- 06 7月, 2012 19 次提交
-
-
由 Sage Weil 提交于
The peer name may change on each open attempt, even when the connection is reused. Signed-off-by: NSage Weil <sage@inktank.com>
-
由 Alex Elder 提交于
For some reason the declaration of ceph_con_get() and ceph_con_put() did not get deleted in this commit: d59315ca libceph: drop ceph_con_get/put helpers and nref member Clean that up. Signed-off-by: NAlex Elder <elder@inktank.com>
-
由 Alex Elder 提交于
Sage liked the state diagram I put in my commit description so I'm putting it in with the code. Signed-off-by: NAlex Elder <elder@inktank.com> Reviewed-by: NSage Weil <sage@inktank.com>
-
由 Alex Elder 提交于
This patch gathers a few small changes in "net/ceph/messenger.c": out_msg_pos_next() - small logic change that mostly affects indentation write_partial_msg_pages(). - use a local variable trail_off to represent the offset into a message of the trail portion of the data (if present) - once we are in the trail portion we will always be there, so we don't always need to check against our data position - avoid computing len twice after we've reached the trail - get rid of the variable tmpcrc, which is not needed - trail_off and trail_len never change so mark them const - update some comments read_partial_message_bio() - bio_iovec_idx() will never return an error, so don't bother checking for it Signed-off-by: NAlex Elder <elder@inktank.com> Reviewed-by: NSage Weil <sage@inktank.com>
-
由 Alex Elder 提交于
Currently a ceph connection enters a "CONNECTING" state when it begins the process of (re-)connecting with its peer. Once the two ends have successfully exchanged their banner and addresses, an additional NEGOTIATING bit is set in the ceph connection's state to indicate the connection information exhange has begun. The CONNECTING bit/state continues to be set during this phase. Rather than have the CONNECTING state continue while the NEGOTIATING bit is set, interpret these two phases as distinct states. In other words, when NEGOTIATING is set, clear CONNECTING. That way only one of them will be active at a time. Signed-off-by: NAlex Elder <elder@inktank.com> Reviewed-by: NSage Weil <sage@inktank.com>
-
由 Alex Elder 提交于
There are two phases in the process of linking together the two ends of a ceph connection. The first involves exchanging a banner and IP addresses, and if that is successful a second phase exchanges some detail about each side's connection capabilities. When initiating a connection, the client side now queues to send its information for both phases of this process at the same time. This is probably a bit more efficient, but it is slightly messier from a layering perspective in the code. So rearrange things so that the client doesn't send the connection information until it has received and processed the response in the initial banner phase (in process_banner()). Move the code (in the (con->sock == NULL) case in try_write()) that prepares for writing the connection information, delaying doing that until the banner exchange has completed. Move the code that begins the transition to this second "NEGOTIATING" phase out of process_banner() and into its caller, so preparing to write the connection information and preparing to read the response are adjacent to each other. Finally, preparing to write the connection information now requires the output kvec to be reset in all cases, so move that into the prepare_write_connect() and delete it from all callers. Signed-off-by: NAlex Elder <elder@inktank.com> Reviewed-by: NSage Weil <sage@inktank.com>
-
由 Alex Elder 提交于
There is no state explicitly defined when a ceph connection is fully operational. So define one. It's set when the connection sequence completes successfully, and is cleared when the connection gets closed. Be a little more careful when examining the old state when a socket disconnect event is reported. Signed-off-by: NAlex Elder <elder@inktank.com> Reviewed-by: NSage Weil <sage@inktank.com>
-
由 Alex Elder 提交于
A connection state's NEGOTIATING bit gets set while in CONNECTING state after we have successfully exchanged a ceph banner and IP addresses with the connection's peer (the server). But that bit is not cleared again--at least not until another connection attempt is initiated. Instead, clear it as soon as the connection is fully established. Also, clear it when a socket connection gets prematurely closed in the midst of establishing a ceph connection (in case we had reached the point where it was set). Signed-off-by: NAlex Elder <elder@inktank.com> Reviewed-by: NSage Weil <sage@inktank.com>
