- 12 5月, 2018 1 次提交
-
-
由 Chuck Lever 提交于
Clean up: Move #include <trace/events/rpcrdma.h> into source files, similar to how it is done with trace/events/sunrpc.h. Server-side trace points will be part of the rpcrdma subsystem, just like the client-side trace points. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NJ. Bruce Fields <bfields@redhat.com>
-
- 11 4月, 2018 2 次提交
-
-
由 Chuck Lever 提交于
Currently, when the MR free list is exhausted during marshaling, the RPC/RDMA transport places the RPC task on the delayq, which forces a wait for HZ >> 2 before the marshal and send is retried. With this change, the transport now places such an RPC task on the pending queue, and wakes it just as soon as more MRs have been created. Creating more MRs typically takes less than a millisecond, and this waking mechanism is less deadlock-prone. Moreover, the waiting RPC task is holding the transport's write lock, which blocks the transport from sending RPCs. Therefore faster recovery from MR exhaustion is desirable. This is the same mechanism that the TCP transport utilizes when handling write buffer space exhaustion. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
With v4.15, on one of my NFS/RDMA clients I measured a nearly doubling in the latency of small read and write system calls. There was no change in server round trip time. The extra latency appears in the whole RPC execution path. "git bisect" settled on commit ccede759 ("xprtrdma: Spread reply processing over more CPUs") . After some experimentation, I found that leaving the WQ bound and allowing the scheduler to pick the dispatch CPU seems to eliminate the long latencies, and it does not introduce any new regressions. The fix is implemented by reverting only the part of commit ccede759 ("xprtrdma: Spread reply processing over more CPUs") that dispatches RPC replies specifically on the CPU where the matching RPC call was made. Interestingly, saving the CPU number and later queuing reply processing there was effective _only_ for a NFS READ and WRITE request. On my NUMA client, in-kernel RPC reply processing for asynchronous RPCs was dispatched on the same CPU where the RPC call was made, as expected. However synchronous RPCs seem to get their reply dispatched on some other CPU than where the call was placed, every time. Fixes: ccede759 ("xprtrdma: Spread reply processing over ... ") Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Cc: stable@vger.kernel.org # v4.15+ Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
- 03 2月, 2018 1 次提交
-
-
由 Chuck Lever 提交于
Commit 16f906d6 ("xprtrdma: Reduce required number of send SGEs") introduced the rpcrdma_ia::ri_max_send_sges field. This fixes a problem where xprtrdma would not work if the device's max_sge capability was small (low single digits). At least RPCRDMA_MIN_SEND_SGES are needed for the inline parts of each RPC. ri_max_send_sges is set to this value: ia->ri_max_send_sges = max_sge - RPCRDMA_MIN_SEND_SGES; Then when marshaling each RPC, rpcrdma_args_inline uses that value to determine whether the device has enough Send SGEs to convey an NFS WRITE payload inline, or whether instead a Read chunk is required. More recently, commit ae72950a ("xprtrdma: Add data structure to manage RDMA Send arguments") used the ri_max_send_sges value to calculate the size of an array, but that commit erroneously assumed ri_max_send_sges contains a value similar to the device's max_sge, and not one that was reduced by the minimum SGE count. This assumption results in the calculated size of the sendctx's Send SGE array to be too small. When the array is used to marshal an RPC, the code can write Send SGEs into the following sendctx element in that array, corrupting it. When the device's max_sge is large, this issue is entirely harmless; but it results in an oops in the provider's post_send method, if dev.attrs.max_sge is small. So let's straighten this out: ri_max_send_sges will now contain a value with the same meaning as dev.attrs.max_sge, which makes the code easier to understand, and enables rpcrdma_sendctx_create to calculate the size of the SGE array correctly. Reported-by: NMichal Kalderon <Michal.Kalderon@cavium.com> Fixes: 16f906d6 ("xprtrdma: Reduce required number of send SGEs") Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Tested-by: NMichal Kalderon <Michal.Kalderon@cavium.com> Cc: stable@vger.kernel.org # v4.10+ Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
- 23 1月, 2018 5 次提交
-
-
由 Chuck Lever 提交于
The contents of seg->mr_len changed when ->ro_map stopped returning the full chunk length in the first segment. Count the full length of each Write chunk, not the length of the first segment (which now can only be as large as a page). Fixes: 9d6b0409 ("xprtrdma: Place registered MWs on a ... ") Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
This includes decoding Write and Reply chunks, and fixing up inline payloads. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
- 17 1月, 2018 4 次提交
-
-
由 Chuck Lever 提交于
