with the current bitmap value. Only user memory pages can be marked idle, for other page types input is silently ignored. Writing to this file beyond max PFN results in the ENXIO error. Only available when CONFIG_IDLE_PAGE_TRACKING is set. This file can be used to estimate the amount of pages that are not used by a particular workload as follows: 1. mark all pages of interest idle by setting corresponding bits in the /sys/kernel/mm/page_idle/bitmap 2. wait until the workload accesses its working set 3. read /sys/kernel/mm/page_idle/bitmap and count the number of bits set * /proc/kpagecgroup. This file contains a 64-bit inode number of the memory cgroup each page is charged to, indexed by PFN. Only available when CONFIG_MEMCG is set. This file can be used to find all pages (including unmapped file pages) accounted to a particular cgroup. Using /sys/kernel/mm/page_idle/bitmap, one can then estimate the cgroup working set size. For an example of using these files for estimating the amount of unused memory pages per each memory cgroup, please see the script attached below. ==== REASONING ==== The reason to introduce the new user API instead of using /proc/PID/{clear_refs,smaps} is that the latter has two serious drawbacks: - it does not count unmapped file pages - it affects the reclaimer logic The new API attempts to overcome them both. For more details on how it is achieved, please see the comment to patch 6. ==== PATCHSET STRUCTURE ==== The patch set is organized as follows: - patch 1 adds page_cgroup_ino() helper for the sake of /proc/kpagecgroup and patches 2-3 do related cleanup - patch 4 adds /proc/kpagecgroup, which reports cgroup ino each page is charged to - patch 5 introduces a new mmu notifier callback, clear_young, which is a lightweight version of clear_flush_young; it is used in patch 6 - patch 6 implements the idle page tracking feature, including the userspace API, /sys/kernel/mm/page_idle/bitmap - patch 7 exports idle flag via /proc/kpageflags ==== SIMILAR WORKS ==== Originally, the patch for tracking idle memory was proposed back in 2011 by Michel Lespinasse (see http://lwn.net/Articles/459269/). The main difference between Michel's patch and this one is that Michel implemented a kernel space daemon for estimating idle memory size per cgroup while this patch only provides the userspace with the minimal API for doing the job, leaving the rest up to the userspace. However, they both share the same idea of Idle/Young page flags to avoid affecting the reclaimer logic. ==== PERFORMANCE EVALUATION ==== SPECjvm2008 (https://www.spec.org/jvm2008/) was used to evaluate the performance impact introduced by this patch set. Three runs were carried out: - base: kernel without the patch - patched: patched kernel, the feature is not used - patched-active: patched kernel, 1 minute-period daemon is used for tracking idle memory For tracking idle memory, idlememstat utility was used: https://github.com/locker/idlememstat testcase base patched patched-active compiler 537.40 ( 0.00)% 532.26 (-0.96)% 538.31 ( 0.17)% compress 305.47 ( 0.00)% 301.08 (-1.44)% 300.71 (-1.56)% crypto 284.32 ( 0.00)% 282.21 (-0.74)% 284.87 ( 0.19)% derby 411.05 ( 0.00)% 413.44 ( 0.58)% 412.07 ( 0.25)% mpegaudio 189.96 ( 0.00)% 190.87 ( 0.48)% 189.42 (-0.28)% scimark.large 46.85 ( 0.00)% 46.41 (-0.94)% 47.83 ( 2.09)% scimark.small 412.91 ( 0.00)% 415.41 ( 0.61)% 421.17 ( 2.00)% serial 204.23 ( 0.00)% 213.46 ( 4.52)% 203.17 (-0.52)% startup 36.76 ( 0.00)% 35.49 (-3.45)% 35.64 (-3.05)% sunflow 115.34 ( 0.00)% 115.08 (-0.23)% 117.37 ( 1.76)% xml 620.55 ( 0.00)% 619.95 (-0.10)% 620.39 (-0.03)% composite 211.50 ( 0.00)% 211.15 (-0.17)% 211.67 ( 0.08)% time idlememstat: 17.20user 65.16system 2:15:23elapsed 1%CPU (0avgtext+0avgdata 8476maxresident)k 448inputs+40outputs (1major+36052minor)pagefaults 0swaps ==== SCRIPT FOR COUNTING IDLE PAGES PER CGROUP ==== #! /usr/bin/python # import os import stat import errno import struct CGROUP_MOUNT = "/sys/fs/cgroup/memory" BUFSIZE = 8 * 1024 # must be multiple of 8 def get_hugepage_size(): with open("/proc/meminfo", "r") as f: for s in f: k, v = s.split(":") if k == "Hugepagesize": return int(v.split()[0]) * 1024 PAGE_SIZE = os.sysconf("SC_PAGE_SIZE") HUGEPAGE_SIZE = get_hugepage_size() def set_idle(): f = open("/sys/kernel/mm/page_idle/bitmap", "wb", BUFSIZE) while True: try: f.write(struct.pack("Q", pow(2, 64) - 1)) except IOError as err: if err.errno == errno.ENXIO: break raise f.close() def count_idle(): f_flags = open("/proc/kpageflags", "rb", BUFSIZE) f_cgroup = open("/proc/kpagecgroup", "rb", BUFSIZE) with open("/sys/kernel/mm/page_idle/bitmap", "rb", BUFSIZE) as f: while f.read(BUFSIZE): pass # update idle flag idlememsz = {} while True: s1, s2 = f_flags.read(8), f_cgroup.read(8) if not s1 or not s2: break flags, = struct.unpack('Q', s1) cgino, = struct.unpack('Q', s2) unevictable = (flags >> 18) & 1 huge = (flags >> 22) & 1 idle = (flags >> 25) & 1 if idle and not unevictable: idlememsz[cgino] = idlememsz.get(cgino, 0) + \ (HUGEPAGE_SIZE if huge else PAGE_SIZE) f_flags.close() f_cgroup.close() return idlememsz if __name__ == "__main__": print "Setting the idle flag for each page..." set_idle() raw_input("Wait until the workload accesses its working set, " "then press Enter") print "Counting idle pages..." idlememsz = count_idle() for dir, subdirs, files in os.walk(CGROUP_MOUNT): ino = os.stat(dir)[stat.ST_INO] print dir + ": " + str(idlememsz.get(ino, 0) / 1024) + " kB" ==== END SCRIPT ==== This patch (of 8): Add page_cgroup_ino() helper to memcg. This function returns the inode number of the closest online ancestor of the memory cgroup a page is charged to. It is required for exporting information about which page is charged to which cgroup to userspace, which will be introduced by a following patch. Signed-off-by: NVladimir Davydov <vdavydov@parallels.com> Reviewed-by: NAndres Lagar-Cavilla <andreslc@google.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Greg Thelen <gthelen@google.com> Cc: Michel Lespinasse <walken@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Pavel Emelyanov <xemul@parallels.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 09 9月, 2015 3 次提交
-
-
由 Michal Hocko 提交于
