1. 23 3月, 2016 1 次提交
    • A
      profile: hide unused functions when !CONFIG_PROC_FS · ade356b9
      Arnd Bergmann 提交于
      A couple of functions and variables in the profile implementation are
      used only on SMP systems by the procfs code, but are unused if either
      procfs is disabled or in uniprocessor kernels.  gcc prints a harmless
      warning about the unused symbols:
      
        kernel/profile.c:243:13: error: 'profile_flip_buffers' defined but not used [-Werror=unused-function]
         static void profile_flip_buffers(void)
                     ^
        kernel/profile.c:266:13: error: 'profile_discard_flip_buffers' defined but not used [-Werror=unused-function]
         static void profile_discard_flip_buffers(void)
                     ^
        kernel/profile.c:330:12: error: 'profile_cpu_callback' defined but not used [-Werror=unused-function]
         static int profile_cpu_callback(struct notifier_block *info,
                    ^
      
      This adds further #ifdef to the file, to annotate exactly in which cases
      they are used.  I have done several thousand ARM randconfig kernels with
      this patch applied and no longer get any warnings in this file.
      Signed-off-by: NArnd Bergmann <arnd@arndb.de>
      Cc: Vlastimil Babka <vbabka@suse.cz>
      Cc: Robin Holt <robinmholt@gmail.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Tejun Heo <tj@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      ade356b9
  2. 09 2月, 2016 1 次提交
    • M
      sched/debug: Make schedstats a runtime tunable that is disabled by default · cb251765
      Mel Gorman 提交于
      schedstats is very useful during debugging and performance tuning but it
      incurs overhead to calculate the stats. As such, even though it can be
      disabled at build time, it is often enabled as the information is useful.
      
      This patch adds a kernel command-line and sysctl tunable to enable or
      disable schedstats on demand (when it's built in). It is disabled
      by default as someone who knows they need it can also learn to enable
      it when necessary.
      
      The benefits are dependent on how scheduler-intensive the workload is.
      If it is then the patch reduces the number of cycles spent calculating
      the stats with a small benefit from reducing the cache footprint of the
      scheduler.
      
      These measurements were taken from a 48-core 2-socket
      machine with Xeon(R) E5-2670 v3 cpus although they were also tested on a
      single socket machine 8-core machine with Intel i7-3770 processors.
      
      netperf-tcp
                                 4.5.0-rc1             4.5.0-rc1
                                   vanilla          nostats-v3r1
      Hmean    64         560.45 (  0.00%)      575.98 (  2.77%)
      Hmean    128        766.66 (  0.00%)      795.79 (  3.80%)
      Hmean    256        950.51 (  0.00%)      981.50 (  3.26%)
      Hmean    1024      1433.25 (  0.00%)     1466.51 (  2.32%)
      Hmean    2048      2810.54 (  0.00%)     2879.75 (  2.46%)
      Hmean    3312      4618.18 (  0.00%)     4682.09 (  1.38%)
      Hmean    4096      5306.42 (  0.00%)     5346.39 (  0.75%)
      Hmean    8192     10581.44 (  0.00%)    10698.15 (  1.10%)
      Hmean    16384    18857.70 (  0.00%)    18937.61 (  0.42%)
      
      Small gains here, UDP_STREAM showed nothing intresting and neither did
      the TCP_RR tests. The gains on the 8-core machine were very similar.
      
