1. 27 7月, 2015 2 次提交
    • J
      tipc: introduce new tipc_sk_respond() function · bcd3ffd4
      Jon Paul Maloy 提交于
      Currently, we use the code sequence
      
      if (msg_reverse())
         tipc_link_xmit_skb()
      
      at numerous locations in socket.c. The preparation of arguments
      for these calls, as well as the sequence itself, makes the code
      unecessarily complex.
      
      In this commit, we introduce a new function, tipc_sk_respond(),
      that performs this call combination. We also replace some, but not
      yet all, of these explicit call sequences with calls to the new
      function. Notably, we let the function tipc_sk_proto_rcv() use
      the new function to directly send out PROBE_REPLY messages,
      instead of deferring this to the calling tipc_sk_rcv() function,
      as we do now.
      Reviewed-by: NYing Xue <ying.xue@windriver.com>
      Signed-off-by: NJon Maloy <jon.maloy@ericsson.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      bcd3ffd4
    • J
      tipc: let function tipc_msg_reverse() expand header when needed · 29042e19
      Jon Paul Maloy 提交于
      The shortest TIPC message header, for cluster local CONNECTED messages,
      is 24 bytes long. With this format, the fields "dest_node" and
      "orig_node" are optimized away, since they in reality are redundant
      in this particular case.
      
      However, the absence of these fields leads to code inconsistencies
      that are difficult to handle in some cases, especially when we need
      to reverse or reject messages at the socket layer.
      
      In this commit, we concentrate the handling of the absent fields
      to one place, by letting the function tipc_msg_reverse() reallocate
      the buffer and expand the header to 32 bytes when necessary. This
      means that the socket code now can assume that the two previously
      absent fields are present in the header when a message needs to be
      rejected. This opens up for some further simplifications of the
      socket code.
      Reviewed-by: NYing Xue <ying.xue@windriver.com>
      Signed-off-by: NJon Maloy <jon.maloy@ericsson.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      29042e19
  2. 21 7月, 2015 2 次提交
    • J
      tipc: reduce locking scope during packet reception · d999297c
      Jon Paul Maloy 提交于
      We convert packet/message reception according to the same principle
      we have been using for message sending and timeout handling:
      
      We move the function tipc_rcv() to node.c, hence handling the initial
      packet reception at the link aggregation level. The function grabs
      the node lock, selects the receiving link, and accesses it via a new
      call tipc_link_rcv(). This function appends buffers to the input
      queue for delivery upwards, but it may also append outgoing packets
      to the xmit queue, just as we do during regular message sending. The
      latter will happen when buffers are forwarded from the link backlog,
      or when retransmission is requested.
      
      Upon return of this function, and after having released the node lock,
      tipc_rcv() delivers/tranmsits the contents of those queues, but it may
      also perform actions such as link activation or reset, as indicated by
      the return flags from the link.
      
      This reduces the number of cpu cycles spent inside the node spinlock,
      and reduces contention on that lock.
      Reviewed-by: NYing Xue <ying.xue@windriver.com>
      Signed-off-by: NJon Maloy <jon.maloy@ericsson.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      d999297c
    • J
      tipc: introduce node contact FSM · 1a20cc25
      Jon Paul Maloy 提交于
      The logics for determining when a node is permitted to establish
      and maintain contact with its peer node becomes non-trivial in the
      presence of multiple parallel links that may come and go independently.
      
      A known failure scenario is that one endpoint registers both its links
      to the peer lost, cleans up it binding table, and prepares for a table
      update once contact is re-establihed, while the other endpoint may
      see its links reset and re-established one by one, hence seeing
      no need to re-synchronize the binding table. To avoid this, a node
      must not allow re-establishing contact until it has confirmation that
      even the peer has lost both links.
      
      Currently, the mechanism for handling this consists of setting and
      resetting two state flags from different locations in the code. This
      solution is hard to understand and maintain. A closer analysis even
      reveals that it is not completely safe.
      
      In this commit we do instead introduce an FSM that keeps track of
      the conditions for when the node can establish and maintain links.
      It has six states and four events, and is strictly based on explicit
      knowledge about the own node's and the peer node's contact states.
      Only events leading to state change are shown as edges in the figure
      below.
      