Most of the exported functions in this header are not marked extern so change the rest to follow the same style. Signed-off-by: NMichal Hocko <mhocko@suse.cz> Reviewed-by: NVladimir Davydov <vdavydov@parallels.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
The only user is cgwb_bdi_init and that one depends on CONFIG_CGROUP_WRITEBACK which in turn depends on CONFIG_MEMCG so it doesn't make much sense to definte an empty stub for !CONFIG_MEMCG. Moreover ERR_PTR(-EINVAL) is ugly and would lead to runtime crashes if used in unguarded code paths. Better fail during compilation. Signed-off-by: NMichal Hocko <mhocko@suse.cz> Reviewed-by: NVladimir Davydov <vdavydov@parallels.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
mem_cgroup structure is defined in mm/memcontrol.c currently which means that the code outside of this file has to use external API even for trivial access stuff. This patch exports mm_struct with its dependencies and makes some of the exported functions inlines. This even helps to reduce the code size a bit (make defconfig + CONFIG_MEMCG=y) text data bss dec hex filename 12355346 1823792 1089536 15268674 e8fb42 vmlinux.before 12354970 1823792 1089536 15268298 e8f9ca vmlinux.after This is not much (370B) but better than nothing. We also save a function call in some hot paths like callers of mem_cgroup_count_vm_event which is used for accounting. The patch doesn't introduce any functional changes. [vdavykov@parallels.com: inline memcg_kmem_is_active] [vdavykov@parallels.com: do not expose type outside of CONFIG_MEMCG] [akpm@linux-foundation.org: memcontrol.h needs eventfd.h for eventfd_ctx] [akpm@linux-foundation.org: export mem_cgroup_from_task() to modules] Signed-off-by: NMichal Hocko <mhocko@suse.cz> Reviewed-by: NVladimir Davydov <vdavydov@parallels.com> Suggested-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 02 6月, 2015 6 次提交
-
-
由 Tejun Heo 提交于
While cgroup writeback support now connects memcg and blkcg so that writeback IOs are properly attributed and controlled, the IO back pressure propagation mechanism implemented in balance_dirty_pages() and its subroutines wasn't aware of cgroup writeback. Processes belonging to a memcg may have access to only subset of total memory available in the system and not factoring this into dirty throttling rendered it completely ineffective for processes under memcg limits and memcg ended up building a separate ad-hoc degenerate mechanism directly into vmscan code to limit page dirtying. The previous patches updated balance_dirty_pages() and its subroutines so that they can deal with multiple wb_domain's (writeback domains) and defined per-memcg wb_domain. Processes belonging to a non-root memcg are bound to two wb_domains, global wb_domain and memcg wb_domain, and should be throttled according to IO pressures from both domains. This patch updates dirty throttling code so that it repeats similar calculations for the two domains - the differences between the two are few and minor - and applies the lower of the two sets of resulting constraints. wb_over_bg_thresh(), which controls when background writeback terminates, is also updated to consider both global and memcg wb_domains. It returns true if dirty is over bg_thresh for either domain. This makes the dirty throttling mechanism operational for memcg domains including writeback-bandwidth-proportional dirty page distribution inside them but the ad-hoc memcg throttling mechanism in vmscan is still in place. The next patch will rip it out. Signed-off-by: NTejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Greg Thelen <gthelen@google.com> Signed-off-by: NJens Axboe <axboe@fb.com>
-
由 Tejun Heo 提交于
Dirtyable memory is distributed to a wb (bdi_writeback) according to the relative bandwidth the wb is writing out in the whole system. This distribution is global - each wb is measured against all other wb's and gets the proportinately sized portion of the memory in the whole system. For cgroup writeback, the amount of dirtyable memory is scoped by memcg and thus each wb would need to be measured and controlled in its memcg. IOW, a wb will belong to two writeback domains - the global and memcg domains. The previous patches laid the groundwork to support the two wb_domains and this patch implements memcg wb_domain. memcg->cgwb_domain is initialized on css online and destroyed on css release, wb->memcg_completions is added, and __wb_writeout_inc() is updated to increment completions against both global and memcg wb_domains. The following patches will update balance_dirty_pages() and its subroutines to actually consider memcg wb_domain for throttling. Signed-off-by: NTejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Greg Thelen <gthelen@google.com> Signed-off-by: NJens Axboe <axboe@fb.com>
-
由 Tejun Heo 提交于
For the planned cgroup writeback support, on each bdi (backing_dev_info), each memcg will be served by a separate wb (bdi_writeback). This patch updates bdi so that a bdi can host multiple wbs (bdi_writebacks). On the default hierarchy, blkcg implicitly enables memcg. This allows using memcg's page ownership for attributing writeback IOs, and every memcg - blkcg combination can be served by its own wb by assigning a dedicated wb to each memcg. This means that there may be multiple wb's of a bdi mapped to the same blkcg. As congested state is per blkcg - bdi combination, those wb's should share the same congested state. This is achieved by tracking congested state via bdi_writeback_congested structs which are keyed by blkcg. bdi->wb remains unchanged and will keep serving the root cgroup. cgwb's (cgroup wb's) for non-root cgroups are created on-demand or looked up while dirtying an inode according to the memcg of the page being dirtied or current task. Each cgwb is indexed on bdi->cgwb_tree by its memcg id. Once an inode is associated with its wb, it can be retrieved using inode_to_wb(). Currently, none of the filesystems has FS_CGROUP_WRITEBACK and all pages will keep being associated with bdi->wb. v3: inode_attach_wb() in account_page_dirtied() moved inside mapping_cap_account_dirty() block where it's known to be !NULL. Also, an unnecessary NULL check before kfree() removed. Both detected by the kbuild bot. v2: Updated so that wb association is per inode and wb is per memcg rather than blkcg. Signed-off-by: NTejun Heo <tj@kernel.org> Cc: kbuild test robot <fengguang.wu@intel.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Signed-off-by: NJens Axboe <axboe@fb.com>