      tbench4
                                       4.5.0-rc1             4.5.0-rc1
                                         vanilla          nostats-v3r1
      Hmean    mb/sec-1         500.85 (  0.00%)      522.43 (  4.31%)
      Hmean    mb/sec-2         984.66 (  0.00%)     1018.19 (  3.41%)
      Hmean    mb/sec-4        1827.91 (  0.00%)     1847.78 (  1.09%)
      Hmean    mb/sec-8        3561.36 (  0.00%)     3611.28 (  1.40%)
      Hmean    mb/sec-16       5824.52 (  0.00%)     5929.03 (  1.79%)
      Hmean    mb/sec-32      10943.10 (  0.00%)    10802.83 ( -1.28%)
      Hmean    mb/sec-64      15950.81 (  0.00%)    16211.31 (  1.63%)
      Hmean    mb/sec-128     15302.17 (  0.00%)    15445.11 (  0.93%)
      Hmean    mb/sec-256     14866.18 (  0.00%)    15088.73 (  1.50%)
      Hmean    mb/sec-512     15223.31 (  0.00%)    15373.69 (  0.99%)
      Hmean    mb/sec-1024    14574.25 (  0.00%)    14598.02 (  0.16%)
      Hmean    mb/sec-2048    13569.02 (  0.00%)    13733.86 (  1.21%)
      Hmean    mb/sec-3072    12865.98 (  0.00%)    13209.23 (  2.67%)
      
      Small gains of 2-4% at low thread counts and otherwise flat.  The
      gains on the 8-core machine were slightly different
      
      tbench4 on 8-core i7-3770 single socket machine
      Hmean    mb/sec-1        442.59 (  0.00%)      448.73 (  1.39%)
      Hmean    mb/sec-2        796.68 (  0.00%)      794.39 ( -0.29%)
      Hmean    mb/sec-4       1322.52 (  0.00%)     1343.66 (  1.60%)
      Hmean    mb/sec-8       2611.65 (  0.00%)     2694.86 (  3.19%)
      Hmean    mb/sec-16      2537.07 (  0.00%)     2609.34 (  2.85%)
      Hmean    mb/sec-32      2506.02 (  0.00%)     2578.18 (  2.88%)
      Hmean    mb/sec-64      2511.06 (  0.00%)     2569.16 (  2.31%)
      Hmean    mb/sec-128     2313.38 (  0.00%)     2395.50 (  3.55%)
      Hmean    mb/sec-256     2110.04 (  0.00%)     2177.45 (  3.19%)
      Hmean    mb/sec-512     2072.51 (  0.00%)     2053.97 ( -0.89%)
      
      In constract, this shows a relatively steady 2-3% gain at higher thread
      counts. Due to the nature of the patch and the type of workload, it's
      not a surprise that the result will depend on the CPU used.
      
      hackbench-pipes
                               4.5.0-rc1             4.5.0-rc1
                                 vanilla          nostats-v3r1
      Amean    1        0.0637 (  0.00%)      0.0660 ( -3.59%)
      Amean    4        0.1229 (  0.00%)      0.1181 (  3.84%)
      Amean    7        0.1921 (  0.00%)      0.1911 (  0.52%)
      Amean    12       0.3117 (  0.00%)      0.2923 (  6.23%)
      Amean    21       0.4050 (  0.00%)      0.3899 (  3.74%)
      Amean    30       0.4586 (  0.00%)      0.4433 (  3.33%)
      Amean    48       0.5910 (  0.00%)      0.5694 (  3.65%)
      Amean    79       0.8663 (  0.00%)      0.8626 (  0.43%)
      Amean    110      1.1543 (  0.00%)      1.1517 (  0.22%)
      Amean    141      1.4457 (  0.00%)      1.4290 (  1.16%)
      Amean    172      1.7090 (  0.00%)      1.6924 (  0.97%)
      Amean    192      1.9126 (  0.00%)      1.9089 (  0.19%)
      
      Some small gains and losses and while the variance data is not included,
      it's close to the noise. The UMA machine did not show anything particularly
      different
      