                                   +--------------+
                                   | SELF_UP/     |
                 +---------------->| PEER_COMING  |-----------------+
          SELF_  |                 +--------------+                 |PEER_
          ESTBL_ |                        |                         |ESTBL_
          CONTACT|      SELF_LOST_CONTACT |                         |CONTACT
                 |                        v                         |
                 |                 +--------------+                 |
                 |      PEER_      | SELF_DOWN/   |     SELF_       |
                 |      LOST_   +--| PEER_LEAVING |<--+ LOST_       v
      +-------------+   CONTACT |  +--------------+   | CONTACT  +-----------+
      | SELF_DOWN/  |<----------+                     +----------| SELF_UP/  |
      | PEER_DOWN   |<----------+                     +----------| PEER_UP   |
      +-------------+   SELF_   |  +--------------+   | PEER_    +-----------+
                 |      LOST_   +--| SELF_LEAVING/|<--+ LOST_       A
                 |      CONTACT    | PEER_DOWN    |     CONTACT     |
                 |                 +--------------+                 |
                 |                         A                        |
          PEER_  |       PEER_LOST_CONTACT |                        |SELF_
          ESTBL_ |                         |                        |ESTBL_
          CONTACT|                 +--------------+                 |CONTACT
                 +---------------->| PEER_UP/     |-----------------+
                                   | SELF_COMING  |
                                   +--------------+
      Reviewed-by: NYing Xue <ying.xue@windriver.com>
      Signed-off-by: NJon Maloy <jon.maloy@ericsson.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      1a20cc25
  3. 15 5月, 2015 3 次提交
    • J
      tipc: add packet sequence number at instant of transmission · dd3f9e70
      Jon Paul Maloy 提交于
      Currently, the packet sequence number is updated and added to each
      packet at the moment a packet is added to the link backlog queue.
      This is wasteful, since it forces the code to traverse the send
      packet list packet by packet when adding them to the backlog queue.
      It would be better to just splice the whole packet list into the
      backlog queue when that is the right action to do.
      
      In this commit, we do this change. Also, since the sequence numbers
      cannot now be assigned to the packets at the moment they are added
      the backlog queue, we do instead calculate and add them at the moment
      of transmission, when the backlog queue has to be traversed anyway.
      We do this in the function tipc_link_push_packet().
      Reviewed-by: NErik Hugne <erik.hugne@ericsson.com>
      Reviewed-by: NYing Xue <ying.xue@windriver.com>
      Signed-off-by: NJon Maloy <jon.maloy@ericsson.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      dd3f9e70
    • J
      tipc: improve link congestion algorithm · f21e897e
      Jon Paul Maloy 提交于
      The link congestion algorithm used until now implies two problems.
      
      - It is too generous towards lower-level messages in situations of high
        load by giving "absolute" bandwidth guarantees to the different
        priority levels. LOW traffic is guaranteed 10%, MEDIUM is guaranted
        20%, HIGH is guaranteed 30%, and CRITICAL is guaranteed 40% of the
        available bandwidth. But, in the absence of higher level traffic, the
        ratio between two distinct levels becomes unreasonable. E.g. if there
        is only LOW and MEDIUM traffic on a system, the former is guaranteed
        1/3 of the bandwidth, and the latter 2/3. This again means that if
        there is e.g. one LOW user and 10 MEDIUM users, the  former will have
        33.3% of the bandwidth, and the others will have to compete for the
        remainder, i.e. each will end up with 6.7% of the capacity.
      
      - Packets of type MSG_BUNDLER are created at SYSTEM importance level,
        but only after the packets bundled into it have passed the congestion
        test for their own respective levels. Since bundled packets don't
        result in incrementing the level counter for their own importance,
        only occasionally for the SYSTEM level counter, they do in practice
        obtain SYSTEM level importance. Hence, the current implementation
        provides a gap in the congestion algorithm that in the worst case
        may lead to a link reset.
      
      We now refine the congestion algorithm as follows:
      
      - A message is accepted to the link backlog only if its own level
        counter, and all superior level counters, permit it.
      
      - The importance of a created bundle packet is set according to its
        contents. A bundle packet created from messges at levels LOW to
        CRITICAL is given importance level CRITICAL, while a bundle created
        from a SYSTEM level message is given importance SYSTEM. In the latter
        case only subsequent SYSTEM level messages are allowed to be bundled
        into it.
      
      This solves the first problem described above, by making the bandwidth
      guarantee relative to the total number of users at all levels; only
      the upper limit for each level remains absolute. In the example
      described above, the single LOW user would use 1/11th of the bandwidth,
      the same as each of the ten MEDIUM users, but he still has the same
      guarantee against starvation as the latter ones.
      
