- 13 6月, 2018 1 次提交
-
-
由 Kees Cook 提交于
The kzalloc() function has a 2-factor argument form, kcalloc(). This patch replaces cases of: kzalloc(a * b, gfp) with: kcalloc(a * b, gfp) as well as handling cases of: kzalloc(a * b * c, gfp) with: kzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kzalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(char) * COUNT + COUNT , ...) | kzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc + kcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc(C1 * C2 * C3, ...) | kzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc(sizeof(THING) * C2, ...) | kzalloc(sizeof(TYPE) * C2, ...) | kzalloc(C1 * C2 * C3, ...) | kzalloc(C1 * C2, ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - (E1) * E2 + E1, E2 , ...) | - kzalloc + kcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc + kcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: NKees Cook <keescook@chromium.org>
-
- 01 6月, 2018 2 次提交
-
-
由 Marc Zyngier 提交于
Now that all our infrastructure is in place, let's expose the availability of ARCH_WORKAROUND_2 to guests. We take this opportunity to tidy up a couple of SMCCC constants. Acked-by: NChristoffer Dall <christoffer.dall@arm.com> Reviewed-by: NMark Rutland <mark.rutland@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Marc Zyngier 提交于
In order to offer ARCH_WORKAROUND_2 support to guests, we need a bit of infrastructure. Let's add a flag indicating whether or not the guest uses SSBD mitigation. Depending on the state of this flag, allow KVM to disable ARCH_WORKAROUND_2 before entering the guest, and enable it when exiting it. Reviewed-by: NChristoffer Dall <christoffer.dall@arm.com> Reviewed-by: NMark Rutland <mark.rutland@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 26 5月, 2018 1 次提交
-
-
由 Christoph Hellwig 提交于
These abstract out calls to the poll method in preparation for changes in how we poll. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 15 5月, 2018 4 次提交
-
-
由 Andre Przywara 提交于
kvm_read_guest() will eventually look up in kvm_memslots(), which requires either to hold the kvm->slots_lock or to be inside a kvm->srcu critical section. In contrast to x86 and s390 we don't take the SRCU lock on every guest exit, so we have to do it individually for each kvm_read_guest() call. Use the newly introduced wrapper for that. Cc: Stable <stable@vger.kernel.org> # 4.12+ Reported-by: NJan Glauber <jan.glauber@caviumnetworks.com> Signed-off-by: NAndre Przywara <andre.przywara@arm.com> Acked-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Andre Przywara 提交于
kvm_read_guest() will eventually look up in kvm_memslots(), which requires either to hold the kvm->slots_lock or to be inside a kvm->srcu critical section. In contrast to x86 and s390 we don't take the SRCU lock on every guest exit, so we have to do it individually for each kvm_read_guest() call. Provide a wrapper which does that and use that everywhere. Note that ending the SRCU critical section before returning from the kvm_read_guest() wrapper is safe, because the data has been *copied*, so we don't need to rely on valid references to the memslot anymore. Cc: Stable <stable@vger.kernel.org> # 4.8+ Reported-by: NJan Glauber <jan.glauber@caviumnetworks.com> Signed-off-by: NAndre Przywara <andre.przywara@arm.com> Acked-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Andre Przywara 提交于
Apparently the development of update_affinity() overlapped with the promotion of irq_lock to be _irqsave, so the patch didn't convert this lock over. This will make lockdep complain. Fix this by disabling IRQs around the lock. Cc: stable@vger.kernel.org Fixes: 08c9fd04 ("KVM: arm/arm64: vITS: Add a helper to update the affinity of an LPI") Reported-by: NJan Glauber <jan.glauber@caviumnetworks.com> Signed-off-by: NAndre Przywara <andre.przywara@arm.com> Acked-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Andre Przywara 提交于
As Jan reported [1], lockdep complains about the VGIC not being bullet proof. This seems to be due to two issues: - When commit 006df0f3 ("KVM: arm/arm64: Support calling vgic_update_irq_pending from irq context") promoted irq_lock and ap_list_lock to _irqsave, we forgot two instances of irq_lock. lockdeps seems to pick those up. - If a lock is _irqsave, any other locks we take inside them should be _irqsafe as well. So the lpi_list_lock needs to be promoted also. This fixes both issues by simply making the remaining instances of those locks _irqsave. One irq_lock is addressed in a separate patch, to simplify backporting. [1] http://lists.infradead.org/pipermail/linux-arm-kernel/2018-May/575718.html Cc: stable@vger.kernel.org Fixes: 006df0f3 ("KVM: arm/arm64: Support calling vgic_update_irq_pending from irq context") Reported-by: NJan Glauber <jan.glauber@caviumnetworks.com> Acked-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NAndre Przywara <andre.przywara@arm.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 04 5月, 2018 1 次提交
