- 31 5月, 2018 3 次提交
-
-
由 Filippo Muzzini 提交于
Since bfq_finish_request() is always called on the request 'next', after bfq_requests_merged() is finished, and bfq_finish_request() removes 'next' from its bfq_queue if needed, it isn't necessary to do such a removal in advance in bfq_merged_requests(). This commit removes such a useless 'next' removal. Signed-off-by: NFilippo Muzzini <filippo.muzzini@outlook.it> Signed-off-by: NPaolo Valente <paolo.valente@linaro.org> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Paolo Valente 提交于
The request rq passed to the function bfq_requests_merged is always in a bfq_queue, so the check !RB_EMPTY_NODE(&rq->rb_node) at the beginning of bfq_requests_merged always succeeds, and the control flow systematically skips to the end of the function. This implies that the body of the function is never executed, i.e., the repositioning of rq is never performed. On the opposite end, a control is missing in the body of the function: 'next' must be removed only if it is inside a bfq_queue. This commit removes the wrong check on rq, and adds the missing check on 'next'. In addition, this commit adds comments on bfq_requests_merged. Signed-off-by: NFilippo Muzzini <filippo.muzzini@outlook.it> Signed-off-by: NPaolo Valente <paolo.valente@linaro.org> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Filippo Muzzini 提交于
In bfq_requests_merged(), there is a deadlock because the lock on bfqq->bfqd->lock is held by the calling function, but the code of this function tries to grab the lock again. This deadlock is currently hidden by another bug (fixed by next commit for this source file), which causes the body of bfq_requests_merged() to be never executed. This commit removes the deadlock by removing the lock/unlock pair. Signed-off-by: NFilippo Muzzini <filippo.muzzini@outlook.it> Signed-off-by: NPaolo Valente <paolo.valente@linaro.org> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
- 11 5月, 2018 5 次提交
-
-
由 Jens Axboe 提交于
If our shallow depth is smaller than the wake batching of sbitmap, we can introduce hangs. Ensure that sbitmap knows how low we'll go. Acked-by: NPaolo Valente <paolo.valente@linaro.org> Reviewed-by: NOmar Sandoval <osandov@fb.com> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Jens Axboe 提交于
bfqd->sb_shift was attempted used as a cache for the sbitmap queue shift, but we don't need it, as it never changes. Kill it with fire. Acked-by: NPaolo Valente <paolo.valente@linaro.org> Reviewed-by: NOmar Sandoval <osandov@fb.com> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Jens Axboe 提交于
It doesn't change, so don't put it in the per-IO hot path. Acked-by: NPaolo Valente <paolo.valente@linaro.org> Reviewed-by: NOmar Sandoval <osandov@fb.com> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Jens Axboe 提交于
Reserved tags are used for error handling, we don't need to care about them for regular IO. The core won't call us for these anyway. Acked-by: NPaolo Valente <paolo.valente@linaro.org> Reviewed-by: NOmar Sandoval <osandov@fb.com> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Paolo Valente 提交于
When invoked for an I/O request rq, the prepare_request hook of bfq increments reference counters in the destination bfq_queue for rq. In this respect, after this hook has been invoked, rq may still be transformed into a request with no icq attached, i.e., for bfq, a request not associated with any bfq_queue. No further hook is invoked to signal this tranformation to bfq (in general, to the destination elevator for rq). This leads bfq into an inconsistent state, because bfq has no chance to correctly lower these counters back. This inconsistency may in its turn cause incorrect scheduling and hangs. It certainly causes memory leaks, by making it impossible for bfq to free the involved bfq_queue. On the bright side, no transformation can still happen for rq after rq has been inserted into bfq, or merged with another, already inserted, request. Exploiting this fact, this commit addresses the above issue by delaying the preparation of an I/O request to when the request is inserted or merged. This change also gives a performance bonus: a lock-contention point gets removed. To prepare a request, bfq needs to hold its scheduler lock. After postponing request preparation to insertion or merging, no lock needs to be grabbed any longer in the prepare_request hook, while the lock already taken to perform insertion or merging is used to preparare the request as well. Tested-by: NOleksandr Natalenko <oleksandr@natalenko.name> Tested-by: NBart Van Assche <bart.vanassche@wdc.com> Signed-off-by: NPaolo Valente <paolo.valente@linaro.org> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
- 09 5月, 2018 1 次提交
-
-
由 Omar Sandoval 提交于
Currently, struct request has four timestamp fields: - A start time, set at get_request time, in jiffies, used for iostats - An I/O start time, set at start_request time, in ktime nanoseconds, used for blk-stats (i.e., wbt, kyber, hybrid polling) - Another start time and another I/O start time, used for cfq and bfq These can all be consolidated into one start time and one I/O start time, both in ktime nanoseconds, shaving off up to 16 bytes from struct request depending on the kernel config. Signed-off-by: NOmar Sandoval <osandov@fb.com> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
- 18 4月, 2018 1 次提交
-
-
由 Jens Axboe 提交于
Even if we don't have an IO context attached to a request, we still need to clear the priv[0..1] pointers, as they could be pointing to previously used bic/bfqq structures. If we don't do so, we'll either corrupt memory on dispatching a request, or cause an imbalance in counters. Inspired by a fix from Kees. Reported-by: NOleksandr Natalenko <oleksandr@natalenko.name> Reported-by: NKees Cook <keescook@chromium.org> Cc: stable@vger.kernel.org Fixes: aee69d78 ("block, bfq: introduce the BFQ-v0 I/O scheduler as an extra scheduler") Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
- 27 3月, 2018 1 次提交