-
由 Alex Elder 提交于
A connection that is closed will no longer be connecting. So clear the CONNECTING state bit in ceph_con_close(). Similarly, if the socket has been closed we no longer are in connecting state (a new connect sequence will need to be initiated). Signed-off-by: NAlex Elder <elder@inktank.com> Reviewed-by: NSage Weil <sage@inktank.com>
-
由 Alex Elder 提交于
In con_close_socket(), a connection's SOCK_CLOSED flag gets set and then cleared while its shutdown method is called and its reference gets dropped. Previously, that flag got set only if it had not already been set, so setting it in con_close_socket() might have prevented additional processing being done on a socket being shut down. We no longer set SOCK_CLOSED in the socket event routine conditionally, so setting that bit here no longer provides whatever benefit it might have provided before. A race condition could still leave the SOCK_CLOSED bit set even after we've issued the call to con_close_socket(), so we still clear that bit after shutting the socket down. Add a comment explaining the reason for this. Signed-off-by: NAlex Elder <elder@inktank.com> Reviewed-by: NSage Weil <sage@inktank.com>
-
由 Alex Elder 提交于
When a TCP_CLOSE or TCP_CLOSE_WAIT event occurs, the SOCK_CLOSED connection flag bit is set, and if it had not been previously set queue_con() is called to ensure con_work() will get a chance to handle the changed state. con_work() atomically checks--and if set, clears--the SOCK_CLOSED bit if it was set. This means that even if the bit were set repeatedly, the related processing in con_work() only gets called once per transition of the bit from 0 to 1. What's important then is that we ensure con_work() gets called *at least* once when a socket close event occurs, not that it gets called *exactly* once. The work queue mechanism already takes care of queueing work only if it is not already queued, so there's no need for us to call queue_con() conditionally. So this patch just makes it so the SOCK_CLOSED flag gets set unconditionally in ceph_sock_state_change(). Signed-off-by: NAlex Elder <elder@inktank.com> Reviewed-by: NSage Weil <sage@inktank.com>
-
由 Alex Elder 提交于
Currently the socket state change event handler records an error message on a connection to distinguish a close while connecting from a close while a connection was already established. Changing connection information during handling of a socket event is not very clean, so instead move this assignment inside con_work(), where it can be done during normal connection-level processing (and under protection of the connection mutex as well). Move the handling of a socket closed event up to the top of the processing loop in con_work(); there's no point in handling backoff etc. if we have a newly-closed socket to take care of. Signed-off-by: NAlex Elder <elder@inktank.com> Reviewed-by: NSage Weil <sage@inktank.com>
-
由 Alex Elder 提交于
The following commit changed it so SOCK_CLOSED bit was stored in a connection's new "flags" field rather than its "state" field. libceph: start separating connection flags from state commit 928443cd That bit is used in con_close_socket() to protect against setting an error message more than once in the socket event handler function. Unfortunately, the field being operated on in that function was not updated to be "flags" as it should have been. This fixes that error. Signed-off-by: NAlex Elder <elder@inktank.com> Reviewed-by: NSage Weil <sage@inktank.com>
-
由 Alex Elder 提交于
Recently a bug was fixed in which the bio_iter field in a ceph message was not being properly re-initialized when a message got re-transmitted: commit 43643528 Author: Yan, Zheng <zheng.z.yan@intel.com> rbd: Clear ceph_msg->bio_iter for retransmitted message We are now only initializing the bio_iter field when we are about to start to write message data (in prepare_write_message_data()), rather than every time we are attempting to write any portion of the message data (in write_partial_msg_pages()). This means we no longer need to use the msg->bio_iter field as a flag. So just don't do that any more. Trust prepare_write_message_data() to ensure msg->bio_iter is properly initialized, every time we are about to begin writing (or re-writing) a message's bio data. Signed-off-by: NAlex Elder <elder@inktank.com> Reviewed-by: NSage Weil <sage@inktank.com>
-
由 Alex Elder 提交于
