1. 14 5月, 2018 1 次提交
  2. 29 3月, 2018 1 次提交
  3. 28 3月, 2018 1 次提交
  4. 20 3月, 2018 1 次提交
  5. 08 3月, 2018 1 次提交
  6. 05 3月, 2018 1 次提交
  7. 02 3月, 2018 1 次提交
  8. 26 2月, 2018 1 次提交
    • L
      samples/bpf: Add program for CPU state statistics · c5350777
      Leo Yan 提交于
      CPU is active when have running tasks on it and CPUFreq governor can
      select different operating points (OPP) according to different workload;
      we use 'pstate' to present CPU state which have running tasks with one
      specific OPP.  On the other hand, CPU is idle which only idle task on
      it, CPUIdle governor can select one specific idle state to power off
      hardware logics; we use 'cstate' to present CPU idle state.
      
      Based on trace events 'cpu_idle' and 'cpu_frequency' we can accomplish
      the duration statistics for every state.  Every time when CPU enters
      into or exits from idle states, the trace event 'cpu_idle' is recorded;
      trace event 'cpu_frequency' records the event for CPU OPP changing, so
      it's easily to know how long time the CPU stays in the specified OPP,
      and the CPU must be not in any idle state.
      
      This patch is to utilize the mentioned trace events for pstate and
      cstate statistics.  To achieve more accurate profiling data, the program
      uses below sequence to insure CPU running/idle time aren't missed:
      
      - Before profiling the user space program wakes up all CPUs for once, so
        can avoid to missing account time for CPU staying in idle state for
        long time; the program forces to set 'scaling_max_freq' to lowest
        frequency and then restore 'scaling_max_freq' to highest frequency,
        this can ensure the frequency to be set to lowest frequency and later
        after start to run workload the frequency can be easily to be changed
        to higher frequency;
      
      - User space program reads map data and update statistics for every 5s,
        so this is same with other sample bpf programs for avoiding big
        overload introduced by bpf program self;
      
      - When send signal to terminate program, the signal handler wakes up
        all CPUs, set lowest frequency and restore highest frequency to
        'scaling_max_freq'; this is exactly same with the first step so
        avoid to missing account CPU pstate and cstate time during last
        stage.  Finally it reports the latest statistics.
      
      The program has been tested on Hikey board with octa CA53 CPUs, below
      is one example for statistics result, the format mainly follows up
      Jesper Dangaard Brouer suggestion.
      
      Jesper reminds to 'get printf to pretty print with thousands separators
      use %' and setlocale(LC_NUMERIC, "en_US")', tried three different arm64
      GCC toolchains (5.4.0 20160609, 6.2.1 20161016, 6.3.0 20170516) but all
      of them cannot support printf flag character %' on arm64 platform, so go
      back print number without grouping mode.
      
      CPU states statistics:
      state(ms)  cstate-0    cstate-1    cstate-2    pstate-0    pstate-1    pstate-2    pstate-3    pstate-4
      CPU-0      767         6111        111863      561         31          756         853         190
      CPU-1      241         10606       107956      484         125         646         990         85
      CPU-2      413         19721       98735       636         84          696         757         89
      CPU-3      84          11711       79989       17516       909         4811        5773        341
      CPU-4      152         19610       98229       444         53          649         708         1283
      CPU-5      185         8781        108697      666         91          671         677         1365
      CPU-6      157         21964       95825       581         67          566         684         1284
      CPU-7      125         15238       102704      398         20          665         786         1197
      
      Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
      Cc: Vincent Guittot <vincent.guittot@linaro.org>
      Signed-off-by: NLeo Yan <leo.yan@linaro.org>
      Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
      c5350777
  9. 14 2月, 2018 1 次提交
  10. 07 2月, 2018 1 次提交
  11. 03 2月, 2018 2 次提交
  12. 27 1月, 2018 1 次提交
  13. 20 1月, 2018 1 次提交
    • J
      samples/bpf: xdp_monitor include cpumap tracepoints in monitoring · 417f1d9f
      Jesper Dangaard Brouer 提交于
      The xdp_redirect_cpu sample have some "builtin" monitoring of the
      tracepoints for xdp_cpumap_*, but it is practical to have an external
      tool that can monitor these transpoint as an easy way to troubleshoot
      an application using XDP + cpumap.
      