-
由 Tejun Heo 提交于
Implement mem_cgroup_css_from_page() which returns the cgroup_subsys_state of the memcg associated with a given page on the default hierarchy. This will be used by cgroup writeback support. This function assumes that page->mem_cgroup association doesn't change until the page is released, which is true on the default hierarchy as long as replace_page_cache_page() is not used. As the only user of replace_page_cache_page() is FUSE which won't support cgroup writeback for the time being, this works for now, and replace_page_cache_page() will soon be updated so that the invariant actually holds. Note that the RCU protected page->mem_cgroup access is consistent with other usages across memcg but ultimately incorrect. These unlocked accesses are missing required barriers. page->mem_cgroup should be made an RCU pointer and updated and accessed using RCU operations. v4: Instead of triggering WARN, return the root css on the traditional hierarchies. This makes the function a lot easier to deal with especially as there's no light way to synchronize against hierarchy rebinding. v3: s/mem_cgroup_migrate()/mem_cgroup_css_from_page()/ v2: Trigger WARN if the function is used on the traditional hierarchies and add comment about the assumed invariant. Signed-off-by: NTejun Heo <tj@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: NJens Axboe <axboe@fb.com>
-
由 Tejun Heo 提交于
Add global mem_cgroup_root_css which points to the root memcg css. This will be used by cgroup writeback support. If memcg is disabled, it's defined as ERR_PTR(-EINVAL). Signed-off-by: NTejun Heo <tj@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> aCc: Michal Hocko <mhocko@suse.cz> Signed-off-by: NJens Axboe <axboe@fb.com>
-
由 Greg Thelen 提交于
When modifying PG_Dirty on cached file pages, update the new MEM_CGROUP_STAT_DIRTY counter. This is done in the same places where global NR_FILE_DIRTY is managed. The new memcg stat is visible in the per memcg memory.stat cgroupfs file. The most recent past attempt at this was http://thread.gmane.org/gmane.linux.kernel.cgroups/8632 The new accounting supports future efforts to add per cgroup dirty page throttling and writeback. It also helps an administrator break down a container's memory usage and provides evidence to understand memcg oom kills (the new dirty count is included in memcg oom kill messages). The ability to move page accounting between memcg (memory.move_charge_at_immigrate) makes this accounting more complicated than the global counter. The existing mem_cgroup_{begin,end}_page_stat() lock is used to serialize move accounting with stat updates. Typical update operation: memcg = mem_cgroup_begin_page_stat(page) if (TestSetPageDirty()) { [...] mem_cgroup_update_page_stat(memcg) } mem_cgroup_end_page_stat(memcg) Summary of mem_cgroup_end_page_stat() overhead: - Without CONFIG_MEMCG it's a no-op - With CONFIG_MEMCG and no inter memcg task movement, it's just rcu_read_lock() - With CONFIG_MEMCG and inter memcg task movement, it's rcu_read_lock() + spin_lock_irqsave() A memcg parameter is added to several routines because their callers now grab mem_cgroup_begin_page_stat() which returns the memcg later needed by for mem_cgroup_update_page_stat(). Because mem_cgroup_begin_page_stat() may disable interrupts, some adjustments are needed: - move __mark_inode_dirty() from __set_page_dirty() to its caller. __mark_inode_dirty() locking does not want interrupts disabled. - use spin_lock_irqsave(tree_lock) rather than spin_lock_irq() in __delete_from_page_cache(), replace_page_cache_page(), invalidate_complete_page2(), and __remove_mapping(). text data bss dec hex filename 8925147 1774832 1785856 12485835 be84cb vmlinux-!CONFIG_MEMCG-before 8925339 1774832 1785856 12486027 be858b vmlinux-!CONFIG_MEMCG-after +192 text bytes 8965977 1784992 1785856 12536825 bf4bf9 vmlinux-CONFIG_MEMCG-before 8966750 1784992 1785856 12537598 bf4efe vmlinux-CONFIG_MEMCG-after +773 text bytes Performance tests run on v4.0-rc1-36-g4f671fe2. Lower is better for all metrics, they're all wall clock or cycle counts. The read and write fault benchmarks just measure fault time, they do not include I/O time. * CONFIG_MEMCG not set: baseline patched kbuild 1m25.030000(+-0.088% 3 samples) 1m25.426667(+-0.120% 3 samples) dd write 100 MiB 0.859211561 +-15.10% 0.874162885 +-15.03% dd write 200 MiB 1.670653105 +-17.87% 1.669384764 +-11.99% dd write 1000 MiB 8.434691190 +-14.15% 8.474733215 +-14.77% read fault cycles 254.0(+-0.000% 10 samples) 253.0(+-0.000% 10 samples) write fault cycles 2021.2(+-3.070% 10 samples) 1984.5(+-1.036% 10 samples) * CONFIG_MEMCG=y root_memcg: baseline patched kbuild 1m25.716667(+-0.105% 3 samples) 1m25.686667(+-0.153% 3 samples) dd write 100 MiB 0.855650830 +-14.90% 0.887557919 +-14.90% dd write 200 MiB 1.688322953 +-12.72% 1.667682724 +-13.33% dd write 1000 MiB 8.418601605 +-14.30% 8.673532299 +-15.00% read fault cycles 266.0(+-0.000% 10 samples) 266.0(+-0.000% 10 samples) write fault cycles 2051.7(+-1.349% 10 samples) 2049.6(+-1.686% 10 samples) * CONFIG_MEMCG=y non-root_memcg: baseline patched kbuild 1m26.120000(+-0.273% 3 samples) 1m25.763333(+-0.127% 3 samples) dd write 100 MiB 0.861723964 +-15.25% 0.818129350 +-14.82% dd write 200 MiB 1.669887569 +-13.30% 1.698645885 +-13.27% dd write 1000 MiB 8.383191730 +-14.65% 8.351742280 +-14.52% read fault cycles 265.7(+-0.172% 10 samples) 267.0(+-0.000% 10 samples) write fault cycles 2070.6(+-1.512% 10 samples) 2084.4(+-2.148% 10 samples) As expected anon page faults are not affected by this patch. tj: Updated to apply on top of the recent cancel_dirty_page() changes. Signed-off-by: NSha Zhengju <handai.szj@gmail.com> Signed-off-by: NGreg Thelen <gthelen@google.com> Signed-off-by: NTejun Heo <tj@kernel.org> Signed-off-by: NJens Axboe <axboe@fb.com>
-
- 15 5月, 2015 1 次提交
-
-
由 Vladimir Davydov 提交于
