- 08 6月, 2018 2 次提交
-
-
由 Roman Gushchin 提交于
This patch renames struct page_counter fields: count -> usage limit -> max and the corresponding functions: page_counter_limit() -> page_counter_set_max() mem_cgroup_get_limit() -> mem_cgroup_get_max() mem_cgroup_resize_limit() -> mem_cgroup_resize_max() memcg_update_kmem_limit() -> memcg_update_kmem_max() memcg_update_tcp_limit() -> memcg_update_tcp_max() The idea behind this renaming is to have the direct matching between memory cgroup knobs (low, high, max) and page_counters API. This is pure renaming, this patch doesn't bring any functional change. Link: http://lkml.kernel.org/r/20180405185921.4942-1-guro@fb.comSigned-off-by: NRoman Gushchin <guro@fb.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Tejun Heo 提交于
Add swap max and fail events so that userland can monitor and respond to running out of swap. I'm not too sure about the fail event. Right now, it's a bit confusing which stats / events are recursive and which aren't and also which ones reflect events which originate from a given cgroup and which targets the cgroup. No idea what the right long term solution is and it could just be that growing them organically is actually the only right thing to do. Link: http://lkml.kernel.org/r/20180416231151.GI1911913@devbig577.frc2.facebook.comSigned-off-by: NTejun Heo <tj@kernel.org> Reviewed-by: NAndrew Morton <akpm@linux-foundation.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Roman Gushchin <guro@fb.com> Cc: Rik van Riel <riel@surriel.com> Cc: <linux-api@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 12 4月, 2018 2 次提交
-
-
由 Johannes Weiner 提交于
Commit a983b5eb ("mm: memcontrol: fix excessive complexity in memory.stat reporting") added per-cpu drift to all memory cgroup stats and events shown in memory.stat and memory.events. For memory.stat this is acceptable. But memory.events issues file notifications, and somebody polling the file for changes will be confused when the counters in it are unchanged after a wakeup. Luckily, the events in memory.events - MEMCG_LOW, MEMCG_HIGH, MEMCG_MAX, MEMCG_OOM - are sufficiently rare and high-level that we don't need per-cpu buffering for them: MEMCG_HIGH and MEMCG_MAX would be the most frequent, but they're counting invocations of reclaim, which is a complex operation that touches many shared cachelines. This splits memory.events from the generic VM events and tracks them in their own, unbuffered atomic counters. That's also cleaner, as it eliminates the ugly enum nesting of VM and cgroup events. [hannes@cmpxchg.org: "array subscript is above array bounds"] Link: http://lkml.kernel.org/r/20180406155441.GA20806@cmpxchg.org Link: http://lkml.kernel.org/r/20180405175507.GA24817@cmpxchg.org Fixes: a983b5eb ("mm: memcontrol: fix excessive complexity in memory.stat reporting") Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Reported-by: NTejun Heo <tj@kernel.org> Acked-by: NTejun Heo <tj@kernel.org> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Roman Gushchin <guro@fb.com> Cc: Rik van Riel <riel@surriel.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andrey Ryabinin 提交于
memcg reclaim may alter pgdat->flags based on the state of LRU lists in cgroup and its children. PGDAT_WRITEBACK may force kswapd to sleep congested_wait(), PGDAT_DIRTY may force kswapd to writeback filesystem pages. But the worst here is PGDAT_CONGESTED, since it may force all direct reclaims to stall in wait_iff_congested(). Note that only kswapd have powers to clear any of these bits. This might just never happen if cgroup limits configured that way. So all direct reclaims will stall as long as we have some congested bdi in the system. Leave all pgdat->flags manipulations to kswapd. kswapd scans the whole pgdat, only kswapd can clear pgdat->flags once node is balanced, thus it's reasonable to leave all decisions about node state to kswapd. Why only kswapd? Why not allow to global direct reclaim change these flags? It is because currently only kswapd can clear these flags. I'm less worried about the case when PGDAT_CONGESTED falsely not set, and more worried about the case when it falsely set. If direct reclaimer sets PGDAT_CONGESTED, do we have guarantee that after the congestion problem is sorted out, kswapd will be woken up and clear the flag? It seems like there is no such guarantee. E.g. direct reclaimers may eventually balance pgdat and kswapd simply won't wake up (see wakeup_kswapd()). Moving pgdat->flags manipulation to kswapd, means that cgroup2 recalim now loses its congestion throttling mechanism. Add per-cgroup congestion state and throttle cgroup2 reclaimers if memcg is in congestion state. Currently there is no need in per-cgroup PGDAT_WRITEBACK and PGDAT_DIRTY bits since they alter only kswapd behavior. The problem could be easily demonstrated by creating heavy congestion in one cgroup: echo "+memory" > /sys/fs/cgroup/cgroup.subtree_control mkdir -p /sys/fs/cgroup/congester echo 512M > /sys/fs/cgroup/congester/memory.max echo $$ > /sys/fs/cgroup/congester/cgroup.procs /* generate a lot of diry data on slow HDD */ while true; do dd if=/dev/zero of=/mnt/sdb/zeroes bs=1M count=1024; done & .... while true; do dd if=/dev/zero of=/mnt/sdb/zeroes bs=1M count=1024; done & and some job in another cgroup: mkdir /sys/fs/cgroup/victim echo 128M > /sys/fs/cgroup/victim/memory.max # time cat /dev/sda > /dev/null real 10m15.054s user 0m0.487s sys 1m8.505s According to the tracepoint in wait_iff_congested(), the 'cat' spent 50% of the time sleeping there. With the patch, cat don't waste time anymore: # time cat /dev/sda > /dev/null real 5m32.911s user 0m0.411s sys 0m56.664s [aryabinin@virtuozzo.com: congestion state should be per-node] Link: http://lkml.kernel.org/r/20180406135215.10057-1-aryabinin@virtuozzo.com [ayabinin@virtuozzo.com: make congestion state per-cgroup-per-node instead of just per-cgroup[ Link: http://lkml.kernel.org/r/20180406180254.8970-2-aryabinin@virtuozzo.com Link: http://lkml.kernel.org/r/20180323152029.11084-5-aryabinin@virtuozzo.comSigned-off-by: NAndrey Ryabinin <aryabinin@virtuozzo.com> Reviewed-by: NShakeel Butt <shakeelb@google.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Tejun Heo <tj@kernel.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 22 2月, 2018 1 次提交