      The fix also solves the second problem. If the CRITICAL level is filled
      up by bundle packets of that level, no lower level packets will be
      accepted any more.
      Suggested-by: NGergely Kiss <gergely.kiss@ericsson.com>
      Reviewed-by: NYing Xue <ying.xue@windriver.com>
      Signed-off-by: NJon Maloy <jon.maloy@ericsson.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      f21e897e
    • J
      tipc: simplify packet sequence number handling · e4bf4f76
      Jon Paul Maloy 提交于
      Although the sequence number in the TIPC protocol is 16 bits, we have
      until now stored it internally as an unsigned 32 bits integer.
      We got around this by always doing explicit modulo-65535 operations
      whenever we need to access a sequence number.
      
      We now make the incoming and outgoing sequence numbers to unsigned
      16-bit integers, and remove the modulo operations where applicable.
      
      We also move the arithmetic inline functions for 16 bit integers
      to core.h, and the function buf_seqno() to msg.h, so they can easily
      be accessed from anywhere in the code.
      Reviewed-by: NErik Hugne <erik.hugne@ericsson.com>
      Reviewed-by: NYing Xue <ying.xue@windriver.com>
      Signed-off-by: NJon Maloy <jon.maloy@ericsson.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      e4bf4f76
  4. 03 4月, 2015 1 次提交
    • J
      tipc: eliminate delayed link deletion at link failover · dff29b1a
      Jon Paul Maloy 提交于
      When a bearer is disabled manually, all its links have to be reset
      and deleted. However, if there is a remaining, parallel link ready
      to take over a deleted link's traffic, we currently delay the delete
      of the removed link until the failover procedure is finished. This
      is because the remaining link needs to access state from the reset
      link, such as the last received packet number, and any partially
      reassembled buffer, in order to perform a successful failover.
      
      In this commit, we do instead move the state data over to the new
      link, so that it can fulfill the procedure autonomously, without
      accessing any data on the old link. This means that we can now
      proceed and delete all pertaining links immediately when a bearer
      is disabled. This saves us from some unnecessary complexity in such
      situations.
      
      We also choose to change the confusing definitions CHANGEOVER_PROTOCOL,
      ORIGINAL_MSG and DUPLICATE_MSG to the more descriptive TUNNEL_PROTOCOL,
      FAILOVER_MSG and SYNCH_MSG respectively.
      Reviewed-by: NYing Xue <ying.xue@windriver.com>
      Signed-off-by: NJon Maloy <jon.maloy@ericsson.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      dff29b1a
  5. 26 3月, 2015 2 次提交
    • J
      tipc: eliminate race condition at dual link establishment · 8b4ed863
      Jon Paul Maloy 提交于
      Despite recent improvements, the establishment of dual parallel
      links still has a small glitch where messages can bypass each
      other. When the second link in a dual-link configuration is
      established, part of the first link's traffic will be steered over
      to the new link. Although we do have a mechanism to ensure that
      packets sent before and after the establishment of the new link
      arrive in sequence to the destination node, this is not enough.
      The arriving messages will still be delivered upwards in different
      threads, something entailing a risk of message disordering during
      the transition phase.
      
      To fix this, we introduce a synchronization mechanism between the
      two parallel links, so that traffic arriving on the new link cannot
      be added to its input queue until we are guaranteed that all
      pre-establishment messages have been delivered on the old, parallel
      link.
      
      This problem seems to always have been around, but its occurrence is
      so rare that it has not been noticed until recent intensive testing.
      Reviewed-by: NYing Xue <ying.xue@windriver.com>
      Reviewed-by: NErik Hugne <erik.hugne@ericsson.com>
      Signed-off-by: NJon Maloy <jon.maloy@ericsson.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      8b4ed863
    • J
      tipc: clean up handling of link congestion · 3127a020
      Jon Paul Maloy 提交于
      After the recent changes in message importance handling it becomes
      possible to simplify handling of messages and sockets when we
      encounter link congestion.
      
      We merge the function tipc_link_cong() into link_schedule_user(),
      and simplify the code of the latter. The code should now be
      easier to follow, especially regarding return codes and handling
      of the message that caused the situation.
      
