1. 07 8月, 2014 3 次提交
  2. 06 8月, 2014 7 次提交
    • W
      net-timestamp: ACK timestamp for bytestreams · e1c8a607
      Willem de Bruijn 提交于
      Add SOF_TIMESTAMPING_TX_ACK, a request for a tstamp when the last byte
      in the send() call is acknowledged. It implements the feature for TCP.
      
      The timestamp is generated when the TCP socket cumulative ACK is moved
      beyond the tracked seqno for the first time. The feature ignores SACK
      and FACK, because those acknowledge the specific byte, but not
      necessarily the entire contents of the buffer up to that byte.
      Signed-off-by: NWillem de Bruijn <willemb@google.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      e1c8a607
    • W
      net-timestamp: SCHED timestamp on entering packet scheduler · e7fd2885
      Willem de Bruijn 提交于
      Kernel transmit latency is often incurred in the packet scheduler.
      Introduce a new timestamp on transmission just before entering the
      scheduler. When data travels through multiple devices (bonding,
      tunneling, ...) each device will export an individual timestamp.
      Signed-off-by: NWillem de Bruijn <willemb@google.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      e7fd2885
    • W
      net-timestamp: add key to disambiguate concurrent datagrams · 09c2d251
      Willem de Bruijn 提交于
      Datagrams timestamped on transmission can coexist in the kernel stack
      and be reordered in packet scheduling. When reading looped datagrams
      from the socket error queue it is not always possible to unique
      correlate looped data with original send() call (for application
      level retransmits). Even if possible, it may be expensive and complex,
      requiring packet inspection.
      
      Introduce a data-independent ID mechanism to associate timestamps with
      send calls. Pass an ID alongside the timestamp in field ee_data of
      sock_extended_err.
      
      The ID is a simple 32 bit unsigned int that is associated with the
      socket and incremented on each send() call for which software tx
      timestamp generation is enabled.
      
      The feature is enabled only if SOF_TIMESTAMPING_OPT_ID is set, to
      avoid changing ee_data for existing applications that expect it 0.
      The counter is reset each time the flag is reenabled. Reenabling
      does not change the ID of already submitted data. It is possible
      to receive out of order IDs if the timestamp stream is not quiesced
      first.
      Signed-off-by: NWillem de Bruijn <willemb@google.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      09c2d251
    • W
      net-timestamp: extend SCM_TIMESTAMPING ancillary data struct · f24b9be5
      Willem de Bruijn 提交于
      Applications that request kernel tx timestamps with SO_TIMESTAMPING
      read timestamps as recvmsg() ancillary data. The response is defined
      implicitly as timespec[3].
      
      1) define struct scm_timestamping explicitly and
      
      2) add support for new tstamp types. On tx, scm_timestamping always
         accompanies a sock_extended_err. Define previously unused field
         ee_info to signal the type of ts[0]. Introduce SCM_TSTAMP_SND to
         define the existing behavior.
      
      The reception path is not modified. On rx, no struct similar to
      sock_extended_err is passed along with SCM_TIMESTAMPING.
      Signed-off-by: NWillem de Bruijn <willemb@google.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      f24b9be5
    • T
      random: introduce getrandom(2) system call · c6e9d6f3
      Theodore Ts'o 提交于
      The getrandom(2) system call was requested by the LibreSSL Portable
      developers.  It is analoguous to the getentropy(2) system call in
      OpenBSD.
      
      The rationale of this system call is to provide resiliance against
      file descriptor exhaustion attacks, where the attacker consumes all
      available file descriptors, forcing the use of the fallback code where
      /dev/[u]random is not available.  Since the fallback code is often not
      well-tested, it is better to eliminate this potential failure mode
      entirely.
      
      The other feature provided by this new system call is the ability to
      request randomness from the /dev/urandom entropy pool, but to block
      until at least 128 bits of entropy has been accumulated in the
      /dev/urandom entropy pool.  Historically, the emphasis in the
      /dev/urandom development has been to ensure that urandom pool is
      initialized as quickly as possible after system boot, and preferably
      before the init scripts start execution.
      
      This is because changing /dev/urandom reads to block represents an
      interface change that could potentially break userspace which is not
      acceptable.  In practice, on most x86 desktop and server systems, in
      general the entropy pool can be initialized before it is needed (and
      in modern kernels, we will printk a warning message if not).  However,
      on an embedded system, this may not be the case.  And so with this new
      interface, we can provide the functionality of blocking until the
      urandom pool has been initialized.  Any userspace program which uses
      this new functionality must take care to assure that if it is used
      during the boot process, that it will not cause the init scripts or
      other portions of the system startup to hang indefinitely.
      
      SYNOPSIS
      	#include <linux/random.h>
      
      	int getrandom(void *buf, size_t buflen, unsigned int flags);
      
      DESCRIPTION
      	The system call getrandom() fills the buffer pointed to by buf
      	with up to buflen random bytes which can be used to seed user
      	space random number generators (i.e., DRBG's) or for other
      	cryptographic uses.  It should not be used for Monte Carlo
      	simulations or other programs/algorithms which are doing
      	probabilistic sampling.
      
      	If the GRND_RANDOM flags bit is set, then draw from the
      	/dev/random pool instead of the /dev/urandom pool.  The
      	/dev/random pool is limited based on the entropy that can be
      	obtained from environmental noise, so if there is insufficient
      	entropy, the requested number of bytes may not be returned.
      	If there is no entropy available at all, getrandom(2) will
      	either block, or return an error with errno set to EAGAIN if
      	the GRND_NONBLOCK bit is set in flags.
      