-
-
由 Johannes Weiner 提交于
After commit a983b5eb ("mm: memcontrol: fix excessive complexity in memory.stat reporting"), we observed slowly upward creeping NR_WRITEBACK counts over the course of several days, both the per-memcg stats as well as the system counter in e.g. /proc/meminfo. The conversion from full per-cpu stat counts to per-cpu cached atomic stat counts introduced an irq-unsafe RMW operation into the updates. Most stat updates come from process context, but one notable exception is the NR_WRITEBACK counter. While writebacks are issued from process context, they are retired from (soft)irq context. When writeback completions interrupt the RMW counter updates of new writebacks being issued, the decs from the completions are lost. Since the global updates are routed through the joint lruvec API, both the memcg counters as well as the system counters are affected. This patch makes the joint stat and event API irq safe. Link: http://lkml.kernel.org/r/20180203082353.17284-1-hannes@cmpxchg.org Fixes: a983b5eb ("mm: memcontrol: fix excessive complexity in memory.stat reporting") Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Debugged-by: NTejun Heo <tj@kernel.org> Reviewed-by: NRik van Riel <riel@surriel.com> Reviewed-by: NAndrew Morton <akpm@linux-foundation.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 01 2月, 2018 3 次提交
-
-
由 Johannes Weiner 提交于
We've seen memory.stat reads in top-level cgroups take up to fourteen seconds during a userspace bug that created tens of thousands of ghost cgroups pinned by lingering page cache. Even with a more reasonable number of cgroups, aggregating memory.stat is unnecessarily heavy. The complexity is this: nr_cgroups * nr_stat_items * nr_possible_cpus where the stat items are ~70 at this point. With 128 cgroups and 128 CPUs - decent, not enormous setups - reading the top-level memory.stat has to aggregate over a million per-cpu counters. This doesn't scale. Instead of spreading the source of truth across all CPUs, use the per-cpu counters merely to batch updates to shared atomic counters. This is the same as the per-cpu stocks we use for charging memory to the shared atomic page_counters, and also the way the global vmstat counters are implemented. Vmstat has elaborate spilling thresholds that depend on the number of CPUs, amount of memory, and memory pressure - carefully balancing the cost of counter updates with the amount of per-cpu error. That's because the vmstat counters are system-wide, but also used for decisions inside the kernel (e.g. NR_FREE_PAGES in the allocator). Neither is true for the memory controller. Use the same static batch size we already use for page_counter updates during charging. The per-cpu error in the stats will be 128k, which is an acceptable ratio of cores to memory accounting granularity. [hannes@cmpxchg.org: fix warning in __this_cpu_xchg() calls] Link: http://lkml.kernel.org/r/20171201135750.GB8097@cmpxchg.org Link: http://lkml.kernel.org/r/20171103153336.24044-3-hannes@cmpxchg.orgSigned-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NVladimir Davydov <vdavydov.dev@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
The implementation of the lruvec stat functions and their variants for accounting through a page, or accounting from a preemptible context, are mostly identical and needlessly repetitive. Implement the lruvec_page functions by looking up the page's lruvec and then using the lruvec function. Implement the functions for preemptible contexts by disabling preemption before calling the atomic context functions. Link: http://lkml.kernel.org/r/20171103153336.24044-2-hannes@cmpxchg.orgSigned-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NVladimir Davydov <vdavydov.dev@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
Replace all raw 'this_cpu_' modifications of the stat and event per-cpu counters with API functions such as mod_memcg_state(). This makes the code easier to read, but is also in preparation for the next patch, which changes the per-cpu implementation of those counters. Link: http://lkml.kernel.org/r/20171103153336.24044-1-hannes@cmpxchg.orgSigned-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NVladimir Davydov <vdavydov.dev@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 07 9月, 2017 1 次提交
-
-
由 Matthias Kaehlcke 提交于
Several functions use an enum type as parameter for an event/state, but are called in some locations with an argument of a different enum type. Adjust the interface of these functions to reality by changing the parameter to int. This fixes a ton of enum-conversion warnings that are generated when building the kernel with clang. [mka@chromium.org: also change parameter type of inc/dec/mod_memcg_page_state()] Link: http://lkml.kernel.org/r/20170728213442.93823-1-mka@chromium.org Link: http://lkml.kernel.org/r/20170727211004.34435-1-mka@chromium.orgSigned-off-by: NMatthias Kaehlcke <mka@chromium.org> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Doug Anderson <dianders@chromium.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 19 8月, 2017 1 次提交
-
-