Clean up: struct rpcrdma_mw was named after Memory Windows, but xprtrdma no longer supports a Memory Window registration mode. Rename rpcrdma_mw and its fields to reduce confusion and make the code more sensible to read. Renaming "mw" was suggested by Tom Talpey, the author of the original xprtrdma implementation. It's a good idea, but I haven't done this until now because it's a huge diffstat for no benefit other than code readability. However, I'm about to introduce static trace points that expose a few of xprtrdma's internal data structures. They should make sense in the trace report, and it's reasonable to treat trace points as a kernel API contract which might be difficult to change later. While I'm churning things up, two additional changes: - rename variables unhelpfully called "r" to "mr", to improve code clarity, and - rename the MR-related helper functions using the form "rpcrdma_mr_<verb>", to be consistent with other areas of the code. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Clean up. @rqst is set up differently for backchannel Replies. For example, rqst->rq_task and task->tk_client are both NULL. So it is easier to understand and maintain this code path if it is separated. Also, we can get rid of the confusing rl_connect_cookie hack in rpcrdma_bc_receive_call. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Clean up. This logic is related to marshaling the request, and I'd like to keep everything that touches req->rl_registered close together, for CPU cache efficiency. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Refactoring change: Remote Invalidation is particular to the memory registration mode that is use. Use a callout instead of a generic function to handle Remote Invalidation. This gets rid of the 8-byte flags field in struct rpcrdma_mw, of which only a single bit flag has been allocated. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
- 16 12月, 2017 1 次提交
-
-
由 Chuck Lever 提交于
Commit d8f532d2 ("xprtrdma: Invoke rpcrdma_reply_handler directly from RECV completion") introduced a performance regression for NFS I/O small enough to not need memory registration. In multi- threaded benchmarks that generate primarily small I/O requests, IOPS throughput is reduced by nearly a third. This patch restores the previous level of throughput. Because workqueues are typically BOUND (in particular ib_comp_wq, nfsiod_workqueue, and rpciod_workqueue), NFS/RDMA workloads tend to aggregate on the CPU that is handling Receive completions. The usual approach to addressing this problem is to create a QP and CQ for each CPU, and then schedule transactions on the QP for the CPU where you want the transaction to complete. The transaction then does not require an extra context switch during completion to end up on the same CPU where the transaction was started. This approach doesn't work for the Linux NFS/RDMA client because currently the Linux NFS client does not support multiple connections per client-server pair, and the RDMA core API does not make it straightforward for ULPs to determine which CPU is responsible for handling Receive completions for a CQ. So for the moment, record the CPU number in the rpcrdma_req before the transport sends each RPC Call. Then during Receive completion, queue the RPC completion on that same CPU. Additionally, move all RPC completion processing to the deferred handler so that even RPCs with simple small replies complete on the CPU that sent the corresponding RPC Call. Fixes: d8f532d2 ("xprtrdma: Invoke rpcrdma_reply_handler ...") Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
- 18 11月, 2017 14 次提交
-
-
由 Chuck Lever 提交于
Credit work contributed by Oracle engineers since 2014. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Clean up: C-structure style XDR encoding and decoding logic has been replaced over the past several merge windows on both the client and server. These data structures are no longer used. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Reviewed-by: NDevesh Sharma <devesh.sharma@broadcom.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
When an RPC Call includes a file data payload, that payload can come from pages in the page cache, or a user buffer (for direct I/O). If the payload can fit inline, xprtrdma includes it in the Send using a scatter-gather technique. xprtrdma mustn't allow the RPC consumer to re-use the memory where that payload resides before the Send completes. Otherwise, the new contents of that memory would be exposed by an HCA retransmit of the Send operation. So, block RPC completion on Send completion, but only in the case where a separate file data payload is part of the Send. This prevents the reuse of that memory while it is still part of a Send operation without an undue cost to other cases. Waiting is avoided in the common case because typically the Send will have completed long before the RPC Reply arrives. These days, an RPC timeout will trigger a disconnect, which tears down the QP. The disconnect flushes all waiting Sends. This bounds the amount of time the reply handler has to wait for a Send completion. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Invoke a common routine for releasing hardware resources (for example, invalidating MRs). This needs to be done whether an RPC Reply has arrived or the RPC was terminated early. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Problem statement: Recently Sagi Grimberg <sagi@grimberg.me> observed that kernel RDMA- enabled storage initiators don't handle delayed Send completion correctly. If Send completion is delayed beyond the end of a ULP transaction, the ULP may release resources that are still being used by the HCA to complete a long-running Send operation. This is a common design trait amongst our initiators. Most Send operations are faster than the ULP transaction they are part of. Waiting for a completion for these is typically unnecessary. Infrequently, a network partition or some other problem crops up where an ordering problem can occur. In NFS parlance, the RPC Reply arrives and completes the RPC, but the HCA is still retrying the Send WR that conveyed the RPC Call. In this case, the HCA can try to use memory that has been invalidated or DMA unmapped, and the connection is lost. If that memory has been re-used for something else (possibly not related to NFS), and the Send retransmission exposes that data on the wire. Thus we cannot assume that it is safe to release Send-related resources just because a ULP reply has arrived. After some analysis, we have determined that the completion housekeeping will not be difficult for xprtrdma: - Inline Send buffers are registered via the local DMA key, and are already left DMA mapped for the lifetime of a transport connection, thus no additional handling is necessary for those - Gathered Sends involving page cache pages _will_ need to DMA unmap those pages after the Send completes. But like inline send buffers, they are registered via the local DMA key, and thus will not need to be invalidated In addition, RPC completion will need to wait for Send completion in the latter case. However, nearly always, the Send that conveys the RPC Call will have completed long before the RPC Reply arrives, and thus no additional latency will be accrued. Design notes: In this patch, the rpcrdma_sendctx object is introduced, and a lock-free circular queue is added to manage a set of them per transport. The RPC client's send path already prevents sending more than one RPC Call at the same time. This allows us to treat the consumer side of the queue (rpcrdma_sendctx_get_locked) as if there is a single consumer thread. The producer side of the queue (rpcrdma_sendctx_put_locked) is invoked only from the Send completion handler, which is a single thread of execution (soft IRQ). The only care that needs to be taken is with the tail index, which is shared between the producer and consumer. Only the producer updates the tail index. The consumer compares the head with the tail to ensure that the a sendctx that is in use is never handed out again (or, expressed more conventionally, the queue is empty). When the sendctx queue empties completely, there are enough Sends outstanding that posting more Send operations can result in a Send Queue overflow. In this case, the ULP is told to wait and try again. This introduces strong Send Queue accounting to xprtrdma. As a final touch, Jason Gunthorpe <jgunthorpe@obsidianresearch.com> suggested a mechanism that does not require signaling every Send. We signal once every N Sends, and perform SGE unmapping of N Send operations during that one completion. Reported-by: NSagi Grimberg <sagi@grimberg.me> Suggested-by: NJason Gunthorpe <jgunthorpe@obsidianresearch.com> Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Commit 655fec69 ("xprtrdma: Use gathered Send for large inline messages") assumed that, since the zeroeth element of the Send SGE array always pointed to req->rl_rdmabuf, it needed to be initialized just once. This was a valid assumption because the Send SGE array and rl_rdmabuf both live in the same rpcrdma_req. In a subsequent patch, the Send SGE array will be separated from the rpcrdma_req, so the zeroeth element of the SGE array needs to be initialized every time. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Clean up: Make rpcrdma_prepare_send_sges() return a negative errno instead of a bool. Soon callers will want distinct treatments of different types of failures. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
When this function fails, it needs to undo the DMA mappings it's done so far. Otherwise these are leaked. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Clean up. rpcrdma_prepare_hdr_sge() sets num_sge to one, then rpcrdma_prepare_msg_sges() sets num_sge again to the count of SGEs it added, plus one for the header SGE just mapped in rpcrdma_prepare_hdr_sge(). This is confusing, and nails in an assumption about when these functions are called. Instead, maintain a running count that both functions can update with just the number of SGEs they have added to the SGE array. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
We need to decode and save the incoming rdma_credits field _after_ we know that the direction of the message is "forward direction Reply". Otherwise, the credits value in reverse direction Calls is also used to update the forward direction credits. It is safe to decode the rdma_credits field in rpcrdma_reply_handler now that rpcrdma_reply_handler is single-threaded. Receives complete in the same order as they were sent on the NFS server. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