      In case the scheduling function is unable to pre-allocate a wakeup
      message buffer, it now returns -ENOBUFS, which is a more correct
      code than the previously used -EHOSTUNREACH.
      Reviewed-by: NYing Xue <ying.xue@windriver.com>
      Reviewed-by: NErik Hugne <erik.hugne@ericsson.com>
      Signed-off-by: NJon Maloy <jon.maloy@ericsson.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      3127a020
  6. 15 3月, 2015 4 次提交
    • J
      tipc: clean up handling of message priorities · e3eea1eb
      Jon Paul Maloy 提交于
      Messages transferred by TIPC are assigned an "importance priority", -an
      integer value indicating how to treat the message when there is link or
      destination socket congestion.
      
      There is no separate header field for this value. Instead, the message
      user values have been chosen in ascending order according to perceived
      importance, so that the message user field can be used for this.
      
      This is not a good solution. First, we have many more users than the
      needed priority levels, so we end up with treating more priority
      levels than necessary. Second, the user field cannot always
      accurately reflect the priority of the message. E.g., a message
      fragment packet should really have the priority of the enveloped
      user data message, and not the priority of the MSG_FRAGMENTER user.
      Until now, we have been working around this problem in different ways,
      but it is now time to implement a consistent way of handling such
      priorities, although still within the constraint that we cannot
      allocate any more bits in the regular data message header for this.
      
      In this commit, we define a new priority level, TIPC_SYSTEM_IMPORTANCE,
      that will be the only one used apart from the four (lower) user data
      levels. All non-data messages map down to this priority. Furthermore,
      we take some free bits from the MSG_FRAGMENTER header and allocate
      them to store the priority of the enveloped message. We then adjust
      the functions msg_importance()/msg_set_importance() so that they
      read/set the correct header fields depending on user type.
      
      This small protocol change is fully compatible, because the code at
      the receiving end of a link currently reads the importance level
      only from user data messages, where there is no change.
      Reviewed-by: NErik Hugne <erik.hugne@ericsson.com>
      Signed-off-by: NJon Maloy <jon.maloy@ericsson.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      e3eea1eb
    • J
      tipc: split link outqueue · 05dcc5aa
      Jon Paul Maloy 提交于
      struct tipc_link contains one single queue for outgoing packets,
      where both transmitted and waiting packets are queued.
      
      This infrastructure is hard to maintain, because we need
      to keep a number of fields to keep track of which packets are
      sent or unsent, and the number of packets in each category.
      
      A lot of code becomes simpler if we split this queue into a transmission
      queue, where sent/unacknowledged packets are kept, and a backlog queue,
      where we keep the not yet sent packets.
      
      In this commit we do this separation.
      Reviewed-by: NErik Hugne <erik.hugne@ericsson.com>
      Reviewed-by: NYing Xue <ying.xue@windriver.com>
      Signed-off-by: NJon Maloy <jon.maloy@ericsson.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      05dcc5aa
    • J
      tipc: move message validation function to msg.c · cf2157f8
      Jon Paul Maloy 提交于
      The function link_buf_validate() is in reality re-entrant and context
      independent, and will in later commits be called from several locations.
      Therefore, we move it to msg.c, make it outline and rename the it to
      tipc_msg_validate().
      
      We also redesign the function to make proper use of pskb_may_pull()
      Signed-off-by: NJon Maloy <jon.maloy@ericsson.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      cf2157f8
    • J
      tipc: add framework for node capabilities exchange · 7764d6e8
      Jon Paul Maloy 提交于
      The TIPC protocol spec has defined a 13 bit capability bitmap in
      the neighbor discovery header, as a means to maintain compatibility
      between different code and protocol generations. Until now this field
      has been unused.
      
      We now introduce the basic framework for exchanging capabilities
      between nodes at first contact. After exchange, a peer node's
      capabilities are stored as a 16 bit bitmap in struct tipc_node.
      Reviewed-by: NErik Hugne <erik.hugne@ericsson.com>
      Reviewed-by: NYing Xue <ying.xue@windriver.com>
      Signed-off-by: NJon Maloy <jon.maloy@ericsson.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      7764d6e8
  7. 06 3月, 2015 1 次提交
  8. 28 2月, 2015 1 次提交
  9. 06 2月, 2015 4 次提交
    • J
      tipc: eliminate race condition at multicast reception · cb1b7280
      Jon Paul Maloy 提交于
      In a previous commit in this series we resolved a race problem during
      unicast message reception.
      