由 Johannes Weiner 提交于
Jaegeuk and Brad report a NULL pointer crash when writeback ending tries to update the memcg stats: BUG: unable to handle kernel NULL pointer dereference at 00000000000003b0 IP: test_clear_page_writeback+0x12e/0x2c0 [...] RIP: 0010:test_clear_page_writeback+0x12e/0x2c0 Call Trace: <IRQ> end_page_writeback+0x47/0x70 f2fs_write_end_io+0x76/0x180 [f2fs] bio_endio+0x9f/0x120 blk_update_request+0xa8/0x2f0 scsi_end_request+0x39/0x1d0 scsi_io_completion+0x211/0x690 scsi_finish_command+0xd9/0x120 scsi_softirq_done+0x127/0x150 __blk_mq_complete_request_remote+0x13/0x20 flush_smp_call_function_queue+0x56/0x110 generic_smp_call_function_single_interrupt+0x13/0x30 smp_call_function_single_interrupt+0x27/0x40 call_function_single_interrupt+0x89/0x90 RIP: 0010:native_safe_halt+0x6/0x10 (gdb) l *(test_clear_page_writeback+0x12e) 0xffffffff811bae3e is in test_clear_page_writeback (./include/linux/memcontrol.h:619). 614 mod_node_page_state(page_pgdat(page), idx, val); 615 if (mem_cgroup_disabled() || !page->mem_cgroup) 616 return; 617 mod_memcg_state(page->mem_cgroup, idx, val); 618 pn = page->mem_cgroup->nodeinfo[page_to_nid(page)]; 619 this_cpu_add(pn->lruvec_stat->count[idx], val); 620 } 621 622 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 623 gfp_t gfp_mask, The issue is that writeback doesn't hold a page reference and the page might get freed after PG_writeback is cleared (and the mapping is unlocked) in test_clear_page_writeback(). The stat functions looking up the page's node or zone are safe, as those attributes are static across allocation and free cycles. But page->mem_cgroup is not, and it will get cleared if we race with truncation or migration. It appears this race window has been around for a while, but less likely to trigger when the memcg stats were updated first thing after PG_writeback is cleared. Recent changes reshuffled this code to update the global node stats before the memcg ones, though, stretching the race window out to an extent where people can reproduce the problem. Update test_clear_page_writeback() to look up and pin page->mem_cgroup before clearing PG_writeback, then not use that pointer afterward. It is a partial revert of 62cccb8c ("mm: simplify lock_page_memcg()") but leaves the pageref-holding callsites that aren't affected alone. Link: http://lkml.kernel.org/r/20170809183825.GA26387@cmpxchg.org Fixes: 62cccb8c ("mm: simplify lock_page_memcg()") Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Reported-by: NJaegeuk Kim <jaegeuk@kernel.org> Tested-by: NJaegeuk Kim <jaegeuk@kernel.org> Reported-by: NBradley Bolen <bradleybolen@gmail.com> Tested-by: NBrad Bolen <bradleybolen@gmail.com> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: <stable@vger.kernel.org> [4.6+] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 07 7月, 2017 5 次提交
-
-
由 Johannes Weiner 提交于
lruvecs are at the intersection of the NUMA node and memcg, which is the scope for most paging activity. Introduce a convenient accounting infrastructure that maintains statistics per node, per memcg, and the lruvec itself. Then convert over accounting sites for statistics that are already tracked in both nodes and memcgs and can be easily switched. [hannes@cmpxchg.org: fix crash in the new cgroup stat keeping code] Link: http://lkml.kernel.org/r/20170531171450.GA10481@cmpxchg.org [hannes@cmpxchg.org: don't track uncharged pages at all Link: http://lkml.kernel.org/r/20170605175254.GA8547@cmpxchg.org [hannes@cmpxchg.org: add missing free_percpu()] Link: http://lkml.kernel.org/r/20170605175354.GB8547@cmpxchg.org [linux@roeck-us.net: hexagon: fix build error caused by include file order] Link: http://lkml.kernel.org/r/20170617153721.GA4382@roeck-us.net Link: http://lkml.kernel.org/r/20170530181724.27197-6-hannes@cmpxchg.orgSigned-off-by: NJohannes Weiner <hannes@cmpxchg.org> Signed-off-by: NGuenter Roeck <linux@roeck-us.net> Acked-by: NVladimir Davydov <vdavydov.dev@gmail.com> Cc: Josef Bacik <josef@toxicpanda.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
The kmem-specific functions do the same thing. Switch and drop. Link: http://lkml.kernel.org/r/20170530181724.27197-5-hannes@cmpxchg.orgSigned-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NVladimir Davydov <vdavydov.dev@gmail.com> Cc: Josef Bacik <josef@toxicpanda.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
Now that the slab counters are moved from the zone to the node level we can drop the private memcg node stats and use the official ones. Link: http://lkml.kernel.org/r/20170530181724.27197-4-hannes@cmpxchg.orgSigned-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NVladimir Davydov <vdavydov.dev@gmail.com> Cc: Josef Bacik <josef@toxicpanda.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Konstantin Khlebnikov 提交于
Show count of oom killer invocations in /proc/vmstat and count of processes killed in memory cgroup in knob "memory.events" (in memory.oom_control for v1 cgroup). Also describe difference between "oom" and "oom_kill" in memory cgroup documentation. Currently oom in memory cgroup kills tasks iff shortage has happened inside page fault. These counters helps in monitoring oom kills - for now the only way is grepping for magic words in kernel log. [akpm@linux-foundation.org: fix for mem_cgroup_count_vm_event() rename] [akpm@linux-foundation.org: fix comment, per Konstantin] Link: http://lkml.kernel.org/r/149570810989.203600.9492483715840752937.stgit@buzzSigned-off-by: NKonstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Roman Guschin <guroan@gmail.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Roman Gushchin 提交于