I noticed that the soft IRQ thread looked pretty busy under heavy I/O workloads. perf suggested one area that was expensive was the queue_work() call in rpcrdma_wc_receive. That gave me some ideas. Instead of scheduling a separate worker to process RPC Replies, promote the Receive completion handler to IB_POLL_WORKQUEUE, and invoke rpcrdma_reply_handler directly. Note that the poll workqueue is single-threaded. In order to keep memory invalidation from serializing all RPC Replies, handle any necessary invalidation tasks in a separate multi-threaded workqueue. This provides a two-tier scheme, similar to OS I/O interrupt handlers: A fast interrupt handler that schedules the slow handler and re-enables the interrupt, and a slower handler that is invoked for any needed heavy lifting. Benefits include: - One less context switch for RPCs that don't register memory - Receive completion handling is moved out of soft IRQ context to make room for other users of soft IRQ - The same CPU core now DMA syncs and XDR decodes the Receive buffer Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Clean up: I'd like to be able to invoke the tail of rpcrdma_reply_handler in two different places. Split the tail out into its own helper function. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Clean up: Make it easier to pass the decoded XID, vers, credits, and proc fields around by moving these variables into struct rpcrdma_rep. Note: the credits field will be handled in a subsequent patch. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
A reply with an unrecognized value in the version field means the transport header is potentially garbled and therefore all the fields are untrustworthy. Fixes: 59aa1f9a ("xprtrdma: Properly handle RDMA_ERROR ... ") Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
- 06 9月, 2017 1 次提交
-
-
由 Chuck Lever 提交于
Adopt the use of xprt_pin_rqst to eliminate contention between Call-side users of rb_lock and the use of rb_lock in rpcrdma_reply_handler. This replaces the mechanism introduced in 431af645 ("xprtrdma: Fix client lock-up after application signal fires"). Use recv_lock to quickly find the completing rqst, pin it, then drop the lock. At that point invalidation and pull-up of the Reply XDR can be done. Both are often expensive operations. Finally, take recv_lock again to signal completion to the RPC layer. It also protects adjustment of "cwnd". This greatly reduces the amount of time a lock is held by the reply handler. Comparing lock_stat results shows a marked decrease in contention on rb_lock and recv_lock. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> [trond.myklebust@primarydata.com: Remove call to rpcrdma_buffer_put() from the "out_norqst:" path in rpcrdma_reply_handler.] Signed-off-by: NTrond Myklebust <trond.myklebust@primarydata.com>
-
- 19 8月, 2017 1 次提交
-
-
由 Trond Myklebust 提交于
This further reduces contention with the transport_lock, and allows us to convert to using a non-bh-safe spinlock, since the list is now never accessed from a bh context. Signed-off-by: NTrond Myklebust <trond.myklebust@primarydata.com>
-
- 16 8月, 2017 2 次提交
-
-
由 Chuck Lever 提交于
Re-arrange the pointer arithmetic in the chunk list encoders to eliminate several more integer multiplication instructions during Transport Header encoding. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Re-arrange the pointer arithmetic in rpcrdma_convert_iovs() to eliminate several integer multiplication instructions during Transport Header encoding. Also, array overflow does not occur outside development environments, so replace overflow checking with one spot check at the end. This reduces the number of conditional branches in the common case. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
- 12 8月, 2017 4 次提交
-
-
由 Chuck Lever 提交于
While marshaling chunk lists which are variable-length XDR objects, check for XDR buffer overflow at every step. Measurements show no significant changes in CPU utilization. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Initialize an xdr_stream at the top of rpcrdma_marshal_req(), and use it to encode the fixed transport header fields. This xdr_stream will be used to encode the chunk lists in a subsequent patch. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Clean up: Remove a variable whose result is no longer used. Commit 655fec69 ("xprtrdma: Use gathered Send for large inline messages") should have removed it. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Clean up: The caller already has rpcrdma_xprt, so pass that directly instead. And provide a documenting comment for this critical function. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
- 08 8月, 2017 4 次提交
-
-
由 Chuck Lever 提交于
This field is no longer used outside the Receive completion handler. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Clean up chunk list decoding by using the xdr_stream set up in rpcrdma_reply_handler. This hardens decoding by checking for buffer overflow at every step while unmarshaling variable-length XDR objects. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Refactor the reply handler's transport header decoding logic to make it easier to understand and update. Convert some of the handler to use xdr_streams, which will enable stricter validation of input data and enable the eventual addition of support for new combinations of chunks, such as "Write + Reply" or "PZRC + normal Read". Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-