- 28 8月, 2008 1 次提交
-
-
由 Bharata B Rao 提交于
- During wake up of a new task, task_new_fair() can do a resched_task() on the current task. Later in the code path, check_preempt_curr() also ends up doing the same, which can be avoided. Check if TIF_NEED_RESCHED is already set for the current task. - task_new_fair() does a resched_task() on the current task unconditionally. This can be done only in case when child runs before the parent. So this is a small speedup. Signed-off-by: NBharata B Rao <bharata@linux.vnet.ibm.com> Acked-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 11 8月, 2008 1 次提交
-
-
由 Mike Galbraith 提交于
Defer commit 6d299f1b to the next release. Testing of the tip/sched/clock tree revealed a mysql+oltp regression which bisection eventually traced back to this commit in mainline. Pertinent test results: Three run sysbench averages, throughput units in read/write requests/sec. clients 1 2 4 8 16 32 64 6e0534f2 9646 17876 34774 33868 32230 30767 29441 2.6.26.1 9112 17936 34652 33383 31929 30665 29232 6d299f1b 9112 14637 28370 33339 32038 30762 29204 Note: subsequent commits hide the majority of this regression until you apply the clock fixes, at which time it reemerges at full magnitude. We cannot see anything bad about the change itself so we defer it to the next release until this problem is fully analysed. Signed-off-by: NMike Galbraith <efault@gmx.de> Acked-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Gregory Haskins <ghaskins@novell.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 28 7月, 2008 1 次提交
-
-
由 Peter Zijlstra 提交于
Benjamin Herrenschmidt reported: > I get that on ppc64 ... > > In file included from kernel/sched.c:1595: > kernel/sched_fair.c: In function ‘hrtick_start_fair’: > kernel/sched_fair.c:902: warning: comparison of distinct pointer types lacks a cast > > Probably harmless but annoying. s64 delta = slice - ran; --> delta = max(10000LL, delta); Probably ppc64's s64 is long vs long long.. I think hpa was looking at sanitizing all these 64bit types across the architectures. Use max_t with an explicit type meanwhile. Reported-by: NBenjamin Herrenschmid <benh@kernel.crashing.org> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 20 7月, 2008 1 次提交
-
-
由 Peter Zijlstra 提交于
random uvesafb failures were reported against Gentoo: http://bugs.gentoo.org/show_bug.cgi?id=222799 and Mihai Moldovan bisected it back to: > 8f4d37ec is first bad commit > commit 8f4d37ec > Author: Peter Zijlstra <a.p.zijlstra@chello.nl> > Date: Fri Jan 25 21:08:29 2008 +0100 > > sched: high-res preemption tick Linus suspected it to be hrtick + vm86 interaction and observed: > Btw, Peter, Ingo: I think that commit is doing bad things. They aren't > _incorrect_ per se, but they are definitely bad. > > Why? > > Using random _TIF_WORK_MASK flags is really impolite for doing > "scheduling" work. There's a reason that arch/x86/kernel/entry_32.S > special-cases the _TIF_NEED_RESCHED flag: we don't want to exit out of > vm86 mode unnecessarily. > > See the "work_notifysig_v86" label, and how it does that > "save_v86_state()" thing etc etc. Right, I never liked having to fiddle with those TIF flags. Initially I needed it because the hrtimer base lock could not nest in the rq lock. That however is fixed these days. Currently the only reason left to fiddle with the TIF flags is remote wakeups. We cannot program a remote cpu's hrtimer. I've been thinking about using the new and improved IPI function call stuff to implement hrtimer_start_on(). However that does require that smp_call_function_single(.wait=0) works from interrupt context - /me looks at the latest series from Jens - Yes that does seem to be supported, good. Here's a stab at cleaning this stuff up ... Mihai reported test success as well. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Tested-by: NMihai Moldovan <ionic@ionic.de> Cc: Michal Januszewski <spock@gentoo.org> Cc: Antonino Daplas <adaplas@gmail.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 18 7月, 2008 1 次提交
-
-
由 Max Krasnyansky 提交于
This is based on Linus' idea of creating cpu_active_map that prevents scheduler load balancer from migrating tasks to the cpu that is going down. It allows us to simplify domain management code and avoid unecessary domain rebuilds during cpu hotplug event handling. Please ignore the cpusets part for now. It needs some more work in order to avoid crazy lock nesting. Although I did simplfy and unify domain reinitialization logic. We now simply call partition_sched_domains() in all the cases. This means that we're using exact same code paths as in cpusets case and hence the test below cover cpusets too. Cpuset changes to make rebuild_sched_domains() callable from various contexts are in the separate patch (right next after this one). This not only boots but also easily handles while true; do make clean; make -j 8; done and while true; do on-off-cpu 1; done at the same time. (on-off-cpu 1 simple does echo 0/1 > /sys/.../cpu1/online