Track the following reclaim counters for every memory cgroup: PGREFILL, PGSCAN, PGSTEAL, PGACTIVATE, PGDEACTIVATE, PGLAZYFREE and PGLAZYFREED. These values are exposed using the memory.stats interface of cgroup v2. The meaning of each value is the same as for global counters, available using /proc/vmstat. Also, for consistency, rename mem_cgroup_count_vm_event() to count_memcg_event_mm(). Link: http://lkml.kernel.org/r/1494530183-30808-1-git-send-email-guro@fb.comSigned-off-by: NRoman Gushchin <guro@fb.com> Suggested-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NMichal Hocko <mhocko@suse.com> Acked-by: NVladimir Davydov <vdavydov.dev@gmail.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Cc: Li Zefan <lizefan@huawei.com> Cc: Balbir Singh <bsingharora@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 04 5月, 2017 6 次提交
-
-
由 Johannes Weiner 提交于
The memory controllers stat function names are awkwardly long and arbitrarily different from the zone and node stat functions. The current interface is named: mem_cgroup_read_stat() mem_cgroup_update_stat() mem_cgroup_inc_stat() mem_cgroup_dec_stat() mem_cgroup_update_page_stat() mem_cgroup_inc_page_stat() mem_cgroup_dec_page_stat() This patch renames it to match the corresponding node stat functions: memcg_page_state() [node_page_state()] mod_memcg_state() [mod_node_state()] inc_memcg_state() [inc_node_state()] dec_memcg_state() [dec_node_state()] mod_memcg_page_state() [mod_node_page_state()] inc_memcg_page_state() [inc_node_page_state()] dec_memcg_page_state() [dec_node_page_state()] Link: http://lkml.kernel.org/r/20170404220148.28338-4-hannes@cmpxchg.orgSigned-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NVladimir Davydov <vdavydov.dev@gmail.com> Acked-by: NMichal Hocko <mhocko@suse.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
The current duplication is a high-maintenance mess, and it's painful to add new items or query memcg state from the rest of the VM. This increases the size of the stat array marginally, but we should aim to track all these stats on a per-cgroup level anyway. Link: http://lkml.kernel.org/r/20170404220148.28338-3-hannes@cmpxchg.orgSigned-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NVladimir Davydov <vdavydov.dev@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
The current duplication is a high-maintenance mess, and it's painful to add new items. This increases the size of the event array, but we'll eventually want most of the VM events tracked on a per-cgroup basis anyway. Link: http://lkml.kernel.org/r/20170404220148.28338-2-hannes@cmpxchg.orgSigned-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NVladimir Davydov <vdavydov.dev@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
We only ever count single events, drop the @nr parameter. Rename the function accordingly. Remove low-information kerneldoc. Link: http://lkml.kernel.org/r/20170404220148.28338-1-hannes@cmpxchg.orgSigned-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NVladimir Davydov <vdavydov.dev@gmail.com> Acked-by: NMichal Hocko <mhocko@suse.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
Since commit 59dc76b0 ("mm: vmscan: reduce size of inactive file list") we noticed bigger IO spikes during changes in cache access patterns. The patch in question shrunk the inactive list size to leave more room for the current workingset in the presence of streaming IO. However, workingset transitions that previously happened on the inactive list are now pushed out of memory and incur more refaults to complete. This patch disables active list protection when refaults are being observed. This accelerates workingset transitions, and allows more of the new set to establish itself from memory, without eating into the ability to protect the established workingset during stable periods. The workloads that were measurably affected for us were hit pretty bad by it, with refault/majfault rates doubling and tripling during cache transitions, and the machines sustaining half-hour periods of 100% IO utilization, where they'd previously have sub-minute peaks at 60-90%. Stateful services that handle user data tend to be more conservative with kernel upgrades. As a result we hit most page cache issues with some delay, as was the case here. The severity seemed to warrant a stable tag. Fixes: 59dc76b0 ("mm: vmscan: reduce size of inactive file list") Link: http://lkml.kernel.org/r/20170404220052.27593-1-hannes@cmpxchg.orgSigned-off-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: <stable@vger.kernel.org> [4.7+] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
Cgroups currently don't report how much shmem they use, which can be useful data to have, in particular since shmem is included in the cache/file item while being reclaimed like anonymous memory. Add a counter to track shmem pages during charging and uncharging. Link: http://lkml.kernel.org/r/20170221164343.32252-1-hannes@cmpxchg.orgSigned-off-by: NJohannes Weiner <hannes@cmpxchg.org> Reported-by: NChris Down <cdown@fb.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 01 4月, 2017 1 次提交
-
-
由 Johannes Weiner 提交于
Huge pages are accounted as single units in the memcg's "file_mapped" counter. Account the correct number of base pages, like we do in the corresponding node counter. Link: http://lkml.kernel.org/r/20170322005111.3156-1-hannes@cmpxchg.orgSigned-off-by: NJohannes Weiner <hannes@cmpxchg.org> Reviewed-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: <stable@vger.kernel.org> [4.8+] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 23 2月, 2017 2 次提交
-
-
由 Tejun Heo 提交于