Not all kmem allocations should be accounted to memcg. The following patch gives an example when accounting of a certain type of allocations to memcg can effectively result in a memory leak. This patch adds the __GFP_NOACCOUNT flag which if passed to kmalloc and friends will force the allocation to go through the root cgroup. It will be used by the next patch. Note, since in case of kmemleak enabled each kmalloc implies yet another allocation from the kmemleak_object cache, we add __GFP_NOACCOUNT to gfp_kmemleak_mask. Alternatively, we could introduce a per kmem cache flag disabling accounting for all allocations of a particular kind, but (a) we would not be able to bypass accounting for kmalloc then and (b) a kmem cache with this flag set could not be merged with a kmem cache without this flag, which would increase the number of global caches and therefore fragmentation even if the memory cgroup controller is not used. Despite its generic name, currently __GFP_NOACCOUNT disables accounting only for kmem allocations while user page allocations are always charged. To catch abusing of this flag, a warning is issued on an attempt of passing it to mem_cgroup_try_charge. Signed-off-by: NVladimir Davydov <vdavydov@parallels.com> Cc: Tejun Heo <tj@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Greg Thelen <gthelen@google.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: <stable@vger.kernel.org> [4.0.x] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 13 2月, 2015 4 次提交
-
-
由 Vladimir Davydov 提交于
There are several FS shrinkers, including super_block::s_shrink, that keep reclaimable objects in the list_lru structure. Hence to turn them to memcg-aware shrinkers, it is enough to make list_lru per-memcg. This patch does the trick. It adds an array of lru lists to the list_lru_node structure (per-node part of the list_lru), one for each kmem-active memcg, and dispatches every item addition or removal to the list corresponding to the memcg which the item is accounted to. So now the list_lru structure is not just per node, but per node and per memcg. Not all list_lrus need this feature, so this patch also adds a new method, list_lru_init_memcg, which initializes a list_lru as memcg aware. Otherwise (i.e. if initialized with old list_lru_init), the list_lru won't have per memcg lists. Just like per memcg caches arrays, the arrays of per-memcg lists are indexed by memcg_cache_id, so we must grow them whenever memcg_nr_cache_ids is increased. So we introduce a callback, memcg_update_all_list_lrus, invoked by memcg_alloc_cache_id if the id space is full. The locking is implemented in a manner similar to lruvecs, i.e. we have one lock per node that protects all lists (both global and per cgroup) on the node. Signed-off-by: NVladimir Davydov <vdavydov@parallels.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Greg Thelen <gthelen@google.com> Cc: Glauber Costa <glommer@gmail.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vladimir Davydov 提交于
We need a stable value of memcg_nr_cache_ids in kmem_cache_create() (memcg_alloc_cache_params() wants it for root caches), where we only hold the slab_mutex and no memcg-related locks. As a result, we have to update memcg_nr_cache_ids under the slab_mutex, which we can only take on the slab's side (see memcg_update_array_size). This looks awkward and will become even worse when per-memcg list_lru is introduced, which also wants stable access to memcg_nr_cache_ids. To get rid of this dependency between the memcg_nr_cache_ids and the slab_mutex, this patch introduces a special rwsem. The rwsem is held for writing during memcg_caches arrays relocation and memcg_nr_cache_ids updates. Therefore one can take it for reading to get a stable access to memcg_caches arrays and/or memcg_nr_cache_ids. Currently the semaphore is taken for reading only from kmem_cache_create, right before taking the slab_mutex, so right now there's no much point in using rwsem instead of mutex. However, once list_lru is made per-memcg it will allow list_lru initializations to proceed concurrently. Signed-off-by: NVladimir Davydov <vdavydov@parallels.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Greg Thelen <gthelen@google.com> Cc: Glauber Costa <glommer@gmail.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vladimir Davydov 提交于
memcg_limited_groups_array_size, which defines the size of memcg_caches arrays, sounds rather cumbersome. Also it doesn't point anyhow that it's related to kmem/caches stuff. So let's rename it to memcg_nr_cache_ids. It's concise and points us directly to memcg_cache_id. Also, rename kmem_limited_groups to memcg_cache_ida. Signed-off-by: NVladimir Davydov <vdavydov@parallels.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Greg Thelen <gthelen@google.com> Cc: Glauber Costa <glommer@gmail.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vladimir Davydov 提交于
This patch adds SHRINKER_MEMCG_AWARE flag. If a shrinker has this flag set, it will be called per memory cgroup. The memory cgroup to scan objects from is passed in shrink_control->memcg. If the memory cgroup is NULL, a memcg aware shrinker is supposed to scan objects from the global list. Unaware shrinkers are only called on global pressure with memcg=NULL. Signed-off-by: NVladimir Davydov <vdavydov@parallels.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Greg Thelen <gthelen@google.com> Cc: Glauber Costa <glommer@gmail.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 12 2月, 2015 3 次提交
-
-
由 Johannes Weiner 提交于