      pipetest
                                   4.5.0-rc1             4.5.0-rc1
                                     vanilla          nostats-v2r2
      Min         Time        4.13 (  0.00%)        3.99 (  3.39%)
      1st-qrtle   Time        4.38 (  0.00%)        4.27 (  2.51%)
      2nd-qrtle   Time        4.46 (  0.00%)        4.39 (  1.57%)
      3rd-qrtle   Time        4.56 (  0.00%)        4.51 (  1.10%)
      Max-90%     Time        4.67 (  0.00%)        4.60 (  1.50%)
      Max-93%     Time        4.71 (  0.00%)        4.65 (  1.27%)
      Max-95%     Time        4.74 (  0.00%)        4.71 (  0.63%)
      Max-99%     Time        4.88 (  0.00%)        4.79 (  1.84%)
      Max         Time        4.93 (  0.00%)        4.83 (  2.03%)
      Mean        Time        4.48 (  0.00%)        4.39 (  1.91%)
      Best99%Mean Time        4.47 (  0.00%)        4.39 (  1.91%)
      Best95%Mean Time        4.46 (  0.00%)        4.38 (  1.93%)
      Best90%Mean Time        4.45 (  0.00%)        4.36 (  1.98%)
      Best50%Mean Time        4.36 (  0.00%)        4.25 (  2.49%)
      Best10%Mean Time        4.23 (  0.00%)        4.10 (  3.13%)
      Best5%Mean  Time        4.19 (  0.00%)        4.06 (  3.20%)
      Best1%Mean  Time        4.13 (  0.00%)        4.00 (  3.39%)
      
      Small improvement and similar gains were seen on the UMA machine.
      
      The gain is small but it stands to reason that doing less work in the
      scheduler is a good thing. The downside is that the lack of schedstats and
      tracepoints may be surprising to experts doing performance analysis until
      they find the existence of the schedstats= parameter or schedstats sysctl.
      It will be automatically activated for latencytop and sleep profiling to
      alleviate the problem. For tracepoints, there is a simple warning as it's
      not safe to activate schedstats in the context when it's known the tracepoint
      may be wanted but is unavailable.
      Signed-off-by: NMel Gorman <mgorman@techsingularity.net>
      Reviewed-by: NMatt Fleming <matt@codeblueprint.co.uk>
      Reviewed-by: NSrikar Dronamraju <srikar@linux.vnet.ibm.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Mike Galbraith <mgalbraith@suse.de>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Link: http://lkml.kernel.org/r/1454663316-22048-1-git-send-email-mgorman@techsingularity.netSigned-off-by: NIngo Molnar <mingo@kernel.org>
      cb251765
  3. 09 9月, 2015 1 次提交
    • V
      mm: rename alloc_pages_exact_node() to __alloc_pages_node() · 96db800f
      Vlastimil Babka 提交于
      alloc_pages_exact_node() was introduced in commit 6484eb3e ("page
      allocator: do not check NUMA node ID when the caller knows the node is
      valid") as an optimized variant of alloc_pages_node(), that doesn't
      fallback to current node for nid == NUMA_NO_NODE.  Unfortunately the
      name of the function can easily suggest that the allocation is
      restricted to the given node and fails otherwise.  In truth, the node is
      only preferred, unless __GFP_THISNODE is passed among the gfp flags.
      
      The misleading name has lead to mistakes in the past, see for example
      commits 5265047a ("mm, thp: really limit transparent hugepage
      allocation to local node") and b360edb4 ("mm, mempolicy:
      migrate_to_node should only migrate to node").
      
      Another issue with the name is that there's a family of
      alloc_pages_exact*() functions where 'exact' means exact size (instead
      of page order), which leads to more confusion.
      
      To prevent further mistakes, this patch effectively renames
      alloc_pages_exact_node() to __alloc_pages_node() to better convey that
      it's an optimized variant of alloc_pages_node() not intended for general
      usage.  Both functions get described in comments.
      
      It has been also considered to really provide a convenience function for
      allocations restricted to a node, but the major opinion seems to be that
      __GFP_THISNODE already provides that functionality and we shouldn't
      duplicate the API needlessly.  The number of users would be small
      anyway.
      
      Existing callers of alloc_pages_exact_node() are simply converted to
      call __alloc_pages_node(), with the exception of sba_alloc_coherent()
      which open-codes the check for NUMA_NO_NODE, so it is converted to use
      alloc_pages_node() instead.  This means it no longer performs some
      VM_BUG_ON checks, and since the current check for nid in
      alloc_pages_node() uses a 'nid < 0' comparison (which includes
      NUMA_NO_NODE), it may hide wrong values which would be previously
      exposed.
      