      	If the GRND_RANDOM bit is not set, then the /dev/urandom pool
      	will be used.  Unlike using read(2) to fetch data from
      	/dev/urandom, if the urandom pool has not been sufficiently
      	initialized, getrandom(2) will block (or return -1 with the
      	errno set to EAGAIN if the GRND_NONBLOCK bit is set in flags).
      
      	The getentropy(2) system call in OpenBSD can be emulated using
      	the following function:
      
                  int getentropy(void *buf, size_t buflen)
                  {
                          int     ret;
      
                          if (buflen > 256)
                                  goto failure;
                          ret = getrandom(buf, buflen, 0);
                          if (ret < 0)
                                  return ret;
                          if (ret == buflen)
                                  return 0;
                  failure:
                          errno = EIO;
                          return -1;
                  }
      
      RETURN VALUE
             On success, the number of bytes that was filled in the buf is
             returned.  This may not be all the bytes requested by the
             caller via buflen if insufficient entropy was present in the
             /dev/random pool, or if the system call was interrupted by a
             signal.
      
             On error, -1 is returned, and errno is set appropriately.
      
      ERRORS
      	EINVAL		An invalid flag was passed to getrandom(2)
      
      	EFAULT		buf is outside the accessible address space.
      
      	EAGAIN		The requested entropy was not available, and
      			getentropy(2) would have blocked if the
      			GRND_NONBLOCK flag was not set.
      
      	EINTR		While blocked waiting for entropy, the call was
      			interrupted by a signal handler; see the description
      			of how interrupted read(2) calls on "slow" devices
      			are handled with and without the SA_RESTART flag
      			in the signal(7) man page.
      
      NOTES
      	For small requests (buflen <= 256) getrandom(2) will not
      	return EINTR when reading from the urandom pool once the
      	entropy pool has been initialized, and it will return all of
      	the bytes that have been requested.  This is the recommended
      	way to use getrandom(2), and is designed for compatibility
      	with OpenBSD's getentropy() system call.
      
      	However, if you are using GRND_RANDOM, then getrandom(2) may
      	block until the entropy accounting determines that sufficient
      	environmental noise has been gathered such that getrandom(2)
      	will be operating as a NRBG instead of a DRBG for those people
      	who are working in the NIST SP 800-90 regime.  Since it may
      	block for a long time, these guarantees do *not* apply.  The
      	user may want to interrupt a hanging process using a signal,
      	so blocking until all of the requested bytes are returned
      	would be unfriendly.
      
      	For this reason, the user of getrandom(2) MUST always check
      	the return value, in case it returns some error, or if fewer
      	bytes than requested was returned.  In the case of
      	!GRND_RANDOM and small request, the latter should never
      	happen, but the careful userspace code (and all crypto code
      	should be careful) should check for this anyway!
      
      	Finally, unless you are doing long-term key generation (and
      	perhaps not even then), you probably shouldn't be using
      	GRND_RANDOM.  The cryptographic algorithms used for
      	/dev/urandom are quite conservative, and so should be
      	sufficient for all purposes.  The disadvantage of GRND_RANDOM
      	is that it can block, and the increased complexity required to
      	deal with partially fulfilled getrandom(2) requests.
      Signed-off-by: NTheodore Ts'o <tytso@mit.edu>
      Reviewed-by: NZach Brown <zab@zabbo.net>
      c6e9d6f3
    • B
      regulator: act8865: add support for act8846 · ac0c0ea8
      Beniamino Galvani 提交于
      Add device id and definition of registers and regulators to support
      the act8846 PMU.
      Signed-off-by: NBeniamino Galvani <b.galvani@gmail.com>
      Tested-by: NWenyou Yang <wenyou.yang@atmel.com>
      Reviewed-by: NAxel Lin <axel.lin@ingics.com>
      Signed-off-by: NMark Brown <broonie@linaro.org>
      ac0c0ea8
    • B
      regulator: act8865: prepare support for other act88xx devices · 50a03e35
      Beniamino Galvani 提交于
      This patch prepares support for other devices in the act88xx family of
      PMUs manufactured by Active-Semi.
      
      http://www.active-semi.com/products/power-management-units/act88xx/Signed-off-by: NBeniamino Galvani <b.galvani@gmail.com>
      Tested-by: NWenyou Yang <wenyou.yang@atmel.com>
      Reviewed-by: NAxel Lin <axel.lin@ingics.com>
      Signed-off-by: NMark Brown <broonie@linaro.org>
      50a03e35
  3. 04 8月, 2014 1 次提交
  4. 03 8月, 2014 7 次提交
  5. 02 8月, 2014 1 次提交
    • J
      usb-core bInterval quirk · cd83ce9e
      James P Michels III 提交于
      This patch adds a usb quirk to support devices with interupt endpoints
      and bInterval values expressed as microframes. The quirk causes the
      parse endpoint function to modify the reported bInterval to a standards
      conforming value.
      
      There is currently code in the endpoint parser that checks for
      bIntervals that are outside of the valid range (1-16 for USB 2+ high
      speed and super speed interupt endpoints). In this case, the code assumes
      the bInterval is being reported in 1ms frames. As well, the correction
      is only applied if the original bInterval value is out of the 1-16 range.
      
      With this quirk applied to the device, the bInterval will be
      accurately adjusted from microframes to an exponent.
      Signed-off-by: NJames P Michels III <james.p.michels@gmail.com>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
      cd83ce9e
  6. 01 8月, 2014 4 次提交
  7. 31 7月, 2014 8 次提交
  8. 30 7月, 2014 7 次提交
  9. 29 7月, 2014 2 次提交