      Specifically I need such external tool when working on Suricata and
      XDP cpumap redirect. Extend the xdp_monitor tool sample with
      monitoring of these xdp_cpumap_* tracepoints.  Model the output format
      like xdp_redirect_cpu.
      
      Given I needed to handle per CPU decoding for cpumap, this patch also
      add per CPU info on the existing monitor events.  This resembles part
      of the builtin monitoring output from sample xdp_rxq_info.  Thus, also
      covering part of that sample in an external monitoring tool.
      
      Performance wise, the cpumap tracepoints uses bulking, which cause
      them to have very little overhead.  Thus, they are enabled by default.
      Signed-off-by: NJesper Dangaard Brouer <brouer@redhat.com>
      Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
      417f1d9f
  14. 18 1月, 2018 1 次提交
  15. 17 1月, 2018 1 次提交
  16. 11 1月, 2018 1 次提交
    • J
      samples/bpf: xdp2skb_meta shows transferring info from XDP to SKB · 36e04a2d
      Jesper Dangaard Brouer 提交于
      Creating a bpf sample that shows howto use the XDP 'data_meta'
      infrastructure, created by Daniel Borkmann.  Very few drivers support
      this feature, but I wanted a functional sample to begin with, when
      working on adding driver support.
      
      XDP data_meta is about creating a communication channel between BPF
      programs.  This can be XDP tail-progs, but also other SKB based BPF
      hooks, like in this case the TC clsact hook. In this sample I show
      that XDP can store info named "mark", and TC/clsact chooses to use
      this info and store it into the skb->mark.
      
      It is a bit annoying that XDP and TC samples uses different tools/libs
      when attaching their BPF hooks.  As the XDP and TC programs need to
      cooperate and agree on a struct-layout, it is best/easiest if the two
      programs can be contained within the same BPF restricted-C file.
      
      As the bpf-loader, I choose to not use bpf_load.c (or libbpf), but
      instead wrote a bash shell scripted named xdp2skb_meta.sh, which
      demonstrate howto use the iproute cmdline tools 'tc' and 'ip' for
      loading BPF programs.  To make it easy for first time users, the shell
      script have command line parsing, and support --verbose and --dry-run
      mode, if you just want to see/learn the tc+ip command syntax:
      
       # ./xdp2skb_meta.sh --dev ixgbe2 --dry-run
       # Dry-run mode: enable VERBOSE and don't call TC+IP
       tc qdisc del dev ixgbe2 clsact
       tc qdisc add dev ixgbe2 clsact
       tc filter add dev ixgbe2 ingress prio 1 handle 1 bpf da obj ./xdp2skb_meta_kern.o sec tc_mark
       # Flush XDP on device: ixgbe2
       ip link set dev ixgbe2 xdp off
       ip link set dev ixgbe2 xdp obj ./xdp2skb_meta_kern.o sec xdp_mark
      Signed-off-by: NJesper Dangaard Brouer <brouer@redhat.com>
      Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
      36e04a2d
  17. 06 1月, 2018 1 次提交
    • J
      samples/bpf: program demonstrating access to xdp_rxq_info · 0fca931a
      Jesper Dangaard Brouer 提交于
      This sample program can be used for monitoring and reporting how many
      packets per sec (pps) are received per NIC RX queue index and which
      CPU processed the packet. In itself it is a useful tool for quickly
      identifying RSS imbalance issues, see below.
      
      The default XDP action is XDP_PASS in-order to provide a monitor
      mode. For benchmarking purposes it is possible to specify other XDP
      actions on the cmdline --action.
      