-
-
由 Paolo Valente 提交于
If a storage device handled by BFQ happens to be slower than 7.5 KB/s for a certain amount of time (in the order of a second), then the estimated peak rate of the device, maintained in BFQ, becomes equal to 0. The reason is the limited precision with which the rate is represented (details on the range of representable values in the comments introduced by this commit). This leads to a division-by-zero error where the estimated peak rate is used as divisor. Such a type of failure has been reported in [1]. This commit addresses this issue by: 1. Lower-bounding the estimated peak rate to 1 2. Adding and improving comments on the range of rates representable [1] https://www.spinics.net/lists/kernel/msg2739205.htmlSigned-off-by: NKonstantin Khlebnikov <khlebnikov@yandex-team.ru> Signed-off-by: NPaolo Valente <paolo.valente@linaro.org> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
- 08 2月, 2018 1 次提交
-
-
由 Paolo Valente 提交于
Commit 'a6a252e6 ("blk-mq-sched: decide how to handle flush rq via RQF_FLUSH_SEQ")' makes all non-flush re-prepared requests for a device be re-inserted into the active I/O scheduler for that device. As a consequence, I/O schedulers may get the same request inserted again, even several times, without a finish_request invoked on that request before each re-insertion. This fact is the cause of the failure reported in [1]. For an I/O scheduler, every re-insertion of the same re-prepared request is equivalent to the insertion of a new request. For schedulers like mq-deadline or kyber, this fact causes no harm. In contrast, it confuses a stateful scheduler like BFQ, which keeps state for an I/O request, until the finish_request hook is invoked on the request. In particular, BFQ may get stuck, waiting forever for the number of request dispatches, of the same request, to be balanced by an equal number of request completions (while there will be one completion for that request). In this state, BFQ may refuse to serve I/O requests from other bfq_queues. The hang reported in [1] then follows. However, the above re-prepared requests undergo a requeue, thus the requeue_request hook of the active elevator is invoked for these requests, if set. This commit then addresses the above issue by properly implementing the hook requeue_request in BFQ. [1] https://marc.info/?l=linux-block&m=151211117608676Reported-by: NIvan Kozik <ivan@ludios.org> Reported-by: NAlban Browaeys <alban.browaeys@gmail.com> Tested-by: NMike Galbraith <efault@gmx.de> Signed-off-by: NPaolo Valente <paolo.valente@linaro.org> Signed-off-by: NSerena Ziviani <ziviani.serena@gmail.com> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
- 18 1月, 2018 2 次提交
-
-
由 Paolo Valente 提交于
To maximise responsiveness, BFQ raises the weight, and performs device idling, for bfq_queues associated with processes deemed as interactive. In particular, weight raising has a maximum duration, equal to the time needed to start a large application. If a weight-raised process goes on doing I/O beyond this maximum duration, it loses weight-raising. This mechanism is evidently vulnerable to the following false positives: I/O-bound applications that will go on doing I/O for much longer than the duration of weight-raising. These applications have basically no benefit from being weight-raised at the beginning of their I/O. On the opposite end, while being weight-raised, these applications a) unjustly steal throughput to applications that may truly need low latency; b) make BFQ uselessly perform device idling; device idling results in loss of device throughput with most flash-based storage, and may increase latencies when used purposelessly. This commit adds a countermeasure to reduce both the above problems. To introduce this countermeasure, we provide the following extra piece of information (full details in the comments added by this commit). During the start-up of the large application used as a reference to set the duration of weight-raising, involved processes transfer at most ~110K sectors each. Accordingly, a process initially deemed as interactive has no right to be weight-raised any longer, once transferred 110K sectors or more. Basing on this consideration, this commit early-ends weight-raising for a bfq_queue if the latter happens to have received an amount of service at least equal to 110K sectors (actually, a little bit more, to keep a safety margin). I/O-bound applications that reach a high throughput, such as file copy, get to this threshold much before the allowed weight-raising period finishes. Thus this early ending of weight-raising reduces the amount of time during which these applications cause the problems described above. Tested-by: NOleksandr Natalenko <oleksandr@natalenko.name> Tested-by: NHolger Hoffstätte <holger@applied-asynchrony.com> Signed-off-by: NPaolo Valente <paolo.valente@linaro.org> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Paolo Valente 提交于
Asynchronous I/O can easily starve synchronous I/O (both sync reads and sync writes), by consuming all request tags. Similarly, storms of synchronous writes, such as those that sync(2) may trigger, can starve synchronous reads. In their turn, these two problems may also cause BFQ to loose control on latency for interactive and soft real-time applications. For example, on a PLEXTOR PX-256M5S SSD, LibreOffice Writer takes 0.6 seconds to start if the device is idle, but it takes more than 45 seconds (!) if there are sequential writes in the background. This commit addresses this issue by limiting the maximum percentage of tags that asynchronous I/O requests and synchronous write requests can consume. In particular, this commit grants a higher threshold to synchronous writes, to prevent the latter from being starved by asynchronous I/O. According to the above test, LibreOffice Writer now starts in about 1.2 seconds on average, regardless of the background workload, and apart from some rare outlier. To check this improvement, run, e.g., sudo ./comm_startup_lat.sh bfq 5 5 seq 10 "lowriter --terminate_after_init" for the comm_startup_lat benchmark in the S suite [1]. [1] https://github.com/Algodev-github/STested-by: NOleksandr Natalenko <oleksandr@natalenko.name> Tested-by: NHolger Hoffstätte <holger@applied-asynchrony.com> Signed-off-by: NPaolo Valente <paolo.valente@linaro.org> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