      Here, we resolve the same problem at multicast reception. We apply the
      same technique: an input queue serializing the delivery of arriving
      buffers. The main difference is that here we do it in two steps.
      First, the broadcast link feeds arriving buffers into the tail of an
      arrival queue, which head is consumed at the socket level, and where
      destination lookup is performed. Second, if the lookup is successful,
      the resulting buffer clones are fed into a second queue, the input
      queue. This queue is consumed at reception in the socket just like
      in the unicast case. Both queues are protected by the same lock, -the
      one of the input queue.
      Reviewed-by: NYing Xue <ying.xue@windriver.com>
      Signed-off-by: NJon Maloy <jon.maloy@ericsson.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      cb1b7280
    • J
      tipc: resolve race problem at unicast message reception · c637c103
      Jon Paul Maloy 提交于
      TIPC handles message cardinality and sequencing at the link layer,
      before passing messages upwards to the destination sockets. During the
      upcall from link to socket no locks are held. It is therefore possible,
      and we see it happen occasionally, that messages arriving in different
      threads and delivered in sequence still bypass each other before they
      reach the destination socket. This must not happen, since it violates
      the sequentiality guarantee.
      
      We solve this by adding a new input buffer queue to the link structure.
      Arriving messages are added safely to the tail of that queue by the
      link, while the head of the queue is consumed, also safely, by the
      receiving socket. Sequentiality is secured per socket by only allowing
      buffers to be dequeued inside the socket lock. Since there may be multiple
      simultaneous readers of the queue, we use a 'filter' parameter to reduce
      the risk that they peek the same buffer from the queue, hence also
      reducing the risk of contention on the receiving socket locks.
      
      This solves the sequentiality problem, and seems to cause no measurable
      performance degradation.
      
      A nice side effect of this change is that lock handling in the functions
      tipc_rcv() and tipc_bcast_rcv() now becomes uniform, something that
      will enable future simplifications of those functions.
      Reviewed-by: NYing Xue <ying.xue@windriver.com>
      Signed-off-by: NJon Maloy <jon.maloy@ericsson.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      c637c103
    • J
      tipc: split up function tipc_msg_eval() · e3a77561
      Jon Paul Maloy 提交于
      The function tipc_msg_eval() is in reality doing two related, but
      different tasks. First it tries to find a new destination for named
      messages, in case there was no first lookup, or if the first lookup
      failed. Second, it does what its name suggests, evaluating the validity
      of the message and its destination, and returning an appropriate error
      code depending on the result.
      
      This is confusing, and in this commit we choose to break it up into two
      functions. A new function, tipc_msg_lookup_dest(), first attempts to find
      a new destination, if the message is of the right type. If this lookup
      fails, or if the message should not be subject to a second lookup, the
      already existing tipc_msg_reverse() is called. This function performs
      prepares the message for rejection, if applicable.
      Reviewed-by: NYing Xue <ying.xue@windriver.com>
      Signed-off-by: NJon Maloy <jon.maloy@ericsson.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      e3a77561
    • J
      tipc: reduce usage of context info in socket and link · c5898636
      Jon Paul Maloy 提交于
      The most common usage of namespace information is when we fetch the
      own node addess from the net structure. This leads to a lot of
      passing around of a parameter of type 'struct net *' between
      functions just to make them able to obtain this address.
      
      However, in many cases this is unnecessary. The own node address
      is readily available as a member of both struct tipc_sock and
      tipc_link, and can be fetched from there instead.
      The fact that the vast majority of functions in socket.c and link.c
      anyway are maintaining a pointer to their respective base structures
      makes this option even more compelling.
      
      In this commit, we introduce the inline functions tsk_own_node()
      and link_own_node() to make it easy for functions to fetch the node
      address from those structs instead of having to pass along and
      dereference the namespace struct.
      
      In particular, we make calls to the msg_xx() functions in msg.{h,c}
      context independent by directly passing them the own node address
      as parameter when needed. Those functions should be regarded as
      leaves in the code dependency tree, and it is hence desirable to
      keep them namspace unaware.
      