If a message has a non-null bio pointer, its bio_iter field is initialized in write_partial_msg_pages() if this has not been done already. This is really a one-time setup operation for sending a message's (bio) data, so move that initialization code into prepare_write_message_data() which serves that purpose. Signed-off-by: NAlex Elder <elder@inktank.com> Reviewed-by: NSage Weil <sage@inktank.com>
-
由 Alex Elder 提交于
Move init_bio_iter() and iter_bio_next() up in their source file so the'll be defined before they're needed. Signed-off-by: NAlex Elder <elder@inktank.com> Reviewed-by: NSage Weil <sage@inktank.com>
-
由 Alex Elder 提交于
This is a nit, but prepare_write_message() sets the FOOTER_COMPLETE flag before the CRC for the data portion (recorded in the footer) has been completely computed. Hold off setting the complete flag until we've decided it's ready to send. Signed-off-by: NAlex Elder <elder@inktank.com> Reviewed-by: NSage Weil <sage@inktank.com>
-
由 Alex Elder 提交于
In write_partial_msg_pages(), once all the data from a page has been sent we advance to the next one. Put the code that takes care of this into its own function. While modifying write_partial_msg_pages(), make its local variable "in_trail" be Boolean, and use the local variable "msg" (which is just the connection's current out_msg pointer) consistently. Signed-off-by: NAlex Elder <elder@inktank.com> Reviewed-by: NSage Weil <sage@inktank.com>
-
由 Alex Elder 提交于
Move the code that prepares to write the data portion of a message into its own function. Signed-off-by: NAlex Elder <elder@inktank.com> Reviewed-by: NSage Weil <sage@inktank.com>
-
- 22 6月, 2012 2 次提交
-
-
由 Sage Weil 提交于
These are no longer used. Every ceph_connection instance is embedded in another structure, and refcounts manipulated via the get/put ops. Signed-off-by: NSage Weil <sage@inktank.com>
-
由 Sage Weil 提交于
The ceph_con_get/put() helpers manipulate the embedded con ref count, which isn't used now that ceph_connections are embedded in other structures. Signed-off-by: NSage Weil <sage@inktank.com> Reviewed-by: NAlex Elder <elder@inktank.com>
-
- 19 6月, 2012 1 次提交
-
-
由 Dan Carpenter 提交于
We dereference "con->in_msg" on the line after it was set to NULL. Signed-off-by: NDan Carpenter <dan.carpenter@oracle.com> Reviewed-by: NAlex Elder <elder@inktank.com>
-
- 16 6月, 2012 3 次提交
-
-
由 Sage Weil 提交于
Linux 3.5-rc1 Conflicts: net/ceph/messenger.c
-
由 Sage Weil 提交于
We need to flush the msgr workqueue during mon_client shutdown to ensure that any work affecting our embedded ceph_connection is finished so that we can be safely destroyed. Previously, we were flushing the work queue after osd_client shutdown and before mon_client shutdown to ensure that any osd connection refs to authorizers are flushed. Remove the redundant flush, and document in the comment that the mon_client flush is needed to cover that case as well. Signed-off-by: NSage Weil <sage@inktank.com> Reviewed-by: NAlex Elder <elder@inktank.com>
-
由 Sage Weil 提交于
Once we call ->connect(), we are racing against the actual connection, and a subsequent transition from CONNECTING -> CONNECTED. Set the state to CONNECTING before that, under the protection of the mutex, to avoid the race. This was introduced in 928443cd, with the original socket state code. Signed-off-by: NSage Weil <sage@inktank.com> Reviewed-by: NAlex Elder <elder@inktank.com>
-
- 07 6月, 2012 4 次提交
-
-
由 Xi Wang 提交于
On 32-bit systems, a large `pglen' would overflow `pglen*sizeof(u32)' and bypass the check ceph_decode_need(p, end, pglen*sizeof(u32), bad). It would also overflow the subsequent kmalloc() size, leading to out-of-bounds write. Signed-off-by: NXi Wang <xi.wang@gmail.com> Reviewed-by: NAlex Elder <elder@inktank.com>
-
由 Xi Wang 提交于
On 32-bit systems, a large `n' would overflow `n * sizeof(u32)' and bypass the check ceph_decode_need(p, end, n * sizeof(u32), bad). It would also overflow the subsequent kmalloc() size, leading to out-of-bounds write. Signed-off-by: NXi Wang <xi.wang@gmail.com> Reviewed-by: NAlex Elder <elder@inktank.com>
-
由 Xi Wang 提交于
`len' is read from network and thus needs validation. Otherwise a large `len' would cause out-of-bounds access via the memcpy() call. In addition, len = 0xffffffff would overflow the kmalloc() size, leading to out-of-bounds write. This patch adds a check of `len' via ceph_decode_need(). Also use kstrndup rather than kmalloc/memcpy. [elder@inktank.com: added -ENOMEM return for null kstrndup() result] Signed-off-by: NXi Wang <xi.wang@gmail.com> Reviewed-by: NAlex Elder <elder@inktank.com>
-
由 Yan, Zheng 提交于