- 10 1月, 2018 2 次提交
-
-
由 Chiara Bruschi 提交于
Commit '7b9e9361' ("blk-mq-sched: unify request finished methods") changed the old name of current bfq_finish_request method, but left it unchanged elsewhere in the code (related comments, part of function name bfq_put_rq_priv_body). This commit fixes all occurrences of the old name of this method by changing them into the current name. Fixes: 7b9e9361 ("blk-mq-sched: unify request finished methods") Reviewed-by: NPaolo Valente <paolo.valente@linaro.org> Signed-off-by: NFederico Motta <federico@willer.it> Signed-off-by: NChiara Bruschi <bruschi.chiara@outlook.it> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Jens Axboe 提交于
It's not available if we don't have group io scheduling set, and there's no need to call it. Fixes: 0d52af59 ("block, bfq: release oom-queue ref to root group on exit") Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
- 09 1月, 2018 1 次提交
-
-
由 Paolo Valente 提交于
On scheduler init, a reference to the root group, and a reference to its corresponding blkg are taken for the oom queue. Yet these references are not released on scheduler exit, which prevents these objects from be freed. This commit adds the missing reference releases. Reported-by: NDavide Ferrari <davideferrari8@gmail.com> Tested-by: NHolger Hoffstätte <holger@applied-asynchrony.com> Signed-off-by: NPaolo Valente <paolo.valente@linaro.org> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
- 06 1月, 2018 7 次提交
-
-
由 Paolo Valente 提交于
Commit a33801e8 ("block, bfq: move debug blkio stats behind CONFIG_DEBUG_BLK_CGROUP") introduced two batches of confusing ifdefs: one reported in [1], plus a similar one in another function. This commit removes both batches, in the way suggested in [1]. [1] https://www.spinics.net/lists/linux-block/msg20043.html Fixes: a33801e8 ("block, bfq: move debug blkio stats behind CONFIG_DEBUG_BLK_CGROUP") Reported-by: NLinus Torvalds <torvalds@linux-foundation.org> Tested-by: NLuca Miccio <lucmiccio@gmail.com> Signed-off-by: NPaolo Valente <paolo.valente@linaro.org> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Paolo Valente 提交于
BFQ privileges the I/O of soft real-time applications, such as video players, to guarantee to these application a high bandwidth and a low latency. In this respect, it is not easy to correctly detect when an application is soft real-time. A particularly nasty false positive is that of an I/O-bound application that occasionally happens to meet all requirements to be deemed as soft real-time. After being detected as soft real-time, such an application monopolizes the device. Fortunately, BFQ will realize soon that the application is actually not soft real-time and suspend every privilege. Yet, the application may happen again to be wrongly detected as soft real-time, and so on. As highlighted by our tests, this problem causes BFQ to occasionally fail to guarantee a high responsiveness, in the presence of heavy background I/O workloads. The reason is that the background workload happens to be detected as soft real-time, more or less frequently, during the execution of the interactive task under test. To give an idea, because of this problem, Libreoffice Writer occasionally takes 8 seconds, instead of 3, to start up, if there are sequential reads and writes in the background, on a Kingston SSDNow V300. This commit addresses this issue by leveraging the following facts. The reason why some applications are detected as soft real-time despite all BFQ checks to avoid false positives, is simply that, during high CPU or storage-device load, I/O-bound applications may happen to do I/O slowly enough to meet all soft real-time requirements, and pass all BFQ extra checks. Yet, this happens only for limited time periods: slow-speed time intervals are usually interspersed between other time intervals during which these applications do I/O at a very high speed. To exploit these facts, this commit introduces a little change, in the detection of soft real-time behavior, to systematically consider also the recent past: the higher the speed was in the recent past, the later next I/O should arrive for the application to be considered as soft real-time. At the beginning of a slow-speed interval, the minimum arrival time allowed for the next I/O usually happens to still be so high, to fall *after* the end of the slow-speed period itself. As a consequence, the application does not risk to be deemed as soft real-time during the slow-speed interval. Then, during the next high-speed interval, the application cannot, evidently, be deemed as soft real-time (exactly because of its speed), and so on. This extra filtering proved to be rather effective: in the above test, the frequency of false positives became so low that the start-up time was 3 seconds in all iterations (apart from occasional outliers, caused by page-cache-management issues, which are out of the scope of this commit, and cannot be solved by an I/O scheduler). Tested-by: NLee Tibbert <lee.tibbert@gmail.com> Signed-off-by: NPaolo Valente <paolo.valente@linaro.org> Signed-off-by: NAngelo Ruocco <angeloruocco90@gmail.com> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Angelo Ruocco 提交于