Introduce the basic control files to account, partition, and limit memory using cgroups in default hierarchy mode. This interface versioning allows us to address fundamental design issues in the existing memory cgroup interface, further explained below. The old interface will be maintained indefinitely, but a clearer model and improved workload performance should encourage existing users to switch over to the new one eventually. The control files are thus: - memory.current shows the current consumption of the cgroup and its descendants, in bytes. - memory.low configures the lower end of the cgroup's expected memory consumption range. The kernel considers memory below that boundary to be a reserve - the minimum that the workload needs in order to make forward progress - and generally avoids reclaiming it, unless there is an imminent risk of entering an OOM situation. - memory.high configures the upper end of the cgroup's expected memory consumption range. A cgroup whose consumption grows beyond this threshold is forced into direct reclaim, to work off the excess and to throttle new allocations heavily, but is generally allowed to continue and the OOM killer is not invoked. - memory.max configures the hard maximum amount of memory that the cgroup is allowed to consume before the OOM killer is invoked. - memory.events shows event counters that indicate how often the cgroup was reclaimed while below memory.low, how often it was forced to reclaim excess beyond memory.high, how often it hit memory.max, and how often it entered OOM due to memory.max. This allows users to identify configuration problems when observing a degradation in workload performance. An overcommitted system will have an increased rate of low boundary breaches, whereas increased rates of high limit breaches, maximum hits, or even OOM situations will indicate internally overcommitted cgroups. For existing users of memory cgroups, the following deviations from the current interface are worth pointing out and explaining: - The original lower boundary, the soft limit, is defined as a limit that is per default unset. As a result, the set of cgroups that global reclaim prefers is opt-in, rather than opt-out. The costs for optimizing these mostly negative lookups are so high that the implementation, despite its enormous size, does not even provide the basic desirable behavior. First off, the soft limit has no hierarchical meaning. All configured groups are organized in a global rbtree and treated like equal peers, regardless where they are located in the hierarchy. This makes subtree delegation impossible. Second, the soft limit reclaim pass is so aggressive that it not just introduces high allocation latencies into the system, but also impacts system performance due to overreclaim, to the point where the feature becomes self-defeating. The memory.low boundary on the other hand is a top-down allocated reserve. A cgroup enjoys reclaim protection when it and all its ancestors are below their low boundaries, which makes delegation of subtrees possible. Secondly, new cgroups have no reserve per default and in the common case most cgroups are eligible for the preferred reclaim pass. This allows the new low boundary to be efficiently implemented with just a minor addition to the generic reclaim code, without the need for out-of-band data structures and reclaim passes. Because the generic reclaim code considers all cgroups except for the ones running low in the preferred first reclaim pass, overreclaim of individual groups is eliminated as well, resulting in much better overall workload performance. - The original high boundary, the hard limit, is defined as a strict limit that can not budge, even if the OOM killer has to be called. But this generally goes against the goal of making the most out of the available memory. The memory consumption of workloads varies during runtime, and that requires users to overcommit. But doing that with a strict upper limit requires either a fairly accurate prediction of the working set size or adding slack to the limit. Since working set size estimation is hard and error prone, and getting it wrong results in OOM kills, most users tend to err on the side of a looser limit and end up wasting precious resources. The memory.high boundary on the other hand can be set much more conservatively. When hit, it throttles allocations by forcing them into direct reclaim to work off the excess, but it never invokes the OOM killer. As a result, a high boundary that is chosen too aggressively will not terminate the processes, but instead it will lead to gradual performance degradation. The user can monitor this and make corrections until the minimal memory footprint that still gives acceptable performance is found. In extreme cases, with many concurrent allocations and a complete breakdown of reclaim progress within the group, the high boundary can be exceeded. But even then it's mostly better to satisfy the allocation from the slack available in other groups or the rest of the system than killing the group. Otherwise, memory.max is there to limit this type of spillover and ultimately contain buggy or even malicious applications. - The original control file names are unwieldy and inconsistent in many different ways. For example, the upper boundary hit count is exported in the memory.failcnt file, but an OOM event count has to be manually counted by listening to memory.oom_control events, and lower boundary / soft limit events have to be counted by first setting a threshold for that value and then counting those events. Also, usage and limit files encode their units in the filename. That makes the filenames very long, even though this is not information that a user needs to be reminded of every time they type out those names. To address these naming issues, as well as to signal clearly that the new interface carries a new configuration model, the naming conventions in it necessarily differ from the old interface. - The original limit files indicate the state of an unset limit with a very high number, and a configured limit can be unset by echoing -1 into those files. But that very high number is implementation and architecture dependent and not very descriptive. And while -1 can be understood as an underflow into the highest possible value, -2 or -10M etc. do not work, so it's not inconsistent. memory.low, memory.high, and memory.max will use the string "infinity" to indicate and set the highest possible value. [akpm@linux-foundation.org: use seq_puts() for basic strings] Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NMichal Hocko <mhocko@suse.cz> Cc: Vladimir Davydov <vdavydov@parallels.com> Cc: Greg Thelen <gthelen@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vladimir Davydov 提交于