      Apart from a potential positive effect on cache behavior, these
      changes make it easier to introduce the changes that will follow
      later in this series.
      Reviewed-by: NYing Xue <ying.xue@windriver.com>
      Signed-off-by: NJon Maloy <jon.maloy@ericsson.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      c5898636
  10. 13 1月, 2015 5 次提交
  11. 27 11月, 2014 3 次提交
  12. 24 11月, 2014 1 次提交
  13. 24 8月, 2014 2 次提交
    • J
      tipc: use pseudo message to wake up sockets after link congestion · 50100a5e
      Jon Paul Maloy 提交于
      The current link implementation keeps a linked list of blocked ports/
      sockets that is populated when there is link congestion. The purpose
      of this is to let the link know which users to wake up when the
      congestion abates.
      
      This adds unnecessary complexity to the data structure and the code,
      since it forces us to involve the link each time we want to delete
      a socket. It also forces us to grab the spinlock port_lock within
      the scope of node_lock. We want to get rid of this direct dependence,
      as well as the deadlock hazard resulting from the usage of port_lock.
      
      In this commit, we instead let the link keep list of a "wakeup" pseudo
      messages for use in such situations. Those messages are sent to the
      pending sockets via the ordinary message reception path, and wake up
      the socket's owner when they are received.
      
      This enables us to get rid of the 'waiting_ports' linked lists in struct
      tipc_port that manifest this direct reference. As a consequence, we can
      eliminate another BH entry into the socket, and hence the need to grab
      port_lock. This is a further step in our effort to remove port_lock
      altogether.
      Signed-off-by: NJon Maloy <jon.maloy@ericsson.com>
      Reviewed-by: NErik Hugne <erik.hugne@ericsson.com>
      Reviewed-by: NYing Xue <ying.xue@windriver.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      50100a5e
    • J
      tipc: introduce new function tipc_msg_create() · 1dd0bd2b
      Jon Paul Maloy 提交于
      The function tipc_msg_init() has turned out to be of limited value
      in many cases. It take too few parameters to be usable for creating
      a complete message, it makes too many assumptions about what the
      message should be used for, and it does not allocate any buffer to
      be returned to the caller.
      
      Therefore, we now introduce the new function tipc_msg_create(), which
      takes all the parameters needed to create a full message, and returns
      a buffer of the requested size. The new function will be very useful
      for the changes we will be doing in later commits in this series.
      Signed-off-by: NJon Maloy <jon.maloy@ericsson.com>
      Reviewed-by: NErik Hugne <erik.hugne@ericsson.com>
      Reviewed-by: NYing Xue <ying.xue@windriver.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      1dd0bd2b
  14. 17 7月, 2014 3 次提交
  15. 28 6月, 2014 4 次提交
    • J
      tipc: introduce message evaluation function · 5a379074
      Jon Paul Maloy 提交于
      When a message arrives in a node and finds no destination
      socket, we may need to drop it, reject it, or forward it after
      a secondary destination lookup. The latter two cases currently
      results in a code path that is perceived as complex, because it
      follows a deep call chain via obscure functions such as
      net_route_named_msg() and net_route_msg().
      
      We now introduce a function, tipc_msg_eval(), that takes the
      decision about whether such a message should be rejected or
      forwarded, but leaves it to the caller to actually perform
      the indicated action.
      
      If the decision is 'reject', it is still the task of the recently
      introduced function tipc_msg_reverse() to take the final decision
      about whether the message is rejectable or not. In the latter case
      it drops the message.
      
      As a result of this change, we can finally eliminate the function
      net_route_named_msg(), and hence become independent of net_route_msg().
      Signed-off-by: NJon Maloy <jon.maloy@ericsson.com>
      Reviewed-by: NErik Hugne <erik.hugne@ericsson.com>
      Reviewed-by: NYing Xue <ying.xue@windriver.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      5a379074
    • J
      tipc: separate building and sending of rejected messages · 8db1bae3
      Jon Paul Maloy 提交于
      The way we build and send rejected message is currenty perceived as
      hard to follow, partly because we let the transmission go via deep
      call chains through functions such as tipc_reject_msg() and
      net_route_msg().
      
      We want to remove those functions, and make the call sequences shallower
      and simpler. For this purpose, we separate building and sending of
      rejected messages. We build the reject message using the new function
      tipc_msg_reverse(), and let the transmission go via the newly introduced
      tipc_link_xmit2() function, as all transmission eventually will do. We
      also ensure that all calls to tipc_link_xmit2() are made outside
      port_lock/bh_lock_sock.
      