The bug can cause NULL pointer dereference in write_partial_msg_pages Signed-off-by: NZheng Yan <zheng.z.yan@intel.com> Reviewed-by: NAlex Elder <elder@inktank.com>
-
- 06 6月, 2012 11 次提交
-
-
由 Alex Elder 提交于
ceph_con_revoke_message() is passed both a message and a ceph connection. A ceph_msg allocated for incoming messages on a connection always has a pointer to that connection, so there's no need to provide the connection when revoking such a message. Note that the existing logic does not preclude the message supplied being a null/bogus message pointer. The only user of this interface is the OSD client, and the only value an osd client passes is a request's r_reply field. That is always non-null (except briefly in an error path in ceph_osdc_alloc_request(), and that drops the only reference so the request won't ever have a reply to revoke). So we can safely assume the passed-in message is non-null, but add a BUG_ON() to make it very obvious we are imposing this restriction. Rename the function ceph_msg_revoke_incoming() to reflect that it is really an operation on an incoming message. Signed-off-by: NAlex Elder <elder@inktank.com> Reviewed-by: NSage Weil <sage@inktank.com>
-
由 Alex Elder 提交于
ceph_con_revoke() is passed both a message and a ceph connection. Now that any message associated with a connection holds a pointer to that connection, there's no need to provide the connection when revoking a message. This has the added benefit of precluding the possibility of the providing the wrong connection pointer. If the message's connection pointer is null, it is not being tracked by any connection, so revoking it is a no-op. This is supported as a convenience for upper layers, so they can revoke a message that is not actually "in flight." Rename the function ceph_msg_revoke() to reflect that it is really an operation on a message, not a connection. Signed-off-by: NAlex Elder <elder@inktank.com> Reviewed-by: NSage Weil <sage@inktank.com>
-
由 Alex Elder 提交于
There are essentially two types of ceph messages: incoming and outgoing. Outgoing messages are always allocated via ceph_msg_new(), and at the time of their allocation they are not associated with any particular connection. Incoming messages are always allocated via ceph_con_in_msg_alloc(), and they are initially associated with the connection from which incoming data will be placed into the message. When an outgoing message gets sent, it becomes associated with a connection and remains that way until the message is successfully sent. The association of an incoming message goes away at the point it is sent to an upper layer via a con->ops->dispatch method. This patch implements reference counting for all ceph messages, such that every message holds a reference (and a pointer) to a connection if and only if it is associated with that connection (as described above). For background, here is an explanation of the ceph message lifecycle, emphasizing when an association exists between a message and a connection. Outgoing Messages An outgoing message is "owned" by its allocator, from the time it is allocated in ceph_msg_new() up to the point it gets queued for sending in ceph_con_send(). Prior to that point the message's msg->con pointer is null; at the point it is queued for sending its message pointer is assigned to refer to the connection. At that time the message is inserted into a connection's out_queue list. When a message on the out_queue list has been sent to the socket layer to be put on the wire, it is transferred out of that list and into the connection's out_sent list. At that point it is still owned by the connection, and will remain so until an acknowledgement is received from the recipient that indicates the message was successfully transferred. When such an acknowledgement is received (in process_ack()), the message is removed from its list (in ceph_msg_remove()), at which point it is no longer associated with the connection. So basically, any time a message is on one of a connection's lists, it is associated with that connection. Reference counting outgoing messages can thus be done at the points a message is added to the out_queue (in ceph_con_send()) and the point it is removed from either its two lists (in ceph_msg_remove())--at which point its connection pointer becomes null. Incoming Messages When an incoming message on a connection is getting read (in read_partial_message()) and there is no message in con->in_msg, a new one is allocated using ceph_con_in_msg_alloc(). At that point the message