When two or more processes do I/O in a way that the their requests are sequential in respect to one another, BFQ merges the bfq_queues associated with the processes. This way the overall I/O pattern becomes sequential, and thus there is a boost in througput. These cooperating processes usually start or restart to do I/O shortly after each other. So, in order to avoid merging non-cooperating processes, BFQ ensures that none of these queues has been in weight raising for too long. In this respect, from commit "block, bfq-sq, bfq-mq: let a queue be merged only shortly after being created", BFQ checks whether any queue (and not only weight-raised ones) is doing I/O continuously from too long to be merged. This new additional check makes the first one useless: a queue doing I/O from long enough, if being weight-raised, is also a queue in weight raising for too long to be merged. Accordingly, this commit removes the first check. Signed-off-by: NAngelo Ruocco <angeloruocco90@gmail.com> Signed-off-by: NPaolo Valente <paolo.valente@linaro.com> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Paolo Valente 提交于
In BFQ and CFQ, two processes are said to be cooperating if they do I/O in such a way that the union of their I/O requests yields a sequential I/O pattern. To get such a sequential I/O pattern out of the non-sequential pattern of each cooperating process, BFQ and CFQ merge the queues associated with these processes. In more detail, cooperating processes, and thus their associated queues, usually start, or restart, to do I/O shortly after each other. This is the case, e.g., for the I/O threads of KVM/QEMU and of the dump utility. Basing on this assumption, this commit allows a bfq_queue to be merged only during a short time interval (100ms) after it starts, or re-starts, to do I/O. This filtering provides two important benefits. First, it greatly reduces the probability that two non-cooperating processes have their queues merged by mistake, if they just happen to do I/O close to each other for a short time interval. These spurious merges cause loss of service guarantees. A low-weight bfq_queue may unjustly get more than its expected share of the throughput: if such a low-weight queue is merged with a high-weight queue, then the I/O for the low-weight queue is served as if the queue had a high weight. This may damage other high-weight queues unexpectedly. For instance, because of this issue, lxterminal occasionally took 7.5 seconds to start, instead of 6.5 seconds, when some sequential readers and writers did I/O in the background on a FUJITSU MHX2300BT HDD. The reason is that the bfq_queues associated with some of the readers or the writers were merged with the high-weight queues of some processes that had to do some urgent but little I/O. The readers then exploited the inherited high weight for all or most of their I/O, during the start-up of terminal. The filtering introduced by this commit eliminated any outlier caused by spurious queue merges in our start-up time tests. This filtering also provides a little boost of the throughput sustainable by BFQ: 3-4%, depending on the CPU. The reason is that, once a bfq_queue cannot be merged any longer, this commit makes BFQ stop updating the data needed to handle merging for the queue. Signed-off-by: NPaolo Valente <paolo.valente@linaro.org> Signed-off-by: NAngelo Ruocco <angeloruocco90@gmail.com> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Angelo Ruocco 提交于
A just-created bfq_queue will certainly be deemed as interactive on the arrival of its first I/O request, if the low_latency flag is set. Yet, if the queue is merged with another queue on the arrival of its first I/O request, it will not have the chance to be flagged as interactive. Nevertheless, if the queue is then split soon enough, it has to be flagged as interactive after the split. To handle this early-merge scenario correctly, BFQ saves the state of the queue, on the merge, as if the latter had already been deemed interactive. So, if the queue is split soon, it will get weight-raised, because the previous state of the queue is resumed on the split. Unfortunately, in the act of saving the state of the newly-created queue, BFQ doesn't check whether the low_latency flag is set, and this causes early-merged queues to be then weight-raised, on queue splits, even if low_latency is off. This commit addresses this problem by adding the missing check. Signed-off-by: NAngelo Ruocco <angeloruocco90@gmail.com> Signed-off-by: NPaolo Valente <paolo.valente@linaro.org> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Paolo Valente 提交于
If two processes do I/O close to each other, then BFQ merges the bfq_queues associated with these processes, to get a more sequential I/O, and thus a higher throughput. In this respect, to detect whether two processes are doing I/O close to each other, BFQ keeps a list of the head-of-line I/O requests of all active bfq_queues. The list is ordered by initial sectors, and implemented through a red-black tree (rq_pos_tree). Unfortunately, the update of the rq_pos_tree was incomplete, because the tree was not updated on the removal of the head-of-line I/O request of a bfq_queue, in case the queue did not remain empty. This commit adds the missing update. Signed-off-by: NPaolo Valente <paolo.valente@linaro.org> Signed-off-by: NAngelo Ruocco <angeloruocco90@gmail.com> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Paolo Valente 提交于
If two processes do I/O close to each other, i.e., are cooperating processes in BFQ (and CFQ'S) nomenclature, then BFQ merges their associated bfq_queues, so as to get sequential I/O from the union of the I/O requests of the processes, and thus reach a higher throughput. A merged queue is then split if its I/O stops being sequential. In this respect, BFQ deems the I/O of a bfq_queue as (mostly) sequential only if less than 4 I/O requests are random, out of the last 32 requests inserted into the queue. Unfortunately, extensive testing (with the interleaved_io benchmark of the S suite [1], and with real applications spawning cooperating processes) has clearly shown that, with such a low threshold, only a rather low I/O throughput may be reached when several cooperating processes do I/O. In particular, the outcome of each test run was bimodal: if queue merging occurred and was stable during