      Finally, we replace all calls to tipc_reject_msg() with the two new
      calls at all locations in the code that we want to keep. The remaining
      calls are made from code that we are planning to remove, along with
      tipc_reject_msg() itself.
      Signed-off-by: NJon Maloy <jon.maloy@ericsson.com>
      Reviewed-by: NErik Hugne <erik.hugne@ericsson.com>
      Reviewed-by: NYing Xue <ying.xue@windriver.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      8db1bae3
    • J
      tipc: introduce direct iovec to buffer chain fragmentation function · 067608e9
      Jon Paul Maloy 提交于
      Fragmentation at message sending is currently performed in two
      places in link.c, depending on whether data to be transmitted
      is delivered in the form of an iovec or as a big sk_buff. Those
      functions are also tightly entangled with the send functions
      that are using them.
      
      We now introduce a re-entrant, standalone function, tipc_msg_build2(),
      that builds a packet chain directly from an iovec. Each fragment is
      sized according to the MTU value given by the caller, and is prepended
      with a correctly built fragment header, when needed. The function is
      independent from who is calling and where the chain will be delivered,
      as long as the caller is able to indicate a correct MTU.
      
      The function is tested, but not called by anybody yet. Since it is
      incompatible with the existing tipc_msg_build(), and we cannot yet
      remove that function, we have given it a temporary name.
      Signed-off-by: NJon Maloy <jon.maloy@ericsson.com>
      Reviewed-by: NErik Hugne <erik.hugne@ericsson.com>
      Reviewed-by: NYing Xue <ying.xue@windriver.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      067608e9
    • J
      tipc: introduce send functions for chained buffers in link · 4f1688b2
      Jon Paul Maloy 提交于
      The current link implementation provides several different transmit
      functions, depending on the characteristics of the message to be
      sent: if it is an iovec or an sk_buff, if it needs fragmentation or
      not, if the caller holds the node_lock or not. The permutation of
      these options gives us an unwanted amount of unnecessarily complex
      code.
      
      As a first step towards simplifying the send path for all messages,
      we introduce two new send functions at link level, tipc_link_xmit2()
      and __tipc_link_xmit2(). The former looks up a link to the message
      destination, and if one is found, it grabs the node lock and calls
      the second function, which works exclusively inside the node lock
      protection. If no link is found, and the destination is on the same
      node, it delivers the message directly to the local destination
      socket.
      
      The new functions take a buffer chain where all packet headers are
      already prepared, and the correct MTU has been used. These two
      functions will later replace all other link-level transmit functions.
      
      The functions are not backwards compatible, so we have added them
      as new functions with temporary names. They are tested, but have no
      users yet. Those will be added later in this series.
      Signed-off-by: NJon Maloy <jon.maloy@ericsson.com>
      Reviewed-by: NErik Hugne <erik.hugne@ericsson.com>
      Reviewed-by: NYing Xue <ying.xue@windriver.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      4f1688b2
  16. 15 5月, 2014 1 次提交
  17. 08 11月, 2013 1 次提交
    • E
      tipc: message reassembly using fragment chain · 40ba3cdf
      Erik Hugne 提交于
      When the first fragment of a long data data message is received on a link, a
      reassembly buffer large enough to hold the data from this and all subsequent
      fragments of the message is allocated. The payload of each new fragment is
      copied into this buffer upon arrival. When the last fragment is received, the
      reassembled message is delivered upwards to the port/socket layer.
      
      Not only is this an inefficient approach, but it may also cause bursts of
      reassembly failures in low memory situations. since we may fail to allocate
      the necessary large buffer in the first place. Furthermore, after 100 subsequent
      such failures the link will be reset, something that in reality aggravates the
      situation.
      
      To remedy this problem, this patch introduces a different approach. Instead of
      allocating a big reassembly buffer, we now append the arriving fragments
      to a reassembly chain on the link, and deliver the whole chain up to the
      socket layer once the last fragment has been received. This is safe because
      the retransmission layer of a TIPC link always delivers packets in strict
      uninterrupted order, to the reassembly layer as to all other upper layers.
      Hence there can never be more than one fragment chain pending reassembly at
      any given time in a link, and we can trust (but still verify) that the
      fragments will be chained up in the correct order.
      Signed-off-by: NErik Hugne <erik.hugne@ericsson.com>
      Reviewed-by: NPaul Gortmaker <paul.gortmaker@windriver.com>
      Signed-off-by: NJon Maloy <jon.maloy@ericsson.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      40ba3cdf