If there's contention on slab_mutex, queueing the per-cache destruction work item on the system_wq can unnecessarily create and tie up a lot of kworkers. Rename memcg_kmem_cache_create_wq to memcg_kmem_cache_wq and make it global and use that workqueue for the destruction work items too. While at it, convert the workqueue from an unbound workqueue to a per-cpu one with concurrency limited to 1. It's generally preferable to use per-cpu workqueues and concurrency limit of 1 is safe enough. This is suggested by Joonsoo Kim. Link: http://lkml.kernel.org/r/20170117235411.9408-11-tj@kernel.orgSigned-off-by: NTejun Heo <tj@kernel.org> Reported-by: NJay Vana <jsvana@fb.com> Acked-by: NVladimir Davydov <vdavydov@tarantool.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Tejun Heo 提交于
With kmem cgroup support enabled, kmem_caches can be created and destroyed frequently and a great number of near empty kmem_caches can accumulate if there are a lot of transient cgroups and the system is not under memory pressure. When memory reclaim starts under such conditions, it can lead to consecutive deactivation and destruction of many kmem_caches, easily hundreds of thousands on moderately large systems, exposing scalability issues in the current slab management code. This is one of the patches to address the issue. While a memcg kmem_cache is listed on its root cache's ->children list, there is no direct way to iterate all kmem_caches which are assocaited with a memory cgroup. The only way to iterate them is walking all caches while filtering out caches which don't match, which would be most of them. This makes memcg destruction operations O(N^2) where N is the total number of slab caches which can be huge. This combined with the synchronous RCU operations can tie up a CPU and affect the whole machine for many hours when memory reclaim triggers offlining and destruction of the stale memcgs. This patch adds mem_cgroup->kmem_caches list which goes through memcg_cache_params->kmem_caches_node of all kmem_caches which are associated with the memcg. All memcg specific iterations, including stat file access, are updated to use the new list instead. Link: http://lkml.kernel.org/r/20170117235411.9408-6-tj@kernel.orgSigned-off-by: NTejun Heo <tj@kernel.org> Reported-by: NJay Vana <jsvana@fb.com> Acked-by: NVladimir Davydov <vdavydov.dev@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 11 1月, 2017 1 次提交
-
-
由 Michal Hocko 提交于
Nils Holland and Klaus Ethgen have reported unexpected OOM killer invocations with 32b kernel starting with 4.8 kernels kworker/u4:5 invoked oom-killer: gfp_mask=0x2400840(GFP_NOFS|__GFP_NOFAIL), nodemask=0, order=0, oom_score_adj=0 kworker/u4:5 cpuset=/ mems_allowed=0 CPU: 1 PID: 2603 Comm: kworker/u4:5 Not tainted 4.9.0-gentoo #2 [...] Mem-Info: active_anon:58685 inactive_anon:90 isolated_anon:0 active_file:274324 inactive_file:281962 isolated_file:0 unevictable:0 dirty:649 writeback:0 unstable:0 slab_reclaimable:40662 slab_unreclaimable:17754 mapped:7382 shmem:202 pagetables:351 bounce:0 free:206736 free_pcp:332 free_cma:0 Node 0 active_anon:234740kB inactive_anon:360kB active_file:1097296kB inactive_file:1127848kB unevictable:0kB isolated(anon):0kB isolated(file):0kB mapped:29528kB dirty:2596kB writeback:0kB shmem:0kB shmem_thp: 0kB shmem_pmdmapped: 184320kB anon_thp: 808kB writeback_tmp:0kB unstable:0kB pages_scanned:0 all_unreclaimable? no DMA free:3952kB min:788kB low:984kB high:1180kB active_anon:0kB inactive_anon:0kB active_file:7316kB inactive_file:0kB unevictable:0kB writepending:96kB present:15992kB managed:15916kB mlocked:0kB slab_reclaimable:3200kB slab_unreclaimable:1408kB kernel_stack:0kB pagetables:0kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB lowmem_reserve[]: 0 813 3474 3474 Normal free:41332kB min:41368kB low:51708kB high:62048kB active_anon:0kB inactive_anon:0kB active_file:532748kB inactive_file:44kB unevictable:0kB writepending:24kB present:897016kB managed:836248kB mlocked:0kB slab_reclaimable:159448kB slab_unreclaimable:69608kB kernel_stack:1112kB pagetables:1404kB bounce:0kB free_pcp:528kB local_pcp:340kB free_cma:0kB lowmem_reserve[]: 0 0 21292 21292 HighMem free:781660kB min:512kB low:34356kB high:68200kB active_anon:234740kB inactive_anon:360kB active_file:557232kB inactive_file:1127804kB unevictable:0kB writepending:2592kB present:2725384kB managed:2725384kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:0kB kernel_stack:0kB pagetables:0kB bounce:0kB free_pcp:800kB local_pcp:608kB free_cma:0kB the oom killer is clearly pre-mature because there there is still a lot of page cache in the zone Normal which should satisfy this lowmem request. Further debugging has shown that the reclaim cannot make any forward progress because the page cache is hidden in the active list which doesn't get rotated because inactive_list_is_low is not memcg aware. The code simply subtracts per-zone highmem counters from the respective memcg's lru sizes which doesn't make any sense. We can simply end up always seeing the resulting active and inactive counts 0 and return false. This issue is not limited to 32b kernels but in practice the effect on systems without CONFIG_HIGHMEM would be much harder to notice because we do not invoke the OOM killer for allocations requests targeting < ZONE_NORMAL. Fix the issue by tracking per zone lru page counts in mem_cgroup_per_node and subtract per-memcg highmem counts when memcg is enabled. Introduce helper lruvec_zone_lru_size which redirects to either zone counters or mem_cgroup_get_zone_lru_size when appropriate. We are losing empty LRU but non-zero lru size detection introduced by ca707239 ("mm: update_lru_size warn and reset bad lru_size") because of the inherent zone vs. node discrepancy. Fixes: f8d1a311 ("mm: consider whether to decivate based on eligible zones inactive ratio") Link: http://lkml.kernel.org/r/20170104100825.3729-1-mhocko@kernel.orgSigned-off-by: NMichal Hocko <mhocko@suse.com> Reported-by: NNils Holland <nholland@tisys.org> Tested-by: NNils Holland <nholland@tisys.org> Reported-by: NKlaus Ethgen <Klaus@Ethgen.de> Acked-by: NMinchan Kim <minchan@kernel.org> Acked-by: NMel Gorman <mgorman@suse.de> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Reviewed-by: NVladimir Davydov <vdavydov.dev@gmail.com> Cc: <stable@vger.kernel.org> [4.8+] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 08 10月, 2016 2 次提交