      Output below shows an imbalance RSS case where most RXQ's deliver to
      CPU-0 while CPU-2 only get packets from a single RXQ.  Looking at
      things from a CPU level the two CPUs are processing approx the same
      amount, BUT looking at the rx_queue_index levels it is clear that
      RXQ-2 receive much better service, than other RXQs which all share CPU-0.
      
      Running XDP on dev:i40e1 (ifindex:3) action:XDP_PASS
      XDP stats       CPU     pps         issue-pps
      XDP-RX CPU      0       900,473     0
      XDP-RX CPU      2       906,921     0
      XDP-RX CPU      total   1,807,395
      
      RXQ stats       RXQ:CPU pps         issue-pps
      rx_queue_index    0:0   180,098     0
      rx_queue_index    0:sum 180,098
      rx_queue_index    1:0   180,098     0
      rx_queue_index    1:sum 180,098
      rx_queue_index    2:2   906,921     0
      rx_queue_index    2:sum 906,921
      rx_queue_index    3:0   180,098     0
      rx_queue_index    3:sum 180,098
      rx_queue_index    4:0   180,082     0
      rx_queue_index    4:sum 180,082
      rx_queue_index    5:0   180,093     0
      rx_queue_index    5:sum 180,093
      Signed-off-by: NJesper Dangaard Brouer <brouer@redhat.com>
      Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
      0fca931a
  18. 16 12月, 2017 1 次提交
  19. 13 12月, 2017 1 次提交
  20. 07 12月, 2017 1 次提交
  21. 05 12月, 2017 1 次提交
  22. 01 12月, 2017 2 次提交
  23. 18 11月, 2017 1 次提交
  24. 14 11月, 2017 1 次提交
  25. 11 11月, 2017 8 次提交
  26. 08 11月, 2017 2 次提交
  27. 05 11月, 2017 1 次提交
  28. 02 11月, 2017 1 次提交
    • G
      License cleanup: add SPDX GPL-2.0 license identifier to files with no license · b2441318
      Greg Kroah-Hartman 提交于
      Many source files in the tree are missing licensing information, which
      makes it harder for compliance tools to determine the correct license.
      
      By default all files without license information are under the default
      license of the kernel, which is GPL version 2.
      
      Update the files which contain no license information with the 'GPL-2.0'
      SPDX license identifier.  The SPDX identifier is a legally binding
      shorthand, which can be used instead of the full boiler plate text.
      
      This patch is based on work done by Thomas Gleixner and Kate Stewart and
      Philippe Ombredanne.
      
      How this work was done:
      
      Patches were generated and checked against linux-4.14-rc6 for a subset of
      the use cases:
       - file had no licensing information it it.
       - file was a */uapi/* one with no licensing information in it,
       - file was a */uapi/* one with existing licensing information,
      
      Further patches will be generated in subsequent months to fix up cases
      where non-standard license headers were used, and references to license
      had to be inferred by heuristics based on keywords.
      
      The analysis to determine which SPDX License Identifier to be applied to
      a file was done in a spreadsheet of side by side results from of the
      output of two independent scanners (ScanCode & Windriver) producing SPDX
      tag:value files created by Philippe Ombredanne.  Philippe prepared the
      base worksheet, and did an initial spot review of a few 1000 files.
      
      The 4.13 kernel was the starting point of the analysis with 60,537 files
      assessed.  Kate Stewart did a file by file comparison of the scanner
      results in the spreadsheet to determine which SPDX license identifier(s)
      to be applied to the file. She confirmed any determination that was not
      immediately clear with lawyers working with the Linux Foundation.
      
      Criteria used to select files for SPDX license identifier tagging was:
       - Files considered eligible had to be source code files.
       - Make and config files were included as candidates if they contained >5
         lines of source
       - File already had some variant of a license header in it (even if <5
         lines).
      
      All documentation files were explicitly excluded.
      
      The following heuristics were used to determine which SPDX license
      identifiers to apply.
      
       - when both scanners couldn't find any license traces, file was
         considered to have no license information in it, and the top level
         COPYING file license applied.
      