thing). Suprisingly the box (dual-core Core2) is quite usable. In fact I'm typing this on right now in gnome-terminal and things are moving just fine. Also this is running with most of the debug features enabled (lockdep, mutex, etc) no BUG_ONs or lockdep complaints so far. I believe I addressed all of the Dmitry's comments for original Linus' version. I changed both fair and rt balancer to mask out non-active cpus. And replaced cpu_is_offline() with !cpu_active() in the main scheduler code where it made sense (to me). Signed-off-by: NMax Krasnyanskiy <maxk@qualcomm.com> Acked-by: NLinus Torvalds <torvalds@linux-foundation.org> Acked-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: NGregory Haskins <ghaskins@novell.com> Cc: dmitry.adamushko@gmail.com Cc: pj@sgi.com Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 04 7月, 2008 1 次提交
-
-
由 Gregory Haskins 提交于
We have the notion of tracking process-coupling (a.k.a. buddy-wake) via the p->se.last_wake / p->se.avg_overlap facilities, but it is only used for cfs to cfs interactions. There is no reason why an rt to cfs interaction cannot share in establishing a relationhip in a similar manner. Because PREEMPT_RT runs many kernel threads as FIFO priority, we often times have heavy interaction between RT threads waking CFS applications. This patch offers a substantial boost (50-60%+) in perfomance under those circumstances. Signed-off-by: NGregory Haskins <ghaskins@novell.com> Cc: npiggin@suse.de Cc: rostedt@goodmis.org Acked-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 27 6月, 2008 18 次提交
-
-
由 Dhaval Giani 提交于
Signed-off-by: NDhaval Giani <dhaval@linux.vnet.ibm.com> Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
Measurement shows that the difference between cgroup:/ and cgroup:/foo wake_affine() results is that the latter succeeds significantly more. Therefore bias the calculations towards failing the test. Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Cc: Mike Galbraith <efault@gmx.de> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
Increase the accuracy of the effective_load values. Not only consider the current increment (as per the attempted wakeup), but also consider the delta between when we last adjusted the shares and the current situation. Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Cc: Mike Galbraith <efault@gmx.de> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
rw_i = {2, 4, 1, 0} s_i = {2/7, 4/7, 1/7, 0} wakeup on cpu0, weight=1 rw'_i = {3, 4, 1, 0} s'_i = {3/8, 4/8, 1/8, 0} s_0 = S * rw_0 / \Sum rw_j -> \Sum rw_j = S*rw_0/s_0 = 1*2*7/2 = 7 (correct) s'_0 = S * (rw_0 + 1) / (\Sum rw_j + 1) = 1 * (2+1) / (7+1) = 3/8 (correct so we find that adding 1 to cpu0 gains 5/56 in weight if say the other cpu were, cpu1, we'd also have to calculate its 4/56 loss Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Cc: Mike Galbraith <efault@gmx.de> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Srivatsa Vaddagiri 提交于
It was observed these mults can overflow. Signed-off-by: NSrivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Cc: Mike Galbraith <efault@gmx.de> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
s_i = S * rw_i / \Sum_j rw_j -> \Sum_j rw_j = S * rw_i / s_i -> s'_i = S * (rw_i + w) / (\Sum_j rw_j + w) delta s = s' - s = S * (rw + w) / ((S * rw / s) + w) = s * (S * (rw + w) / (S * rw + s * w) - 1) a = S*(rw+w), b = S*rw + s*w delta s = s * (a-b) / b IOW, trade one divide for two multiplies Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Cc: Mike Galbraith <efault@gmx.de> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
Currently task_h_load() computes the load of a task and uses that to either subtract it from the total, or add to it. However, removing or adding a task need not have any effect on the total load at all. Imagine adding a task to a group that is local to one cpu - in that case the total load of that cpu is unaffected. So properly compute addition/removal: s_i = S * rw_i / \Sum_j rw_j s'_i = S * (rw_i + wl) / (\Sum_j rw_j + wg) then s'_i - s_i gives the change in load. Where s_i is the shares for cpu i, S the group weight, rw_i the runqueue weight for that cpu, wl the weight we add (subtract) and wg the weight contribution to the runqueue. Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Cc: Mike Galbraith <efault@gmx.de> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
doing the load balance will change cfs_rq->load.weight (that's the whole point) but since that's part of the scale factor, we'll scale back with a different amount. Weight getting smaller would result in an inflated moved_load which causes it to stop balancing too soon. Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Cc: Mike Galbraith <efault@gmx.de> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
With hierarchical grouping we can't just compare task weight to rq weight - we need to scale the weight appropriately. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Cc: Mike Galbraith <efault@gmx.de> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