the test, then the throughput was close to the peak rate of the storage device, otherwise the throughput was arbitrarily low (usually around 1/10 of the peak rate with a rotational device). The probability to get the unlucky outcomes grew with the number of cooperating processes: it was already significant with 5 processes, and close to one with 7 or more processes. The cause of the low throughput in the unlucky runs was that the merged queues containing the I/O of these cooperating processes were soon split, because they contained more random I/O requests than those tolerated by the 4/32 threshold, but - that I/O would have however allowed the storage device to reach peak throughput or almost peak throughput; - in contrast, the I/O of these processes, if served individually (from separate queues) yielded a rather low throughput. So we repeated our tests with increasing values of the threshold, until we found the minimum value (19) for which we obtained maximum throughput, reliably, with at least up to 9 cooperating processes. Then we checked that the use of that higher threshold value did not cause any regression for any other benchmark in the suite [1]. This commit raises the threshold to such a higher value. [1] https://github.com/Algodev-github/SSigned-off-by: NAngelo Ruocco <angeloruocco90@gmail.com> Signed-off-by: NPaolo Valente <paolo.valente@linaro.org> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
- 15 11月, 2017 3 次提交
-
-
由 Luca Miccio 提交于
BFQ currently creates, and updates, its own instance of the whole set of blkio statistics that cfq creates. Yet, from the comments of Tejun Heo in [1], it turned out that most of these statistics are meant/useful only for debugging. This commit makes BFQ create the latter, debugging statistics only if the option CONFIG_DEBUG_BLK_CGROUP is set. By doing so, this commit also enables BFQ to enjoy a high perfomance boost. The reason is that, if CONFIG_DEBUG_BLK_CGROUP is not set, then BFQ has to update far fewer statistics, and, in particular, not the heaviest to update. To give an idea of the benefits, if CONFIG_DEBUG_BLK_CGROUP is not set, then, on an Intel i7-4850HQ, and with 8 threads doing random I/O in parallel on null_blk (configured with 0 latency), the throughput of BFQ grows from 310 to 400 KIOPS (+30%). We have measured similar or even much higher boosts with other CPUs: e.g., +45% with an ARM CortexTM-A53 Octa-core. Our results have been obtained and can be reproduced very easily with the script in [1]. [1] https://www.spinics.net/lists/linux-block/msg18943.htmlSuggested-by: NTejun Heo <tj@kernel.org> Suggested-by: NUlf Hansson <ulf.hansson@linaro.org> Tested-by: NLee Tibbert <lee.tibbert@gmail.com> Tested-by: NOleksandr Natalenko <oleksandr@natalenko.name> Signed-off-by: NLuca Miccio <lucmiccio@gmail.com> Signed-off-by: NPaolo Valente <paolo.valente@linaro.org> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Paolo Valente 提交于
bfq invokes various blkg_*stats_* functions to update the statistics contained in the special files blkio.bfq.* in the blkio controller groups, i.e., the I/O accounting related to the proportional-share policy provided by bfq. The execution of these functions takes a considerable percentage, about 40%, of the total per-request execution time of bfq (i.e., of the sum of the execution time of all the bfq functions that have to be executed to process an I/O request from its creation to its destruction). This reduces the request-processing rate sustainable by bfq noticeably, even on a multicore CPU. In fact, the bfq functions that invoke blkg_*stats_* functions cannot be executed in parallel with the rest of the code of bfq, because both are executed under the same same per-device scheduler lock. To reduce this slowdown, this commit moves, wherever possible, the invocation of these functions (more precisely, of the bfq functions that invoke blkg_*stats_* functions) outside the critical sections protected by the scheduler lock. With this change, and with all blkio.bfq.* statistics enabled, the throughput grows, e.g., from 250 to 310 KIOPS (+25%) on an Intel i7-4850HQ, in case of 8 threads doing random I/O in parallel on null_blk, with the latter configured with 0 latency. We obtained the same or higher throughput boosts, up to +30%, with other processors (some figures are reported in the documentation). For our tests, we used the script [1], with which our results can be easily reproduced. NOTE. This commit still protects the invocation of blkg_*stats_* functions with the request_queue lock, because the group these functions are invoked on may otherwise disappear before or while these functions are executed. Fortunately, tests without even this lock show, by difference, that the serialization caused by this lock has a little impact (at most ~5% of throughput reduction). [1] https://github.com/Algodev-github/IOSpeedTested-by: NLee Tibbert <lee.tibbert@gmail.com> Tested-by: NOleksandr Natalenko <oleksandr@natalenko.name> Signed-off-by: NPaolo Valente <paolo.valente@linaro.org> Signed-off-by: NLuca Miccio <lucmiccio@gmail.com> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Luca Miccio 提交于
bfqg_stats_update_io_add and bfqg_stats_update_io_remove are to be invoked, respectively, when an I/O request enters and when an I/O request exits the scheduler. Unfortunately, bfq does not fully comply with this scheme, because it does not invoke these functions for requests that are inserted into or extracted from its priority dispatch list. This commit fixes this mistake. Tested-by: NLee Tibbert <lee.tibbert@gmail.com> Tested-by: NOleksandr Natalenko <oleksandr@natalenko.name> Signed-off-by: NPaolo Valente <paolo.valente@linaro.org> Signed-off-by: NLuca Miccio <lucmiccio@gmail.com> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
- 09 10月, 2017 2 次提交
-
-
由 Paolo Valente 提交于