Since commit b2052564 ("mm: memcontrol: continue cache reclaim from offlined groups") pages charged to a memory cgroup are not reparented when the cgroup is removed. Instead, they are supposed to be reclaimed in a regular way, along with pages accounted to online memory cgroups. However, an lruvec of an offline memory cgroup will sooner or later get so small that it will be scanned only at low scan priorities (see get_scan_count()). Therefore, if there are enough reclaimable pages in big lruvecs, pages accounted to offline memory cgroups will never be scanned at all, wasting memory. Fix this by unconditionally forcing scanning dead lruvecs from kswapd. [akpm@linux-foundation.org: fix build] Signed-off-by: NVladimir Davydov <vdavydov@parallels.com> Acked-by: NMichal Hocko <mhocko@suse.cz> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
The complexity of memcg page stat synchronization is currently leaking into the callsites, forcing them to keep track of the move_lock state and the IRQ flags. Simplify the API by tracking it in the memcg. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NMichal Hocko <mhocko@suse.cz> Reviewed-by: NVladimir Davydov <vdavydov@parallels.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 11 2月, 2015 2 次提交
-
-
由 Vladimir Davydov 提交于
mem_cgroup->memcg_slab_caches is a list of kmem caches corresponding to the given cgroup. Currently, it is only used on css free in order to destroy all caches corresponding to the memory cgroup being freed. The list is protected by memcg_slab_mutex. The mutex is also used to protect kmem_cache->memcg_params->memcg_caches arrays and synchronizes kmem_cache_destroy vs memcg_unregister_all_caches. However, we can perfectly get on without these two. To destroy all caches corresponding to a memory cgroup, we can walk over the global list of kmem caches, slab_caches, and we can do all the synchronization stuff using the slab_mutex instead of the memcg_slab_mutex. This patch therefore gets rid of the memcg_slab_caches and memcg_slab_mutex. Apart from this nice cleanup, it also: - assures that rcu_barrier() is called once at max when a root cache is destroyed or a memory cgroup is freed, no matter how many caches have SLAB_DESTROY_BY_RCU flag set; - fixes the race between kmem_cache_destroy and kmem_cache_create that exists, because memcg_cleanup_cache_params, which is called from kmem_cache_destroy after checking that kmem_cache->refcount=0, releases the slab_mutex, which gives kmem_cache_create a chance to make an alias to a cache doomed to be destroyed. Signed-off-by: NVladimir Davydov <vdavydov@parallels.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Acked-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vladimir Davydov 提交于
They are simple wrappers around memcg_{charge,uncharge}_kmem, so let's zap them and call these functions directly. Signed-off-by: NVladimir Davydov <vdavydov@parallels.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 14 12月, 2014 2 次提交
-
-
由 Vladimir Davydov 提交于
Suppose task @t that belongs to a memory cgroup @memcg is going to allocate an object from a kmem cache @c. The copy of @c corresponding to @memcg, @mc, is empty. Then if kmem_cache_alloc races with the memory cgroup destruction we can access the memory cgroup's copy of the cache after it was destroyed: CPU0 CPU1 ---- ---- [ current=@t @mc->memcg_params->nr_pages=0 ] kmem_cache_alloc(@c): call memcg_kmem_get_cache(@c); proceed to allocation from @mc: alloc a page for @mc: ... move @t from @memcg destroy @memcg: mem_cgroup_css_offline(@memcg): memcg_unregister_all_caches(@memcg): kmem_cache_destroy(@mc) add page to @mc We could fix this issue by taking a reference to a per-memcg cache, but that would require adding a per-cpu reference counter to per-memcg caches, which would look cumbersome. Instead, let's take a reference to a memory cgroup, which already has a per-cpu reference counter, in the beginning of kmem_cache_alloc to be dropped in the end, and move per memcg caches destruction from css offline to css free. As a side effect, per-memcg caches will be destroyed not one by one, but all at once when the last page accounted to the memory cgroup is freed. This doesn't sound as a high price for code readability though. Note, this patch does add some overhead to the kmem_cache_alloc hot path, but it is pretty negligible - it's just a function call plus a per cpu counter decrement, which is comparable to what we already have in memcg_kmem_get_cache. Besides, it's only relevant if there are memory cgroups with kmem accounting enabled. I don't think we can find a way to handle this race w/o it, because alloc_page called from kmem_cache_alloc may sleep so we can't flush all pending kmallocs w/o reference counting. Signed-off-by: NVladimir Davydov <vdavydov@parallels.com> Acked-by: NChristoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Zhang Zhen 提交于
The gfp was passed in but never used in this function. Signed-off-by: NZhang Zhen <zhenzhang.zhang@huawei.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 11 12月, 2014 6 次提交
-
-
由 Johannes Weiner 提交于
Now that the external page_cgroup data structure and its lookup is gone, let the generic bad_page() check for page->mem_cgroup sanity. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NMichal Hocko <mhocko@suse.cz> Acked-by: NVladimir Davydov <vdavydov@parallels.com> Acked-by: NDavid S. Miller <davem@davemloft.net> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Tejun Heo <tj@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
Memory cgroups used to have 5 per-page pointers. To allow users to disable that amount of overhead during runtime, those pointers were allocated in a separate array, with a translation layer between them and struct page. There is now only one page pointer remaining: the memcg pointer, that indicates which cgroup the page is associated with when charged. The complexity of runtime allocation and the runtime translation overhead is no longer justified to save that *potential* 0.19% of memory. With CONFIG_SLUB, page->mem_cgroup actually sits in the doubleword padding after the page->private member and doesn't even increase struct page, and then this patch actually saves space. Remaining users that care can still compile their kernels without CONFIG_MEMCG. text data bss dec hex filename 8828345 1725264 983040 11536649 b00909 vmlinux.old 8827425 1725264 966656 11519345 afc571 vmlinux.new [mhocko@suse.cz: update Documentation/cgroups/memory.txt] Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NMichal Hocko <mhocko@suse.cz> Acked-by: NVladimir Davydov <vdavydov@parallels.com> Acked-by: NDavid S. Miller <davem@davemloft.net> Acked-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Michal Hocko <mhocko@suse.cz> Cc: Vladimir Davydov <vdavydov@parallels.com> Cc: Tejun Heo <tj@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: NKonstantin Khlebnikov <koct9i@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