While thinking about the previous patch - I realized that using per domain aggregate load values in load_balance_fair() is wrong. We should use the load value for that CPU. By not needing per domain hierarchical load values we don't need to store per domain aggregate shares, which greatly simplifies all the math. It basically falls apart in two separate computations: - per domain update of the shares - per CPU update of the hierarchical load Also get rid of the move_group_shares() stuff - just re-compute the shares again after a successful load balance. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Cc: Mike Galbraith <efault@gmx.de> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
We only need to know the task_weight of the busiest rq - nothing to do if there are no tasks there. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Cc: Mike Galbraith <efault@gmx.de> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Srivatsa Vaddagiri 提交于
The idea was to balance groups until we've reached the global goal, however Vatsa rightly pointed out that we might never reach that goal this way - hence take out this logic. [ the initial rationale for this 'feature' was to promote max concurrency within a group - it does not however affect fairness ] Reported-by: NSrivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Cc: Mike Galbraith <efault@gmx.de> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
Keeping the aggregate on the first cpu of the sched domain has two problems: - it could collide between different sched domains on different cpus - it could slow things down because of the remote accesses Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Cc: Mike Galbraith <efault@gmx.de> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
Uncouple buddy selection from wakeup granularity. The initial idea was that buddies could run ahead as far as a normal task can - do this by measuring a pair 'slice' just as we do for a normal task. This means we can drop the wakeup_granularity back to 5ms. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Cc: Mike Galbraith <efault@gmx.de> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
Try again.. Initial commit: 18d95a28 Revert: 6363ca57Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Cc: Mike Galbraith <efault@gmx.de> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
Ok, so why are we in this mess, it was: 1/w but now we mixed that rw in the mix like: rw/w rw being \Sum w suggests: fiddling w, we should also fiddle rw, humm? Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Cc: Mike Galbraith <efault@gmx.de> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
calc_delta_asym() is supposed to do the same as calc_delta_fair() except linearly shrink the result for negative nice processes - this causes them to have a smaller preemption threshold so that they are more easily preempted. The problem is that for task groups se->load.weight is the per cpu share of the actual task group weight; take that into account. Also provide a debug switch to disable the asymmetry (which I still don't like - but it does greatly benefit some workloads) This would explain the interactivity issues reported against group scheduling. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Cc: Mike Galbraith <efault@gmx.de> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
Try again.. initial commit: 8f1bc385 revert: f9305d4aSigned-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Cc: Mike Galbraith <efault@gmx.de> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 06 6月, 2008 1 次提交
-
-
由 Gregory Haskins 提交于
The currently logic inadvertently skips the last task on the run-queue, resulting in missed balance opportunities. Signed-off-by: NGregory Haskins <ghaskins@novell.com> Signed-off-by: NDavid Bahi <dbahi@novell.com> CC: Peter Zijlstra <peterz@infradead.org> Signed-off-by: NIngo Molnar <mingo@elte.hu> Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 29 5月, 2008 3 次提交
-
-
由 Mike Galbraith 提交于
Prevent short-running wakers of short-running threads from overloading a single cpu via wakeup affinity, and wire up disconnected debug option. Signed-off-by: NMike Galbraith <efault@gmx.de> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Ingo Molnar 提交于
Yanmin Zhang reported: Comparing with 2.6.25, volanoMark has big regression with kernel 2.6.26-rc1. It's about 50% on my 8-core stoakley, 16-core tigerton, and Itanium Montecito. With bisect, I located the following patch: | 18d95a28 is first bad commit | commit 18d95a28 | Author: Peter Zijlstra <a.p.zijlstra@chello.nl> | Date: Sat Apr 19 19:45:00 2008 +0200 | | sched: fair-group: SMP-nice for group scheduling Revert it so that we get v2.6.25 behavior. Bisected-by: NYanmin Zhang <yanmin_zhang@linux.intel.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Ingo Molnar 提交于