is associated with the connection. Once that message has been completely and successfully read, it is passed to upper layer code using the connection's con->ops->dispatch method. At that point the association between the message and the connection no longer exists. Reference counting of connections for incoming messages can be done by taking a reference to the connection when the message gets allocated, and releasing that reference when it gets handed off using the dispatch method. We should never fail to get a connection reference for a message--the since the caller should already hold one. Signed-off-by: NAlex Elder <elder@inktank.com> Reviewed-by: NSage Weil <sage@inktank.com>
-
由 Alex Elder 提交于
When a ceph message is queued for sending it is placed on a list of pending messages (ceph_connection->out_queue). When they are actually sent over the wire, they are moved from that list to another (ceph_connection->out_sent). When acknowledgement for the message is received, it is removed from the sent messages list. During that entire time the message is "in the possession" of a single ceph connection. Keep track of that connection in the message. This will be used in the next patch (and is a helpful bit of information for debugging anyway). Signed-off-by: NAlex Elder <elder@inktank.com> Reviewed-by: NSage Weil <sage@inktank.com>
-
由 Alex Elder 提交于
The function ceph_alloc_msg() is only used to allocate a message that will be assigned to a connection's in_msg pointer. Rename the function so this implied usage is more clear. In addition, make that assignment inside the function (again, since that's precisely what it's intended to be used for). This allows us to return what is now provided via the passed-in address of a "skip" variable. The return type is now Boolean to be explicit that there are only two possible outcomes. Make sure the result of an ->alloc_msg method call always sets the value of *skip properly. Signed-off-by: NAlex Elder <elder@inktank.com> Reviewed-by: NSage Weil <sage@inktank.com>
-
由 Alex Elder 提交于
Move the initialization of a ceph connection's private pointer, operations vector pointer, and peer name information into ceph_con_init(). Rearrange the arguments so the connection pointer is first. Hide the byte-swapping of the peer entity number inside ceph_con_init() Signed-off-by: NAlex Elder <elder@inktank.com> Reviewed-by: NSage Weil <sage@inktank.com>
-
由 Alex Elder 提交于
Hold off initializing a monitor client's connection until just before it gets opened for use. Signed-off-by: NAlex Elder <elder@inktank.com> Reviewed-by: NSage Weil <sage@inktank.com>
-
由 Sage Weil 提交于
All references to the embedded ceph_connection come from the msgr workqueue, which is drained prior to mon_client destruction. That means we can ignore con refcounting entirely. Signed-off-by: NSage Weil <sage@newdream.net> Reviewed-by: NAlex Elder <elder@inktank.com>
-
由 Alex Elder 提交于
A monitor client has a pointer to a ceph connection structure in it. This is the only one of the three ceph client types that do it this way; the OSD and MDS clients embed the connection into their main structures. There is always exactly one ceph connection for a monitor client, so there is no need to allocate it separate from the monitor client structure. So switch the ceph_mon_client structure to embed its ceph_connection structure. Signed-off-by: NAlex Elder <elder@inktank.com> Reviewed-by: NSage Weil <sage@inktank.com>
-
由 Sage Weil 提交于
There were a few direct calls to ceph_con_{get,put}() instead of the con ops from osd_client.c. This is a bug since those ops aren't defined to be ceph_con_get/put. This breaks refcounting on the ceph_osd structs that contain the ceph_connections, and could lead to all manner of strangeness. The purpose of the ->get and ->put methods in a ceph connection are to allow the connection to indicate it has a reference to something external to the messaging system, *not* to indicate something external has a reference to the connection. [elder@inktank.com: added that last sentence] Signed-off-by: NSage Weil <sage@newdream.net> Reviewed-by: NAlex Elder <elder@inktank.com>
-
由 Alex Elder 提交于
In ceph_osdc_release_request(), a reference to the r_reply message is dropped. But just after that, that same message is revoked if it was in use to receive an incoming reply. Reorder these so we are sure we hold a reference until we're actually done with the message. Signed-off-by: NAlex Elder <elder@inktank.com> Reviewed-by: NSage Weil <sage@inktank.com>
-