-
-
由 Johannes Weiner 提交于
The cgroup core and the memory controller need to track socket ownership for different purposes, but the tracking sites being entirely different is kind of ugly. Be a better citizen and rename the memory controller callbacks to match the cgroup core callbacks, then move them to the same place. [akpm@linux-foundation.org: coding-style fixes] Link: http://lkml.kernel.org/r/20160914194846.11153-3-hannes@cmpxchg.orgSigned-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NTejun Heo <tj@kernel.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Michal Hocko <mhocko@suse.cz> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vladimir Davydov 提交于
When selecting an oom victim, we use the same heuristic for both memory cgroup and global oom. The only difference is the scope of tasks to select the victim from. So we could just export an iterator over all memcg tasks and keep all oom related logic in oom_kill.c, but instead we duplicate pieces of it in memcontrol.c reusing some initially private functions of oom_kill.c in order to not duplicate all of it. That looks ugly and error prone, because any modification of select_bad_process should also be propagated to mem_cgroup_out_of_memory. Let's rework this as follows: keep all oom heuristic related code private to oom_kill.c and make oom_kill.c use exported memcg functions when it's really necessary (like in case of iterating over memcg tasks). Link: http://lkml.kernel.org/r/1470056933-7505-1-git-send-email-vdavydov@virtuozzo.comSigned-off-by: NVladimir Davydov <vdavydov@virtuozzo.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: David Rientjes <rientjes@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 29 7月, 2016 6 次提交
-
-
由 Andy Lutomirski 提交于
We should account for stacks regardless of stack size, and we need to account in sub-page units if THREAD_SIZE < PAGE_SIZE. Change the units to kilobytes and Move it into account_kernel_stack(). Fixes: 12580e4b ("mm: memcontrol: report kernel stack usage in cgroup2 memory.stat") Link: http://lkml.kernel.org/r/9b5314e3ee5eda61b0317ec1563768602c1ef438.1468523549.git.luto@kernel.orgSigned-off-by: NAndy Lutomirski <luto@kernel.org> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Reviewed-by: NJosh Poimboeuf <jpoimboe@redhat.com> Reviewed-by: NVladimir Davydov <vdavydov@virtuozzo.com> Acked-by: NMichal Hocko <mhocko@suse.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
Minchan Kim reported setting the following warning on a 32-bit system although it can affect 64-bit systems. WARNING: CPU: 4 PID: 1322 at mm/memcontrol.c:998 mem_cgroup_update_lru_size+0x103/0x110 mem_cgroup_update_lru_size(f44b4000, 1, -7): zid 1 lru_size 1 but empty Modules linked in: CPU: 4 PID: 1322 Comm: cp Not tainted 4.7.0-rc4-mm1+ #143 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011 Call Trace: dump_stack+0x76/0xaf __warn+0xea/0x110 ? mem_cgroup_update_lru_size+0x103/0x110 warn_slowpath_fmt+0x3b/0x40 mem_cgroup_update_lru_size+0x103/0x110 isolate_lru_pages.isra.61+0x2e2/0x360 shrink_active_list+0xac/0x2a0 ? __delay+0xe/0x10 shrink_node_memcg+0x53c/0x7a0 shrink_node+0xab/0x2a0 do_try_to_free_pages+0xc6/0x390 try_to_free_pages+0x245/0x590 LRU list contents and counts are updated separately. Counts are updated before pages are added to the LRU and updated after pages are removed. The warning above is from a check in mem_cgroup_update_lru_size that ensures that list sizes of zero are empty. The problem is that node-lru needs to account for highmem pages if CONFIG_HIGHMEM is set. One impact of the implementation is that the sizes are updated in multiple passes when pages from multiple zones were isolated. This happens whether HIGHMEM is set or not. When multiple zones are isolated, it's possible for a debugging check in memcg to be tripped. This patch forces all the zone counts to be updated before the memcg function is called. Link: http://lkml.kernel.org/r/1468588165-12461-6-git-send-email-mgorman@techsingularity.netSigned-off-by: NMel Gorman <mgorman@techsingularity.net> Tested-by: NMinchan Kim <minchan@kernel.org> Reported-by: NMinchan Kim <minchan@kernel.org> Acked-by: NMinchan Kim <minchan@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
Memcg needs adjustment after moving LRUs to the node. Limits are tracked per memcg but the soft-limit excess is tracked per zone. As global page reclaim is based on the node, it is easy to imagine a situation where a zone soft limit is exceeded even though the memcg limit is fine. This patch moves the soft limit tree the node. Technically, all the variable names should also change but people are already familiar by the meaning of "mz" even if "mn" would be a more appropriate name now. Link: http://lkml.kernel.org/r/1467970510-21195-15-git-send-email-mgorman@techsingularity.netSigned-off-by: NMel Gorman <mgorman@techsingularity.net> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