Since commit d7365e78 ("mm: memcontrol: fix missed end-writeback page accounting") mem_cgroup_end_page_stat consumes locked and flags variables directly rather than via pointers which might trigger C undefined behavior as those variables are initialized only in the slow path of mem_cgroup_begin_page_stat. Although mem_cgroup_end_page_stat handles parameters correctly and touches them only when they hold a sensible value it is caller which loads a potentially uninitialized value which then might allow compiler to do crazy things. I haven't seen any warning from gcc and it seems that the current version (4.9) doesn't exploit this type undefined behavior but Sasha has reported the following: UBSan: Undefined behaviour in mm/rmap.c:1084:2 load of value 255 is not a valid value for type '_Bool' CPU: 4 PID: 8304 Comm: rngd Not tainted 3.18.0-rc2-next-20141029-sasha-00039-g77ed13d-dirty #1427 Call Trace: dump_stack (lib/dump_stack.c:52) ubsan_epilogue (lib/ubsan.c:159) __ubsan_handle_load_invalid_value (lib/ubsan.c:482) page_remove_rmap (mm/rmap.c:1084 mm/rmap.c:1096) unmap_page_range (./arch/x86/include/asm/atomic.h:27 include/linux/mm.h:463 mm/memory.c:1146 mm/memory.c:1258 mm/memory.c:1279 mm/memory.c:1303) unmap_single_vma (mm/memory.c:1348) unmap_vmas (mm/memory.c:1377 (discriminator 3)) exit_mmap (mm/mmap.c:2837) mmput (kernel/fork.c:659) do_exit (./arch/x86/include/asm/thread_info.h:168 kernel/exit.c:462 kernel/exit.c:747) do_group_exit (include/linux/sched.h:775 kernel/exit.c:873) SyS_exit_group (kernel/exit.c:901) tracesys_phase2 (arch/x86/kernel/entry_64.S:529) Fix this by using pointer parameters for both locked and flags and be more robust for future compiler changes even though the current code is implemented correctly. Signed-off-by: NMichal Hocko <mhocko@suse.cz> Reported-by: NSasha Levin <sasha.levin@oracle.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
None of the mem_cgroup_same_or_subtree() callers actually require it to take the RCU lock, either because they hold it themselves or they have css references. Remove it. To make the API change clear, rename the leftover helper to mem_cgroup_is_descendant() to match cgroup_is_descendant(). Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Reviewed-by: NVladimir Davydov <vdavydov@parallels.com> Acked-by: NMichal Hocko <mhocko@suse.cz> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
The NULL in mm_match_cgroup() comes from a possibly exiting mm->owner. It makes a lot more sense to check where it's looked up, rather than check for it in __mem_cgroup_same_or_subtree() where it's unexpected. No other callsite passes NULL to __mem_cgroup_same_or_subtree(). Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Reviewed-by: NVladimir Davydov <vdavydov@parallels.com> Acked-by: NMichal Hocko <mhocko@suse.cz> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
Memory is internally accounted in bytes, using spinlock-protected 64-bit counters, even though the smallest accounting delta is a page. The counter interface is also convoluted and does too many things. Introduce a new lockless word-sized page counter API, then change all memory accounting over to it. The translation from and to bytes then only happens when interfacing with userspace. The removed locking overhead is noticable when scaling beyond the per-cpu charge caches - on a 4-socket machine with 144-threads, the following test shows the performance differences of 288 memcgs concurrently running a page fault benchmark: vanilla: 18631648.500498 task-clock (msec) # 140.643 CPUs utilized ( +- 0.33% ) 1,380,638 context-switches # 0.074 K/sec ( +- 0.75% ) 24,390 cpu-migrations # 0.001 K/sec ( +- 8.44% ) 1,843,305,768 page-faults # 0.099 M/sec ( +- 0.00% ) 50,134,994,088,218 cycles # 2.691 GHz ( +- 0.33% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 8,049,712,224,651 instructions # 0.16 insns per cycle ( +- 0.04% ) 1,586,970,584,979 branches # 85.176 M/sec ( +- 0.05% ) 1,724,989,949 branch-misses # 0.11% of all branches ( +- 0.48% ) 132.474343877 seconds time elapsed ( +- 0.21% ) lockless: 12195979.037525 task-clock (msec) # 133.480 CPUs utilized ( +- 0.18% ) 832,850 context-switches # 0.068 K/sec ( +- 0.54% ) 15,624 cpu-migrations # 0.001 K/sec ( +- 10.17% ) 1,843,304,774 page-faults # 0.151 M/sec ( +- 0.00% ) 32,811,216,801,141 cycles # 2.690 GHz ( +- 0.18% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 9,999,265,091,727 instructions # 0.30 insns per cycle ( +- 0.10% ) 2,076,759,325,203 branches # 170.282 M/sec ( +- 0.12% ) 1,656,917,214 branch-misses # 0.08% of all branches ( +- 0.55% ) 91.369330729 seconds time elapsed ( +- 0.45% ) On top of improved scalability, this also gets rid of the icky long long types in the very heart of memcg, which is great for 32 bit and also makes the code a lot more readable. Notable differences between the old and new API: - res_counter_charge() and res_counter_charge_nofail() become page_counter_try_charge() and page_counter_charge() resp. to match the more common kernel naming scheme of try_do()/do() - res_counter_uncharge_until() is only ever used to cancel a local counter and never to uncharge bigger segments of a hierarchy, so it's replaced by the simpler page_counter_cancel() - res_counter_set_limit() is replaced by page_counter_limit(), which expects its callers to serialize against themselves - res_counter_memparse_write_strategy() is replaced by page_counter_limit(), which rounds down to the nearest page size - rather than up. This is more reasonable for explicitely requested hard upper limits. - to keep charging light-weight, page_counter_try_charge() charges speculatively, only to roll back if the result exceeds the limit. Because of this, a failing bigger charge can temporarily lock out smaller charges that would otherwise succeed. The error is bounded to the difference between the smallest and the biggest possible charge size, so for memcg, this means that a failing THP charge can send base page charges into reclaim upto 2MB (4MB) before the limit would have been reached. This should be acceptable. [akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse] [akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE] Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NMichal Hocko <mhocko@suse.cz> Acked-by: NVladimir Davydov <vdavydov@parallels.com> Cc: Tejun Heo <tj@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 30 10月, 2014 1 次提交