The commit "block, bfq: decrease burst size when queues in burst exit" introduced the decrement of burst_size on the removal of a bfq_queue from the burst list. Unfortunately, this decrement can happen to be performed even when burst size is already equal to 0, because of unbalanced decrements. A description follows of the cause of these unbalanced decrements, namely a wrong assumption, and of the way how this wrong assumption leads to unbalanced decrements. The wrong assumption is that a bfq_queue can exit only if the process associated with the bfq_queue has exited. This is false, because a bfq_queue, say Q, may exit also as a consequence of a merge with another bfq_queue. In this case, Q exits because the I/O of its associated process has been redirected to another bfq_queue. The decrement unbalance occurs because Q may then be re-created after a split, and added back to the current burst list, *without* incrementing burst_size. burst_size is not incremented because Q is not a new bfq_queue added to the burst list, but a bfq_queue only temporarily removed from the list, and, before the commit "bfq-sq, bfq-mq: decrease burst size when queues in burst exit", burst_size was not decremented when Q was removed. This commit addresses this issue by just checking whether the exiting bfq_queue is a merged bfq_queue, and, in that case, not decrementing burst_size. Unfortunately, this still leaves room for unbalanced decrements, in the following rarer case: on a split, the bfq_queue happens to be inserted into a different burst list than that it was removed from when merged. If this happens, the number of elements in the new burst list becomes higher than burst_size (by one). When the bfq_queue then exits, it is of course not in a merged state any longer, thus burst_size is decremented, which results in an unbalanced decrement. To handle this sporadic, unlucky case in a simple way, this commit also checks that burst_size is larger than 0 before decrementing it. Finally, this commit removes an useless, extra check: the check that the bfq_queue is sync, performed before checking whether the bfq_queue is in the burst list. This extra check is redundant, because only sync bfq_queues can be inserted into the burst list. Fixes: 7cb04004 ("block, bfq: decrease burst size when queues in burst exit") Reported-by: NPhilip Müller <philm@manjaro.org> Signed-off-by: NPaolo Valente <paolo.valente@linaro.org> Signed-off-by: NAngelo Ruocco <angeloruocco90@gmail.com> Tested-by: NPhilip Müller <philm@manjaro.org> Tested-by: NOleksandr Natalenko <oleksandr@natalenko.name> Tested-by: NLee Tibbert <lee.tibbert@gmail.com> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Luca Miccio 提交于
Similarly to CFQ, BFQ has its write-throttling heuristics, and it is better not to combine them with further write-throttling heuristics of a different nature. So this commit disables write-back throttling for a device if BFQ is used as I/O scheduler for that device. Signed-off-by: NLuca Miccio <lucmiccio@gmail.com> Signed-off-by: NPaolo Valente <paolo.valente@linaro.org> Tested-by: NOleksandr Natalenko <oleksandr@natalenko.name> Tested-by: NLee Tibbert <lee.tibbert@gmail.com> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
- 03 10月, 2017 4 次提交
-
-
由 Paolo Valente 提交于
If many queues belonging to the same group happen to be created shortly after each other, then the concurrent processes associated with these queues have typically a common goal, and they get it done as soon as possible if not hampered by device idling. Examples are processes spawned by git grep, or by systemd during boot. As for device idling, this mechanism is currently necessary for weight raising to succeed in its goal: privileging I/O. In view of these facts, BFQ does not provide the above queues with either weight raising or device idling. On the other hand, a burst of queue creations may be caused also by the start-up of a complex application. In this case, these queues need usually to be served one after the other, and as quickly as possible, to maximise responsiveness. Therefore, in this case the best strategy is to weight-raise all the queues created during the burst, i.e., the exact opposite of the strategy for the above case. To distinguish between the two cases, BFQ uses an empirical burst-size threshold, found through extensive tests and monitoring of daily usage. Only large bursts, i.e., burst with a size above this threshold, are considered as generated by a high number of parallel processes. In this respect, upstart-based boot proved to be rather hard to detect as generating a large burst of queue creations, because with upstart most of the queues created in a burst exit *before* the next queues in the same burst are created. To address this issue, I changed the burst-detection mechanism so as to not decrease the size of the current burst even if one of the queues in the burst is eliminated. Unfortunately, this missing decrease causes false positives on very fast systems: on the start-up of a complex application, such as libreoffice writer, so many queues are created, served and exited shortly after each other, that a large burst of queue creations is wrongly detected as occurring. These false positives just disappear if the size of a burst is decreased when one of the queues in the burst exits. This commit restores the missing burst-size decrease, relying of the fact that upstart is apparently unlikely to be used on systems running this and future versions of the kernel. Signed-off-by: NPaolo Valente <paolo.valente@linaro.org> Signed-off-by: NMauro Andreolini <mauro.andreolini@unimore.it> Signed-off-by: NAngelo Ruocco <angeloruocco90@gmail.com> Tested-by: NMirko Montanari <mirkomontanari91@gmail.com> Tested-by: NOleksandr Natalenko <oleksandr@natalenko.name> Tested-by: NLee Tibbert <lee.tibbert@gmail.com> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Paolo Valente 提交于