Yanmin Zhang reported: Comparing with kernel 2.6.25, sysbench+mysql(oltp, readonly) has many regressions with 2.6.26-rc1: 1) 8-core stoakley: 28%; 2) 16-core tigerton: 20%; 3) Itanium Montvale: 50%. Bisect located this patch: | 8f1bc385 is first bad commit | commit 8f1bc385 | Author: Peter Zijlstra <a.p.zijlstra@chello.nl> | Date: Sat Apr 19 19:45:00 2008 +0200 | | sched: fair: weight calculations Revert it to the 2.6.25 state. Bisected-by: NYanmin Zhang <yanmin_zhang@linux.intel.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 24 5月, 2008 3 次提交
-
-
由 Ingo Molnar 提交于
Signed-off-by: NIngo Molnar <mingo@elte.hu> Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
-
由 Ingo Molnar 提交于
Signed-off-by: NIngo Molnar <mingo@elte.hu> Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
-
由 Mike Travis 提交于
Change references from for_each_cpu_mask to for_each_cpu_mask_nr where appropriate Reviewed-by: NPaul Jackson <pj@sgi.com> Reviewed-by: NChristoph Lameter <clameter@sgi.com> Signed-off-by: NMike Travis <travis@sgi.com> Signed-off-by: NIngo Molnar <mingo@elte.hu> Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 08 5月, 2008 1 次提交
-
-
由 Mike Galbraith 提交于
The conversion between virtual and real time is as follows: dvt = rw/w * dt <=> dt = w/rw * dvt Since we want the fair sleeper granularity to be in real time, we actually need to do: dvt = - rw/w * l This bug could be related to the regression reported by Yanmin Zhang: | Comparing with kernel 2.6.25, sysbench+mysql(oltp, readonly) has lots | of regressions with 2.6.26-rc1: | | 1) 8-core stoakley: 28%; | 2) 16-core tigerton: 20%; | 3) Itanium Montvale: 50%. Reported-by: N"Zhang, Yanmin" <yanmin_zhang@linux.intel.com> Signed-off-by: NMike Galbraith <efault@gmx.de> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 06 5月, 2008 5 次提交
-
-
由 Peter Zijlstra 提交于
this replaces the rq->clock stuff (and possibly cpu_clock()). - architectures that have an 'imperfect' hardware clock can set CONFIG_HAVE_UNSTABLE_SCHED_CLOCK - the 'jiffie' window might be superfulous when we update tick_gtod before the __update_sched_clock() call in sched_clock_tick() - cpu_clock() might be implemented as: sched_clock_cpu(smp_processor_id()) if the accuracy proves good enough - how far can TSC drift in a single jiffie when considering the filtering and idle hooks? [ mingo@elte.hu: various fixes and cleanups ] Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Mike Galbraith 提交于
Revert debugging commit 7ba2e74a. print_cfs_rq_tasks() can induce live-lock if a task is dequeued during list traversal. Signed-off-by: NMike Galbraith <efault@gmx.de> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Gregory Haskins 提交于
We currently use an optimization to skip the overhead of wake-idle processing if more than one task is assigned to a run-queue. The assumption is that the system must already be load-balanced or we wouldnt be overloaded to begin with. The problem is that we are looking at rq->nr_running, which may include RT tasks in addition to CFS tasks. Since the presence of RT tasks really has no bearing on the balance status of CFS tasks, this throws the calculation off. This patch changes the logic to only consider the number of CFS tasks when making the decision to optimze the wake-idle. Signed-off-by: NGregory Haskins <ghaskins@novell.com> CC: Peter Zijlstra <peterz@infradead.org> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Harvey Harrison 提交于
Noticed by sparse: kernel/sched.c:760:20: warning: symbol 'sched_feat_names' was not declared. Should it be static? kernel/sched.c:767:5: warning: symbol 'sched_feat_open' was not declared. Should it be static? kernel/sched_fair.c:845:3: warning: returning void-valued expression kernel/sched.c:4386:3: warning: returning void-valued expression Signed-off-by: NHarvey Harrison <harvey.harrison@gmail.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
Normalized sleeper uses calc_delta*() which requires that the rq load is already updated, so move account_entity_enqueue() before place_entity() Tested-by: NFrans Pop <elendil@planet.nl> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 20 4月, 2008 3 次提交
-
-
由 Peter Zijlstra 提交于
Print a tree of weights. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
In order to level the hierarchy, we need to calculate load based on the root view. That is, each task's load is in the same unit. A / \ B 1 / \ 2 3 To compute 1's load we do: weight(1) -------------- rq_weight(A) To compute 2's load we do: weight(2) weight(B) ------------ * ----------- rq_weight(B) rw_weight(A) This yields load fractions in comparable units. The consequence is that it changes virtual time. We used to have: time_{i} vtime_{i} = ------------ weight_{i} vtime = \Sum vtime_{i} = time / rq_weight. But with the new way of load calculation we get that vtime equals time. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
De-couple load-balancing from the rb-trees, so that I can change their organization. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-