-
-
由 Valentin Schneider 提交于
One comment still mentioned process_maintenance operations after commit af061499 ("KVM: arm/arm64: vgic: Get rid of unnecessary process_maintenance operation") Update the comment to point to vgic_fold_lr_state instead, which is where maintenance interrupts are taken care of. Acked-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NValentin Schneider <valentin.schneider@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 27 4月, 2018 3 次提交
-
-
由 Marc Zyngier 提交于
Now that we make sure we don't inject multiple instances of the same GICv2 SGI at the same time, we've made another bug more obvious: If we exit with an active SGI, we completely lose track of which vcpu it came from. On the next entry, we restore it with 0 as a source, and if that wasn't the right one, too bad. While this doesn't seem to trouble GIC-400, the architectural model gets offended and doesn't deactivate the interrupt on EOI. Another connected issue is that we will happilly make pending an interrupt from another vcpu, overriding the above zero with something that is just as inconsistent. Don't do that. The final issue is that we signal a maintenance interrupt when no pending interrupts are present in the LR. Assuming we've fixed the two issues above, we end-up in a situation where we keep exiting as soon as we've reached the active state, and not be able to inject the following pending. The fix comes in 3 parts: - GICv2 SGIs have their source vcpu saved if they are active on exit, and restored on entry - Multi-SGIs cannot go via the Pending+Active state, as this would corrupt the source field - Multi-SGIs are converted to using MI on EOI instead of NPIE Fixes: 16ca6a60 ("KVM: arm/arm64: vgic: Don't populate multiple LRs with the same vintid") Reported-by: NMark Rutland <mark.rutland@arm.com> Tested-by: NMark Rutland <mark.rutland@arm.com> Reviewed-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Mark Rutland 提交于
It's possible for userspace to control n. Sanitize n when using it as an array index. Note that while it appears that n must be bound to the interval [0,3] due to the way it is extracted from addr, we cannot guarantee that compiler transformations (and/or future refactoring) will ensure this is the case, and given this is a slow path it's better to always perform the masking. Found by smatch. Signed-off-by: NMark Rutland <mark.rutland@arm.com> Acked-by: NChristoffer Dall <christoffer.dall@arm.com> Acked-by: NMarc Zyngier <marc.zyngier@arm.com> Cc: kvmarm@lists.cs.columbia.edu Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Mark Rutland 提交于
It's possible for userspace to control intid. Sanitize intid when using it as an array index. At the same time, sort the includes when adding <linux/nospec.h>. Found by smatch. Signed-off-by: NMark Rutland <mark.rutland@arm.com> Acked-by: NChristoffer Dall <christoffer.dall@arm.com> Acked-by: NMarc Zyngier <marc.zyngier@arm.com> Cc: kvmarm@lists.cs.columbia.edu Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 25 4月, 2018 1 次提交
-
-
由 Eric W. Biederman 提交于
Call clear_siginfo to ensure every stack allocated siginfo is properly initialized before being passed to the signal sending functions. Note: It is not safe to depend on C initializers to initialize struct siginfo on the stack because C is allowed to skip holes when initializing a structure. The initialization of struct siginfo in tracehook_report_syscall_exit was moved from the helper user_single_step_siginfo into tracehook_report_syscall_exit itself, to make it clear that the local variable siginfo gets fully initialized. In a few cases the scope of struct siginfo has been reduced to make it clear that siginfo siginfo is not used on other paths in the function in which it is declared. Instances of using memset to initialize siginfo have been replaced with calls clear_siginfo for clarity. Signed-off-by: N"Eric W. Biederman" <ebiederm@xmission.com>
-
- 20 4月, 2018 1 次提交
-
-
由 Marc Zyngier 提交于
Although we've implemented PSCI 0.1, 0.2 and 1.0, we expose either 0.1 or 1.0 to a guest, defaulting to the latest version of the PSCI implementation that is compatible with the requested version. This is no different from doing a firmware upgrade on KVM. But in order to give a chance to hypothetical badly implemented guests that would have a fit by discovering something other than PSCI 0.2, let's provide a new API that allows userspace to pick one particular version of the API. This is implemented as a new class of "firmware" registers, where we expose the PSCI version. This allows the PSCI version to be save/restored as part of a guest migration, and also set to any supported version if the guest requires it. Cc: stable@vger.kernel.org #4.16 Reviewed-by: NChristoffer Dall <cdall@kernel.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 17 4月, 2018 2 次提交