      Both differences will be rectified by the next patch.
      
      To sum up, this patch makes no functional changes, except temporarily
      hiding potentially buggy callers.  Restricting the checks in
      alloc_pages_node() is left for the next patch which can in turn expose
      more existing buggy callers.
      Signed-off-by: NVlastimil Babka <vbabka@suse.cz>
      Acked-by: NJohannes Weiner <hannes@cmpxchg.org>
      Acked-by: NRobin Holt <robinmholt@gmail.com>
      Acked-by: NMichal Hocko <mhocko@suse.com>
      Acked-by: NChristoph Lameter <cl@linux.com>
      Acked-by: NMichael Ellerman <mpe@ellerman.id.au>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
      Cc: Pekka Enberg <penberg@kernel.org>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
      Cc: Tony Luck <tony.luck@intel.com>
      Cc: Fenghua Yu <fenghua.yu@intel.com>
      Cc: Arnd Bergmann <arnd@arndb.de>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: Paul Mackerras <paulus@samba.org>
      Cc: Gleb Natapov <gleb@kernel.org>
      Cc: Paolo Bonzini <pbonzini@redhat.com>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: "H. Peter Anvin" <hpa@zytor.com>
      Cc: Cliff Whickman <cpw@sgi.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      96db800f
  4. 14 2月, 2015 1 次提交
  5. 07 6月, 2014 2 次提交
  6. 04 4月, 2014 1 次提交
    • P
      kernel: audit/fix non-modular users of module_init in core code · c96d6660
      Paul Gortmaker 提交于
      Code that is obj-y (always built-in) or dependent on a bool Kconfig
      (built-in or absent) can never be modular.  So using module_init as an
      alias for __initcall can be somewhat misleading.
      
      Fix these up now, so that we can relocate module_init from init.h into
      module.h in the future.  If we don't do this, we'd have to add module.h
      to obviously non-modular code, and that would be a worse thing.
      
      The audit targets the following module_init users for change:
       kernel/user.c                  obj-y
       kernel/kexec.c                 bool KEXEC (one instance per arch)
       kernel/profile.c               bool PROFILING
       kernel/hung_task.c             bool DETECT_HUNG_TASK
       kernel/sched/stats.c           bool SCHEDSTATS
       kernel/user_namespace.c        bool USER_NS
      
      Note that direct use of __initcall is discouraged, vs.  one of the
      priority categorized subgroups.  As __initcall gets mapped onto
      device_initcall, our use of subsys_initcall (which makes sense for these
      files) will thus change this registration from level 6-device to level
      4-subsys (i.e.  slightly earlier).  However no observable impact of that
      difference has been observed during testing.
      
      Also, two instances of missing ";" at EOL are fixed in kexec.
      Signed-off-by: NPaul Gortmaker <paul.gortmaker@windriver.com>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Eric Biederman <ebiederm@xmission.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      c96d6660
  7. 20 3月, 2014 1 次提交
    • S
      profile: Fix CPU hotplug callback registration · c270a817
      Srivatsa S. Bhat 提交于
      Subsystems that want to register CPU hotplug callbacks, as well as perform
      initialization for the CPUs that are already online, often do it as shown
      below:
      
      	get_online_cpus();
      
      	for_each_online_cpu(cpu)
      		init_cpu(cpu);
      
      	register_cpu_notifier(&foobar_cpu_notifier);
      
      	put_online_cpus();
      
      This is wrong, since it is prone to ABBA deadlocks involving the
      cpu_add_remove_lock and the cpu_hotplug.lock (when running concurrently
      with CPU hotplug operations).
      
      Instead, the correct and race-free way of performing the callback
      registration is:
      
      	cpu_notifier_register_begin();
      
      	for_each_online_cpu(cpu)
      		init_cpu(cpu);
      
      	/* Note the use of the double underscored version of the API */
      	__register_cpu_notifier(&foobar_cpu_notifier);
      
      	cpu_notifier_register_done();
      
      Fix the profile code by using this latter form of callback registration.
      