-
-
由 Johannes Weiner 提交于
Commit 0a31bc97 ("mm: memcontrol: rewrite uncharge API") changed page migration to uncharge the old page right away. The page is locked, unmapped, truncated, and off the LRU, but it could race with writeback ending, which then doesn't unaccount the page properly: test_clear_page_writeback() migration wait_on_page_writeback() TestClearPageWriteback() mem_cgroup_migrate() clear PCG_USED mem_cgroup_update_page_stat() if (PageCgroupUsed(pc)) decrease memcg pages under writeback release pc->mem_cgroup->move_lock The per-page statistics interface is heavily optimized to avoid a function call and a lookup_page_cgroup() in the file unmap fast path, which means it doesn't verify whether a page is still charged before clearing PageWriteback() and it has to do it in the stat update later. Rework it so that it looks up the page's memcg once at the beginning of the transaction and then uses it throughout. The charge will be verified before clearing PageWriteback() and migration can't uncharge the page as long as that is still set. The RCU lock will protect the memcg past uncharge. As far as losing the optimization goes, the following test results are from a microbenchmark that maps, faults, and unmaps a 4GB sparse file three times in a nested fashion, so that there are two negative passes that don't account but still go through the new transaction overhead. There is no actual difference: old: 33.195102545 seconds time elapsed ( +- 0.01% ) new: 33.199231369 seconds time elapsed ( +- 0.03% ) The time spent in page_remove_rmap()'s callees still adds up to the same, but the time spent in the function itself seems reduced: # Children Self Command Shared Object Symbol old: 0.12% 0.11% filemapstress [kernel.kallsyms] [k] page_remove_rmap new: 0.12% 0.08% filemapstress [kernel.kallsyms] [k] page_remove_rmap Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NMichal Hocko <mhocko@suse.cz> Cc: Vladimir Davydov <vdavydov@parallels.com> Cc: <stable@vger.kernel.org> [3.17.x] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 10 10月, 2014 2 次提交
-
-
由 Vladimir Davydov 提交于
`While growing per memcg caches arrays, we jump between memcontrol.c and slab_common.c in a weird way: memcg_alloc_cache_id - memcontrol.c memcg_update_all_caches - slab_common.c memcg_update_cache_size - memcontrol.c There's absolutely no reason why memcg_update_cache_size can't live on the slab's side though. So let's move it there and settle it comfortably amid per-memcg cache allocation functions. Besides, this patch cleans this function up a bit, removing all the useless comments from it, and renames it to memcg_update_cache_params to conform to memcg_alloc/free_cache_params, which we already have in slab_common.c. Signed-off-by: NVladimir Davydov <vdavydov@parallels.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NMichal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: Glauber Costa <glommer@gmail.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vladimir Davydov 提交于
The only reason why they live in memcontrol.c is that we get/put css reference to the owner memory cgroup in them. However, we can do that in memcg_{un,}register_cache. OTOH, there are several reasons to move them to slab_common.c. First, I think that the less public interface functions we have in memcontrol.h the better. Since the functions I move don't depend on memcontrol, I think it's worth making them private to slab, especially taking into account that the arrays are defined on the slab's side too. Second, the way how per-memcg arrays are updated looks rather awkward: it proceeds from memcontrol.c (__memcg_activate_kmem) to slab_common.c (memcg_update_all_caches) and back to memcontrol.c again (memcg_update_array_size). In the following patches I move the function relocating the arrays (memcg_update_array_size) to slab_common.c and therefore get rid this circular call path. I think we should have the cache allocation stuff in the same place where we have relocation, because it's easier to follow the code then. So I move arrays alloc/free functions to slab_common.c too. The third point isn't obvious. I'm going to make the list_lru structure per-memcg to allow targeted kmem reclaim. That means we will have per-memcg arrays in list_lrus too. It turns out that it's much easier to update these arrays in list_lru.c rather than in memcontrol.c, because all the stuff we need is defined there. This patch makes memcg caches arrays allocation path conform that of the upcoming list_lru. So let's move these functions to slab_common.c and make them static. Signed-off-by: NVladimir Davydov <vdavydov@parallels.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NMichal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: Glauber Costa <glommer@gmail.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 09 8月, 2014 1 次提交
-
-
由 Johannes Weiner 提交于
Pages are now uncharged at release time, and all sources of batched uncharges operate on lists of pages. Directly use those lists, and get rid of the per-task batching state. This also batches statistics accounting, in addition to the res counter charges, to reduce IRQ-disabling and re-enabling. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NMichal Hocko <mhocko@suse.cz> Cc: Hugh Dickins <hughd@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vladimir Davydov <vdavydov@parallels.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vladimir Davydov <vdavydov@parallels.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-