Earlier patches focused on having direct reclaim and kswapd use data that is node-centric for reclaiming but shrink_node() itself still uses too much zone information. This patch removes unnecessary zone-based information with the most important decision being whether to continue reclaim or not. Some memcg APIs are adjusted as a result even though memcg itself still uses some zone information. [mgorman@techsingularity.net: optimization] Link: http://lkml.kernel.org/r/1468588165-12461-2-git-send-email-mgorman@techsingularity.net Link: http://lkml.kernel.org/r/1467970510-21195-14-git-send-email-mgorman@techsingularity.netSigned-off-by: NMel Gorman <mgorman@techsingularity.net> Acked-by: NMichal Hocko <mhocko@suse.com> Acked-by: NVlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
This moves the LRU lists from the zone to the node and related data such as counters, tracing, congestion tracking and writeback tracking. Unfortunately, due to reclaim and compaction retry logic, it is necessary to account for the number of LRU pages on both zone and node logic. Most reclaim logic is based on the node counters but the retry logic uses the zone counters which do not distinguish inactive and active sizes. It would be possible to leave the LRU counters on a per-zone basis but it's a heavier calculation across multiple cache lines that is much more frequent than the retry checks. Other than the LRU counters, this is mostly a mechanical patch but note that it introduces a number of anomalies. For example, the scans are per-zone but using per-node counters. We also mark a node as congested when a zone is congested. This causes weird problems that are fixed later but is easier to review. In the event that there is excessive overhead on 32-bit systems due to the nodes being on LRU then there are two potential solutions 1. Long-term isolation of highmem pages when reclaim is lowmem When pages are skipped, they are immediately added back onto the LRU list. If lowmem reclaim persisted for long periods of time, the same highmem pages get continually scanned. The idea would be that lowmem keeps those pages on a separate list until a reclaim for highmem pages arrives that splices the highmem pages back onto the LRU. It potentially could be implemented similar to the UNEVICTABLE list. That would reduce the skip rate with the potential corner case is that highmem pages have to be scanned and reclaimed to free lowmem slab pages. 2. Linear scan lowmem pages if the initial LRU shrink fails This will break LRU ordering but may be preferable and faster during memory pressure than skipping LRU pages. Link: http://lkml.kernel.org/r/1467970510-21195-4-git-send-email-mgorman@techsingularity.netSigned-off-by: NMel Gorman <mgorman@techsingularity.net> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NVlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
Commit 23047a96 ("mm: workingset: per-cgroup cache thrash detection") added a page->mem_cgroup lookup to the cache eviction, refault, and activation paths, as well as locking to the activation path, and the vm-scalability tests showed a regression of -23%. While the test in question is an artificial worst-case scenario that doesn't occur in real workloads - reading two sparse files in parallel at full CPU speed just to hammer the LRU paths - there is still some optimizations that can be done in those paths. Inline the lookup functions to eliminate calls. Also, page->mem_cgroup doesn't need to be stabilized when counting an activation; we merely need to hold the RCU lock to prevent the memcg from being freed. This cuts down on overhead quite a bit: 23047a96 063f6715e77a7be5770d6081fe ---------------- -------------------------- %stddev %change %stddev \ | \ 21621405 +- 0% +11.3% 24069657 +- 2% vm-scalability.throughput [linux@roeck-us.net: drop unnecessary include file] [hannes@cmpxchg.org: add WARN_ON_ONCE()s] Link: http://lkml.kernel.org/r/20160707194024.GA26580@cmpxchg.org Link: http://lkml.kernel.org/r/20160624175101.GA3024@cmpxchg.orgReported-by: NYe Xiaolong <xiaolong.ye@intel.com> Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: NGuenter Roeck <linux@roeck-us.net> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 27 7月, 2016 1 次提交
-
-
由 Vladimir Davydov 提交于
- Handle memcg_kmem_enabled check out to the caller. This reduces the number of function definitions making the code easier to follow. At the same time it doesn't result in code bloat, because all of these functions are used only in one or two places. - Move __GFP_ACCOUNT check to the caller as well so that one wouldn't have to dive deep into memcg implementation to see which allocations are charged and which are not. - Refresh comments. Link: http://lkml.kernel.org/r/52882a28b542c1979fd9a033b4dc8637fc347399.1464079537.git.vdavydov@virtuozzo.comSigned-off-by: NVladimir Davydov <vdavydov@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 23 7月, 2016 1 次提交
-
-
由 Johannes Weiner 提交于
The memory controller has quite a bit of state that usually outlives the cgroup and pins its CSS until said state disappears. At the same time it imposes a 16-bit limit on the CSS ID space to economically store IDs in the wild. Consequently, when we use cgroups to contain frequent but small and short-lived jobs that leave behind some page cache, we quickly run into the 64k limitations of outstanding CSSs. Creating a new cgroup fails with -ENOSPC while there are only a few, or even no user-visible cgroups in existence. Although pinning CSSs past cgroup removal is common, there are only two instances that actually need an ID after a cgroup is deleted: cache shadow entries and swapout records. Cache shadow entries reference the ID weakly and can deal with the CSS having disappeared when it's looked up later. They pose no hurdle. Swap-out records do need to pin the css to hierarchically attribute swapins after the cgroup has been deleted; though the only pages that remain swapped out after offlining are tmpfs/shmem pages. And those references are under the user's control, so they are manageable. This patch introduces a private 16-bit memcg ID and switches swap and cache shadow entries over to using that. This ID can then be recycled after offlining when the CSS remains pinned only by objects that don't specifically need it. This script demonstrates the problem by faulting one cache page in a new cgroup and deleting it again: set -e mkdir -p pages for x in `seq 128000`; do [ $((x % 1000)) -eq 0 ] && echo $x mkdir /cgroup/foo echo $$ >/cgroup/foo/cgroup.procs echo trex >pages/$x echo $$ >/cgroup/cgroup.procs rmdir /cgroup/foo done When run on an unpatched kernel, we eventually run out of possible IDs even though there are no visible cgroups: [root@ham ~]# ./cssidstress.sh [...] 