      Cc: Al Viro <viro@zeniv.linux.org.uk>
      Cc: Mauro Carvalho Chehab <mchehab@redhat.com>
      Cc: Ingo Molnar <mingo@kernel.org>
      Signed-off-by: NSrivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
      Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
      c270a817
  8. 11 3月, 2014 1 次提交
    • J
      mm: fix GFP_THISNODE callers and clarify · e97ca8e5
      Johannes Weiner 提交于
      GFP_THISNODE is for callers that implement their own clever fallback to
      remote nodes.  It restricts the allocation to the specified node and
      does not invoke reclaim, assuming that the caller will take care of it
      when the fallback fails, e.g.  through a subsequent allocation request
      without GFP_THISNODE set.
      
      However, many current GFP_THISNODE users only want the node exclusive
      aspect of the flag, without actually implementing their own fallback or
      triggering reclaim if necessary.  This results in things like page
      migration failing prematurely even when there is easily reclaimable
      memory available, unless kswapd happens to be running already or a
      concurrent allocation attempt triggers the necessary reclaim.
      
      Convert all callsites that don't implement their own fallback strategy
      to __GFP_THISNODE.  This restricts the allocation a single node too, but
      at the same time allows the allocator to enter the slowpath, wake
      kswapd, and invoke direct reclaim if necessary, to make the allocation
      happen when memory is full.
      Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org>
      Acked-by: NRik van Riel <riel@redhat.com>
      Cc: Jan Stancek <jstancek@redhat.com>
      Cc: Mel Gorman <mgorman@suse.de>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      e97ca8e5
  9. 15 7月, 2013 1 次提交
    • P
      kernel: delete __cpuinit usage from all core kernel files · 0db0628d
      Paul Gortmaker 提交于
      The __cpuinit type of throwaway sections might have made sense
      some time ago when RAM was more constrained, but now the savings
      do not offset the cost and complications.  For example, the fix in
      commit 5e427ec2 ("x86: Fix bit corruption at CPU resume time")
      is a good example of the nasty type of bugs that can be created
      with improper use of the various __init prefixes.
      
      After a discussion on LKML[1] it was decided that cpuinit should go
      the way of devinit and be phased out.  Once all the users are gone,
      we can then finally remove the macros themselves from linux/init.h.
      
      This removes all the uses of the __cpuinit macros from C files in
      the core kernel directories (kernel, init, lib, mm, and include)
      that don't really have a specific maintainer.
      
      [1] https://lkml.org/lkml/2013/5/20/589Signed-off-by: NPaul Gortmaker <paul.gortmaker@windriver.com>
      0db0628d
  10. 02 5月, 2013 1 次提交
  11. 10 4月, 2013 1 次提交
  12. 24 1月, 2013 1 次提交
    • F
      profiling: Remove unused timer hook · ba6fdda4
      Frederic Weisbecker 提交于
      The last remaining user was oprofile and its use has been
      removed a while ago in commit bc078e4e
      ("oprofile: convert oprofile from timer_hook to hrtimer").
      
      There doesn't seem to be any upstream user of this hook
      for about two years now. And I'm not even aware of any out of
      tree user.
      
      Let's remove it.
      Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com>
      Cc: Alessio Igor Bogani <abogani@kernel.org>
      Cc: Avi Kivity <avi@redhat.com>
      Cc: Chris Metcalf <cmetcalf@tilera.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Geoff Levand <geoff@infradead.org>
      Cc: Gilad Ben Yossef <gilad@benyossef.com>
      Cc: Hakan Akkan <hakanakkan@gmail.com>
      Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
      Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Steven Rostedt <rostedt@goodmis.org>
      Link: http://lkml.kernel.org/r/1356191991-2251-1-git-send-email-fweisbec@gmail.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
      ba6fdda4
  13. 06 12月, 2012 1 次提交
  14. 31 10月, 2011 1 次提交
  15. 27 5月, 2011 1 次提交
  16. 31 10月, 2010 1 次提交
  17. 15 10月, 2010 1 次提交
    • A
      llseek: automatically add .llseek fop · 6038f373
      Arnd Bergmann 提交于
      All file_operations should get a .llseek operation so we can make
      nonseekable_open the default for future file operations without a
      .llseek pointer.
      