         For non */uapi/* files that summary was:
      
         SPDX license identifier                            # files
         ---------------------------------------------------|-------
         GPL-2.0                                              11139
      
         and resulted in the first patch in this series.
      
         If that file was a */uapi/* path one, it was "GPL-2.0 WITH
         Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:
      
         SPDX license identifier                            # files
         ---------------------------------------------------|-------
         GPL-2.0 WITH Linux-syscall-note                        930
      
         and resulted in the second patch in this series.
      
       - if a file had some form of licensing information in it, and was one
         of the */uapi/* ones, it was denoted with the Linux-syscall-note if
         any GPL family license was found in the file or had no licensing in
         it (per prior point).  Results summary:
      
         SPDX license identifier                            # files
         ---------------------------------------------------|------
         GPL-2.0 WITH Linux-syscall-note                       270
         GPL-2.0+ WITH Linux-syscall-note                      169
         ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
         ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
         LGPL-2.1+ WITH Linux-syscall-note                      15
         GPL-1.0+ WITH Linux-syscall-note                       14
         ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
         LGPL-2.0+ WITH Linux-syscall-note                       4
         LGPL-2.1 WITH Linux-syscall-note                        3
         ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
         ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1
      
         and that resulted in the third patch in this series.
      
       - when the two scanners agreed on the detected license(s), that became
         the concluded license(s).
      
       - when there was disagreement between the two scanners (one detected a
         license but the other didn't, or they both detected different
         licenses) a manual inspection of the file occurred.
      
       - In most cases a manual inspection of the information in the file
         resulted in a clear resolution of the license that should apply (and
         which scanner probably needed to revisit its heuristics).
      
       - When it was not immediately clear, the license identifier was
         confirmed with lawyers working with the Linux Foundation.
      
       - If there was any question as to the appropriate license identifier,
         the file was flagged for further research and to be revisited later
         in time.
      
      In total, over 70 hours of logged manual review was done on the
      spreadsheet to determine the SPDX license identifiers to apply to the
      source files by Kate, Philippe, Thomas and, in some cases, confirmation
      by lawyers working with the Linux Foundation.
      
      Kate also obtained a third independent scan of the 4.13 code base from
      FOSSology, and compared selected files where the other two scanners
      disagreed against that SPDX file, to see if there was new insights.  The
      Windriver scanner is based on an older version of FOSSology in part, so
      they are related.
      
      Thomas did random spot checks in about 500 files from the spreadsheets
      for the uapi headers and agreed with SPDX license identifier in the
      files he inspected. For the non-uapi files Thomas did random spot checks
      in about 15000 files.
      
      In initial set of patches against 4.14-rc6, 3 files were found to have
      copy/paste license identifier errors, and have been fixed to reflect the
      correct identifier.
      
      Additionally Philippe spent 10 hours this week doing a detailed manual
      inspection and review of the 12,461 patched files from the initial patch
      version early this week with:
       - a full scancode scan run, collecting the matched texts, detected
         license ids and scores
       - reviewing anything where there was a license detected (about 500+
         files) to ensure that the applied SPDX license was correct
       - reviewing anything where there was no detection but the patch license
         was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
         SPDX license was correct
      
      This produced a worksheet with 20 files needing minor correction.  This
      worksheet was then exported into 3 different .csv files for the
      different types of files to be modified.
      
      These .csv files were then reviewed by Greg.  Thomas wrote a script to
      parse the csv files and add the proper SPDX tag to the file, in the
      format that the file expected.  This script was further refined by Greg
      based on the output to detect more types of files automatically and to
      distinguish between header and source .c files (which need different
      comment types.)  Finally Greg ran the script using the .csv files to
      generate the patches.
      Reviewed-by: NKate Stewart <kstewart@linuxfoundation.org>
      Reviewed-by: NPhilippe Ombredanne <pombredanne@nexb.com>
      Reviewed-by: NThomas Gleixner <tglx@linutronix.de>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
      b2441318
  29. 29 10月, 2017 2 次提交