65000 mkdir: cannot create directory '/cgroup/foo': No space left on device After this patch, the IDs get released upon cgroup destruction and the cache and css objects get released once memory reclaim kicks in. [hannes@cmpxchg.org: init the IDR] Link: http://lkml.kernel.org/r/20160621154601.GA22431@cmpxchg.org Fixes: b2052564 ("mm: memcontrol: continue cache reclaim from offlined groups") Link: http://lkml.kernel.org/r/20160617162516.GD19084@cmpxchg.orgSigned-off-by: NJohannes Weiner <hannes@cmpxchg.org> Reported-by: NJohn Garcia <john.garcia@mesosphere.io> Reviewed-by: NVladimir Davydov <vdavydov@virtuozzo.com> Acked-by: NTejun Heo <tj@kernel.org> Cc: Nikolay Borisov <kernel@kyup.com> Cc: <stable@vger.kernel.org> [3.19+] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 21 5月, 2016 1 次提交
-
-
由 Rik van Riel 提交于
The inactive file list should still be large enough to contain readahead windows and freshly written file data, but it no longer is the only source for detecting multiple accesses to file pages. The workingset refault measurement code causes recently evicted file pages that get accessed again after a shorter interval to be promoted directly to the active list. With that mechanism in place, we can afford to (on a larger system) dedicate more memory to the active file list, so we can actually cache more of the frequently used file pages in memory, and not have them pushed out by streaming writes, once-used streaming file reads, etc. This can help things like database workloads, where only half the page cache can currently be used to cache the database working set. This patch automatically increases that fraction on larger systems, using the same ratio that has already been used for anonymous memory. [hannes@cmpxchg.org: cgroup-awareness] Signed-off-by: NRik van Riel <riel@redhat.com> Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Reported-by: NAndres Freund <andres@anarazel.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 20 5月, 2016 1 次提交
-
-
由 Hugh Dickins 提交于
Konstantin Khlebnikov pointed out (nearly four years ago, when lumpy reclaim was removed) that lru_size can be updated by -nr_taken once per call to isolate_lru_pages(), instead of page by page. Update it inside isolate_lru_pages(), or at its two callsites? I chose to update it at the callsites, rearranging and grouping the updates by nr_taken and nr_scanned together in both. With one exception, mem_cgroup_update_lru_size(,lru,) is then used where __mod_zone_page_state(,NR_LRU_BASE+lru,) is used; and we shall be adding some more calls in a future commit. Make the code a little smaller and simpler by incorporating stat update in lru_size update. The exception was move_active_pages_to_lru(), which aggregated the pgmoved stat update separately from the individual lru_size updates; but I still think this a simplification worth making. However, the __mod_zone_page_state is not peculiar to mem_cgroups: so better use the name update_lru_size, calls mem_cgroup_update_lru_size when CONFIG_MEMCG. Signed-off-by: NHugh Dickins <hughd@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andres Lagar-Cavilla <andreslc@google.com> Cc: Yang Shi <yang.shi@linaro.org> Cc: Ning Qu <quning@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 18 3月, 2016 3 次提交
-
-
由 Vladimir Davydov 提交于
Workingset code was recently made memcg aware, but shadow node shrinker is still global. As a result, one small cgroup can consume all memory available for shadow nodes, possibly hurting other cgroups by reclaiming their shadow nodes, even though reclaim distances stored in its shadow nodes have no effect. To avoid this, we need to make shadow node shrinker memcg aware. Signed-off-by: NVladimir Davydov <vdavydov@virtuozzo.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vladimir Davydov 提交于
As kmem accounting is now either enabled for all cgroups or disabled system-wide, there's no point in having memcg_kmem_online() helper - instead one can use memcg_kmem_enabled() and mem_cgroup_online(), as shrink_slab() now does. There are only two places left where this helper is used - __memcg_kmem_charge() and memcg_create_kmem_cache(). The former can only be called if memcg_kmem_enabled() returned true. Since the cgroup it operates on is online, mem_cgroup_is_root() check will be enough. memcg_create_kmem_cache() can't use mem_cgroup_online() helper instead of memcg_kmem_online(), because it relies on the fact that in memcg_offline_kmem() memcg->kmem_state is changed before memcg_deactivate_kmem_caches() is called, but there we can just open-code the check. Signed-off-by: NVladimir Davydov <vdavydov@virtuozzo.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vladimir Davydov 提交于
Show how much memory is allocated to kernel stacks. Signed-off-by: NVladimir Davydov <vdavydov@virtuozzo.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-