A just-created bfq_queue, say Q, may happen to be merged with another bfq_queue on the very first invocation of the function __bfq_insert_request. In such a case, even if Q would clearly deserve interactive weight raising (as it has just been created), the function bfq_add_request does not make it to be invoked for Q, and thus to activate weight raising for Q. As a consequence, when the state of Q is saved for a possible future restore, after a split of Q from the other bfq_queue(s), such a state happens to be (unjustly) non-weight-raised. Then the bfq_queue will not enjoy any weight raising on the split, even if should still be in an interactive weight-raising period when the split occurs. This commit solves this problem as follows, for a just-created bfq_queue that is being early-merged: it stores directly, in the saved state of the bfq_queue, the weight-raising state that would have been assigned to the bfq_queue if not early-merged. Signed-off-by: NPaolo Valente <paolo.valente@linaro.org> Tested-by: NAngelo Ruocco <angeloruocco90@gmail.com> Tested-by: NMirko Montanari <mirkomontanari91@gmail.com> Tested-by: NOleksandr Natalenko <oleksandr@natalenko.name> Tested-by: NLee Tibbert <lee.tibbert@gmail.com> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Paolo Valente 提交于
As already explained in the message of commit "block, bfq: fix wrong init of saved start time for weight raising", if a soft real-time weight-raising period happens to be nested in a larger interactive weight-raising period, then BFQ restores the interactive weight raising at the end of the soft real-time weight raising. In particular, BFQ checks whether the latter has ended only on request dispatches. Unfortunately, the above scheme fails to restore interactive weight raising in the following corner case: if a bfq_queue, say Q, 1) Is merged with another bfq_queue while it is in a nested soft real-time weight-raising period. The weight-raising state of Q is then saved, and not considered any longer until a split occurs. 2) Is split from the other bfq_queue(s) at a time instant when its soft real-time weight raising is already finished. On the split, while resuming the previous, soft real-time weight-raised state of the bfq_queue Q, BFQ checks whether the current soft real-time weight-raising period is actually over. If so, BFQ switches weight raising off for Q, *without* checking whether the soft real-time period was actually nested in a non-yet-finished interactive weight-raising period. This commit addresses this issue by adding the above missing check in bfq_queue splits, and restoring interactive weight raising if needed. Signed-off-by: NPaolo Valente <paolo.valente@linaro.org> Tested-by: NAngelo Ruocco <angeloruocco90@gmail.com> Tested-by: NMirko Montanari <mirkomontanari91@gmail.com> Tested-by: NOleksandr Natalenko <oleksandr@natalenko.name> Tested-by: NLee Tibbert <lee.tibbert@gmail.com> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Paolo Valente 提交于
This commit fixes a bug that causes bfq to fail to guarantee a high responsiveness on some drives, if there is heavy random read+write I/O in the background. More precisely, such a failure allowed this bug to be found [1], but the bug may well cause other yet unreported anomalies. BFQ raises the weight of the bfq_queues associated with soft real-time applications, to privilege the I/O, and thus reduce latency, for these applications. This mechanism is named soft-real-time weight raising in BFQ. A soft real-time period may happen to be nested into an interactive weight raising period, i.e., it may happen that, when a bfq_queue switches to a soft real-time weight-raised state, the bfq_queue is already being weight-raised because deemed interactive too. In this case, BFQ saves in a special variable wr_start_at_switch_to_srt, the time instant when the interactive weight-raising period started for the bfq_queue, i.e., the time instant when BFQ started to deem the bfq_queue interactive. This value is then used to check whether the interactive weight-raising period would still be in progress when the soft real-time weight-raising period ends. If so, interactive weight raising is restored for the bfq_queue. This restore is useful, in particular, because it prevents bfq_queues from losing their interactive weight raising prematurely, as a consequence of spurious, short-lived soft real-time weight-raising periods caused by wrong detections as soft real-time. If, instead, a bfq_queue switches to soft-real-time weight raising while it *is not* already in an interactive weight-raising period, then the variable wr_start_at_switch_to_srt has no meaning during the following soft real-time weight-raising period. Unfortunately the handling of this case is wrong in BFQ: not only the variable is not flagged somehow as meaningless, but it is also set to the time when the switch to soft real-time weight-raising occurs. This may cause an interactive weight-raising period to be considered mistakenly as still in progress, and thus a spurious interactive weight-raising period to start for the bfq_queue, at the end of the soft-real-time weight-raising period. In particular the spurious interactive weight-raising period will be considered as still in progress, if the soft-real-time weight-raising period does not last very long. The bfq_queue will then be wrongly privileged and, if I/O bound, will unjustly steal bandwidth to truly interactive or soft real-time bfq_queues, harming responsiveness and low latency. This commit fixes this issue by just setting wr_start_at_switch_to_srt to minus infinity (farthest past time instant according to jiffies macros): when the soft-real-time weight-raising period ends, certainly no interactive weight-raising period will be considered as still in progress. [1] Background I/O Type: Random - Background I/O mix: Reads and writes - Application to start: LibreOffice Writer in http://www.phoronix.com/scan.php?page=news_item&px=Linux-4.13-IO-LaptopSigned-off-by: NPaolo Valente <paolo.valente@linaro.org> Signed-off-by: NAngelo Ruocco <angeloruocco90@gmail.com> Tested-by: NOleksandr Natalenko <oleksandr@natalenko.name> Tested-by: NLee Tibbert <lee.tibbert@gmail.com> Tested-by: NMirko Montanari <mirkomontanari91@gmail.com> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