      The three cases that we can automatically detect are no_llseek, seq_lseek
      and default_llseek. For cases where we can we can automatically prove that
      the file offset is always ignored, we use noop_llseek, which maintains
      the current behavior of not returning an error from a seek.
      
      New drivers should normally not use noop_llseek but instead use no_llseek
      and call nonseekable_open at open time.  Existing drivers can be converted
      to do the same when the maintainer knows for certain that no user code
      relies on calling seek on the device file.
      
      The generated code is often incorrectly indented and right now contains
      comments that clarify for each added line why a specific variant was
      chosen. In the version that gets submitted upstream, the comments will
      be gone and I will manually fix the indentation, because there does not
      seem to be a way to do that using coccinelle.
      
      Some amount of new code is currently sitting in linux-next that should get
      the same modifications, which I will do at the end of the merge window.
      
      Many thanks to Julia Lawall for helping me learn to write a semantic
      patch that does all this.
      
      ===== begin semantic patch =====
      // This adds an llseek= method to all file operations,
      // as a preparation for making no_llseek the default.
      //
      // The rules are
      // - use no_llseek explicitly if we do nonseekable_open
      // - use seq_lseek for sequential files
      // - use default_llseek if we know we access f_pos
      // - use noop_llseek if we know we don't access f_pos,
      //   but we still want to allow users to call lseek
      //
      @ open1 exists @
      identifier nested_open;
      @@
      nested_open(...)
      {
      <+...
      nonseekable_open(...)
      ...+>
      }
      
      @ open exists@
      identifier open_f;
      identifier i, f;
      identifier open1.nested_open;
      @@
      int open_f(struct inode *i, struct file *f)
      {
      <+...
      (
      nonseekable_open(...)
      |
      nested_open(...)
      )
      ...+>
      }
      
      @ read disable optional_qualifier exists @
      identifier read_f;
      identifier f, p, s, off;
      type ssize_t, size_t, loff_t;
      expression E;
      identifier func;
      @@
      ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
      {
      <+...
      (
         *off = E
      |
         *off += E
      |
         func(..., off, ...)
      |
         E = *off
      )
      ...+>
      }
      
      @ read_no_fpos disable optional_qualifier exists @
      identifier read_f;
      identifier f, p, s, off;
      type ssize_t, size_t, loff_t;
      @@
      ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
      {
      ... when != off
      }
      
      @ write @
      identifier write_f;
      identifier f, p, s, off;
      type ssize_t, size_t, loff_t;
      expression E;
      identifier func;
      @@
      ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
      {
      <+...
      (
        *off = E
      |
        *off += E
      |
        func(..., off, ...)
      |
        E = *off
      )
      ...+>
      }
      
      @ write_no_fpos @
      identifier write_f;
      identifier f, p, s, off;
      type ssize_t, size_t, loff_t;
      @@
      ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
      {
      ... when != off
      }
      
      @ fops0 @
      identifier fops;
      @@
      struct file_operations fops = {
       ...
      };
      
      @ has_llseek depends on fops0 @
      identifier fops0.fops;
      identifier llseek_f;
      @@
      struct file_operations fops = {
      ...
       .llseek = llseek_f,
      ...
      };
      
      @ has_read depends on fops0 @
      identifier fops0.fops;
      identifier read_f;
      @@
      struct file_operations fops = {
      ...
       .read = read_f,
      ...
      };
      
      @ has_write depends on fops0 @
      identifier fops0.fops;
      identifier write_f;
      @@
      struct file_operations fops = {
      ...
       .write = write_f,
      ...
      };
      