- 02 9月, 2017 4 次提交
-
-
由 Bart Van Assche 提交于
Some code uses icq_to_bic() to convert an io_cq pointer to a bfq_io_cq pointer while other code uses a direct cast. Convert the code that uses a direct cast such that it uses icq_to_bic(). Acked-by: NPaolo Valente <paolo.valente@linaro.org> Signed-off-by: NBart Van Assche <bart.vanassche@wdc.com> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Bart Van Assche 提交于
This patch avoids that the following warnings are reported when building with W=1: block/bfq-iosched.c: In function 'bfq_back_seek_max_store': block/bfq-iosched.c:4860:13: warning: comparison of unsigned expression < 0 is always false [-Wtype-limits] if (__data < (MIN)) \ ^ block/bfq-iosched.c:4876:1: note: in expansion of macro 'STORE_FUNCTION' STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0); ^~~~~~~~~~~~~~ block/bfq-iosched.c: In function 'bfq_slice_idle_store': block/bfq-iosched.c:4860:13: warning: comparison of unsigned expression < 0 is always false [-Wtype-limits] if (__data < (MIN)) \ ^ block/bfq-iosched.c:4879:1: note: in expansion of macro 'STORE_FUNCTION' STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2); ^~~~~~~~~~~~~~ block/bfq-iosched.c: In function 'bfq_slice_idle_us_store': block/bfq-iosched.c:4892:13: warning: comparison of unsigned expression < 0 is always false [-Wtype-limits] if (__data < (MIN)) \ ^ block/bfq-iosched.c:4899:1: note: in expansion of macro 'USEC_STORE_FUNCTION' USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0, ^~~~~~~~~~~~~~~~~~~ Acked-by: NPaolo Valente <paolo.valente@linaro.org> Signed-off-by: NBart Van Assche <bart.vanassche@wdc.com> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Bart Van Assche 提交于
Make sysfs writes fail for invalid numbers instead of storing uninitialized data copied from the stack. This patch removes all uninitialized_var() occurrences from the BFQ source code. Acked-by: NPaolo Valente <paolo.valente@linaro.org> Signed-off-by: NBart Van Assche <bart.vanassche@wdc.com> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Bart Van Assche 提交于
This patch avoids that gcc 7 issues a warning about fall-through when building with W=1. Acked-by: NPaolo Valente <paolo.valente@linaro.org> Signed-off-by: NBart Van Assche <bart.vanassche@wdc.com> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
- 31 8月, 2017 1 次提交
-
-
由 Paolo Valente 提交于
To provide a very smooth service, bfq starts to serve a bfq_queue only if the queue is 'eligible', i.e., if the same queue would have started to be served in the ideal, perfectly fair system that bfq simulates internally. This is obtained by associating each queue with a virtual start time, and by computing a special system virtual time quantity: a queue is eligible only if the system virtual time has reached the virtual start time of the queue. Finally, bfq guarantees that, when a new queue must be set in service, there is always at least one eligible entity for each active parent entity in the scheduler. To provide this guarantee, the function __bfq_lookup_next_entity pushes up, for each parent entity on which it is invoked, the system virtual time to the minimum among the virtual start times of the entities in the active tree for the parent entity (more precisely, the push up occurs if the system virtual time happens to be lower than all such virtual start times). There is however a circumstance in which __bfq_lookup_next_entity cannot push up the system virtual time for a parent entity, even if the system virtual time is lower than the virtual start times of all the child entities in the active tree. It happens if one of the child entities is in service. In fact, in such a case, there is already an eligible entity, the in-service one, even if it may not be not present in the active tree (because in-service entities may be removed from the active tree). Unfortunately, in the last re-design of the hierarchical-scheduling engine, the reset of the pointer to the in-service entity for a given parent entity--reset to be done as a consequence of the expiration of the in-service entity--always happens after the function __bfq_lookup_next_entity has been invoked. This causes the function to think that there is still an entity in service for the parent entity, and then that the system virtual time cannot be pushed up, even if actually such a no-more-in-service entity has already been properly reinserted into the active tree (or in some other tree if no more active). Yet, the system virtual time *had* to be pushed up, to be ready to correctly choose the next queue to serve. Because of the lack of this push up, bfq may wrongly set in service a queue that had been speculatively pre-computed as the possible next-in-service queue, but that would no more be the one to serve after the expiration and the reinsertion into the active trees of the previously in-service entities. This commit addresses this issue by making __bfq_lookup_next_entity properly push up the system virtual time if an expiration is occurring. Signed-off-by: NPaolo Valente <paolo.valente@linaro.org> Tested-by: NLee Tibbert <lee.tibbert@gmail.com> Tested-by: NOleksandr Natalenko <oleksandr@natalenko.name> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
- 30 8月, 2017 1 次提交
-
-
由 Ben Hutchings 提交于
The block core requests modules with the "-iosched" name suffix, but bfq no longer has that suffix. Add an alias. Fixes: ea25da48 ("block, bfq: split bfq-iosched.c into multiple ...") Reviewed-by: NMing Lei <ming.lei@redhat.com> Signed-off-by: NBen Hutchings <ben@decadent.org.uk> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
- 29 8月, 2017 1 次提交
-
-
由 weiping zhang 提交于
The last parameter "count" never be used in xxx_var_store, convert these functions to void. Signed-off-by: Nweiping zhang <zhangweiping@didichuxing.com> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-