      @ has_open depends on fops0 @
      identifier fops0.fops;
      identifier open_f;
      @@
      struct file_operations fops = {
      ...
       .open = open_f,
      ...
      };
      
      // use no_llseek if we call nonseekable_open
      ////////////////////////////////////////////
      @ nonseekable1 depends on !has_llseek && has_open @
      identifier fops0.fops;
      identifier nso ~= "nonseekable_open";
      @@
      struct file_operations fops = {
      ...  .open = nso, ...
      +.llseek = no_llseek, /* nonseekable */
      };
      
      @ nonseekable2 depends on !has_llseek @
      identifier fops0.fops;
      identifier open.open_f;
      @@
      struct file_operations fops = {
      ...  .open = open_f, ...
      +.llseek = no_llseek, /* open uses nonseekable */
      };
      
      // use seq_lseek for sequential files
      /////////////////////////////////////
      @ seq depends on !has_llseek @
      identifier fops0.fops;
      identifier sr ~= "seq_read";
      @@
      struct file_operations fops = {
      ...  .read = sr, ...
      +.llseek = seq_lseek, /* we have seq_read */
      };
      
      // use default_llseek if there is a readdir
      ///////////////////////////////////////////
      @ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
      identifier fops0.fops;
      identifier readdir_e;
      @@
      // any other fop is used that changes pos
      struct file_operations fops = {
      ... .readdir = readdir_e, ...
      +.llseek = default_llseek, /* readdir is present */
      };
      
      // use default_llseek if at least one of read/write touches f_pos
      /////////////////////////////////////////////////////////////////
      @ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
      identifier fops0.fops;
      identifier read.read_f;
      @@
      // read fops use offset
      struct file_operations fops = {
      ... .read = read_f, ...
      +.llseek = default_llseek, /* read accesses f_pos */
      };
      
      @ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
      identifier fops0.fops;
      identifier write.write_f;
      @@
      // write fops use offset
      struct file_operations fops = {
      ... .write = write_f, ...
      +	.llseek = default_llseek, /* write accesses f_pos */
      };
      
      // Use noop_llseek if neither read nor write accesses f_pos
      ///////////////////////////////////////////////////////////
      
      @ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
      identifier fops0.fops;
      identifier read_no_fpos.read_f;
      identifier write_no_fpos.write_f;
      @@
      // write fops use offset
      struct file_operations fops = {
      ...
       .write = write_f,
       .read = read_f,
      ...
      +.llseek = noop_llseek, /* read and write both use no f_pos */
      };
      
      @ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
      identifier fops0.fops;
      identifier write_no_fpos.write_f;
      @@
      struct file_operations fops = {
      ... .write = write_f, ...
      +.llseek = noop_llseek, /* write uses no f_pos */
      };
      
      @ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
      identifier fops0.fops;
      identifier read_no_fpos.read_f;
      @@
      struct file_operations fops = {
      ... .read = read_f, ...
      +.llseek = noop_llseek, /* read uses no f_pos */
      };
      
      @ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
      identifier fops0.fops;
      @@
      struct file_operations fops = {
      ...
      +.llseek = noop_llseek, /* no read or write fn */
      };
      ===== End semantic patch =====
      Signed-off-by: NArnd Bergmann <arnd@arndb.de>
      Cc: Julia Lawall <julia@diku.dk>
      Cc: Christoph Hellwig <hch@infradead.org>
      6038f373
  18. 28 5月, 2010 2 次提交
  19. 15 5月, 2010 1 次提交
  20. 21 9月, 2009 1 次提交
  21. 30 7月, 2009 1 次提交
  22. 18 7月, 2009 1 次提交
  23. 17 6月, 2009 1 次提交
  24. 12 6月, 2009 1 次提交
  25. 10 2月, 2009 1 次提交
  26. 07 1月, 2009 1 次提交
  27. 01 1月, 2009 1 次提交
    • R
      cpumask: convert kernel/profile.c · c309b917
      Rusty Russell 提交于
      Impact: Reduce kernel memory usage, use new cpumask API.
      
      Avoid a static cpumask_t for prof_cpu_mask, and an on-stack cpumask_t
      in prof_cpu_mask_write_proc.  Both become cpumask_var_t.
      
      prof_cpu_mask is only allocated when profiling is on, but the NULL
      checks are optimized out by gcc for the !CPUMASK_OFFSTACK case.
      
      Also removed some strange and unnecessary casts.
      Signed-off-by: NRusty Russell <rusty@rustcorp.com.au>
      c309b917
  28. 13 12月, 2008 1 次提交
    • R
      cpumask: change cpumask_scnprintf, cpumask_parse_user, cpulist_parse, and... · 29c0177e
      Rusty Russell 提交于
      cpumask: change cpumask_scnprintf, cpumask_parse_user, cpulist_parse, and cpulist_scnprintf to take pointers.
      
      Impact: change calling convention of existing cpumask APIs
      
      Most cpumask functions started with cpus_: these have been replaced by
      cpumask_ ones which take struct cpumask pointers as expected.
      
      These four functions don't have good replacement names; fortunately
      they're rarely used, so we just change them over.
      Signed-off-by: NRusty Russell <rusty@rustcorp.com.au>
      Signed-off-by: NMike Travis <travis@sgi.com>
      Acked-by: NIngo Molnar <mingo@elte.hu>
      Cc: paulus@samba.org
      Cc: mingo@redhat.com
      Cc: tony.luck@intel.com
      Cc: ralf@linux-mips.org
      Cc: Greg Kroah-Hartman <gregkh@suse.de>
      Cc: cl@linux-foundation.org
      Cc: srostedt@redhat.com
      29c0177e
  29. 01 12月, 2008 1 次提交
  30. 19 11月, 2008 1 次提交
  31. 18 11月, 2008 1 次提交
    • R
      kernel/profile.c: fix section mismatch warning · e270219f
      Rakib Mullick 提交于
      Impact: fix section mismatch warning in kernel/profile.c
      
      Here, profile_nop function has been called from a non-init function
      create_hash_tables(void). Which generetes a section mismatch warning.
      Previously, create_hash_tables(void) was a init function. So, removing
      __init from create_hash_tables(void) requires profile_nop to be
      non-init.
      
      This patch makes profile_nop function inline and fixes the
      following warning:
      
       WARNING: vmlinux.o(.text+0x6ebb6): Section mismatch in reference from
       the function create_hash_tables() to the function
       .init.text:profile_nop()
       The function create_hash_tables() references
       the function __init profile_nop().
       This is often because create_hash_tables lacks a __init
       annotation or the annotation of profile_nop is wrong.
      Signed-off-by: NRakib Mullick <rakib.mullick@gmail.com>
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      e270219f
  32. 31 10月, 2008 1 次提交
  33. 17 10月, 2008 1 次提交
  34. 26 7月, 2008 1 次提交
    • A
      build kernel/profile.o only when requested · b03f6489
      Adrian Bunk 提交于
      Build kernel/profile.o only if CONFIG_PROFILING is enabled.
      
      This makes CONFIG_PROFILING=n kernels smaller.
      
      As a bonus, some profile_tick() calls and one branch from schedule() are
      now eliminated with CONFIG_PROFILING=n (but I doubt these are
      measurable effects).
      
      This patch changes the effects of CONFIG_PROFILING=n, but I don't think
      having more than two choices would be the better choice.
      
      This patch also adds the name of the first parameter to the prototypes
      of profile_{hits,tick}() since I anyway had to add them for the dummy
      functions.
      Signed-off-by: NAdrian Bunk <bunk@kernel.org>
      Cc: Ingo Molnar <mingo@elte.hu>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      b03f6489
  35. 26 6月, 2008 1 次提交
  36. 29 4月, 2008 1 次提交
  37. 19 4月, 2008 1 次提交
  38. 09 2月, 2008 1 次提交