-
-
由 Andre Przywara 提交于
When vgic_prune_ap_list() finds an interrupt that needs to be migrated to a new VCPU, we should notify this VCPU of the pending interrupt, since it requires immediate action. Kick this VCPU once we have added the new IRQ to the list, but only after dropping the locks. Reported-by: NStefano Stabellini <sstabellini@kernel.org> Reviewed-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NAndre Przywara <andre.przywara@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Marc Zyngier 提交于
Before entering the guest, we check whether our VMID is still part of the current generation. In order to avoid taking a lock, we start with checking that the generation is still current, and only if not current do we take the lock, recheck, and update the generation and VMID. This leaves open a small race: A vcpu can bump up the global generation number as well as the VM's, but has not updated the VMID itself yet. At that point another vcpu from the same VM comes in, checks the generation (and finds it not needing anything), and jumps into the guest. At this point, we end-up with two vcpus belonging to the same VM running with two different VMIDs. Eventually, the VMID used by the second vcpu will get reassigned, and things will really go wrong... A simple solution would be to drop this initial check, and always take the lock. This is likely to cause performance issues. A middle ground is to convert the spinlock to a rwlock, and only take the read lock on the fast path. If the check fails at that point, drop it and acquire the write lock, rechecking the condition. This ensures that the above scenario doesn't occur. Cc: stable@vger.kernel.org Reported-by: NMark Rutland <mark.rutland@arm.com> Tested-by: NShannon Zhao <zhaoshenglong@huawei.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 26 3月, 2018 2 次提交
-
-
由 Marc Zyngier 提交于
vgic_copy_lpi_list() parses the LPI list and picks LPIs targeting a given vcpu. We allocate the array containing the intids before taking the lpi_list_lock, which means we can have an array size that is not equal to the number of LPIs. This is particularly obvious when looking at the path coming from vgic_enable_lpis, which is not a command, and thus can run in parallel with commands: vcpu 0: vcpu 1: vgic_enable_lpis its_sync_lpi_pending_table vgic_copy_lpi_list intids = kmalloc_array(irq_count) MAPI(lpi targeting vcpu 0) list_for_each_entry(lpi_list_head) intids[i++] = irq->intid; At that stage, we will happily overrun the intids array. Boo. An easy fix is is to break once the array is full. The MAPI command will update the config anyway, and we won't miss a thing. We also make sure that lpi_list_count is read exactly once, so that further updates of that value will not affect the array bound check. Cc: stable@vger.kernel.org Fixes: ccb1d791 ("KVM: arm64: vgic-its: Fix pending table sync") Reviewed-by: NAndre Przywara <andre.przywara@arm.com> Reviewed-by: NEric Auger <eric.auger@redhat.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Marc Zyngier 提交于
It was recently reported that VFIO mediated devices, and anything that VFIO exposes as level interrupts, do no strictly follow the expected logic of such interrupts as it only lowers the input line when the guest has EOId the interrupt at the GIC level, rather than when it Acked the interrupt at the device level. THe GIC's Active+Pending state is fundamentally incompatible with this behaviour, as it prevents KVM from observing the EOI, and in turn results in VFIO never dropping the line. This results in an interrupt storm in the guest, which it really never expected. As we cannot really change VFIO to follow the strict rules of level signalling, let's forbid the A+P state altogether, as it is in the end only an optimization. It ensures that we will transition via an invalid state, which we can use to notify VFIO of the EOI. Reviewed-by: NEric Auger <eric.auger@redhat.com> Tested-by: NEric Auger <eric.auger@redhat.com> Tested-by: NShunyong Yang <shunyong.yang@hxt-semitech.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 19 3月, 2018 22 次提交
-
-
由 Marc Zyngier 提交于
Until now, all EL2 executable mappings were derived from their EL1 VA. Since we want to decouple the vectors mapping from the rest of the hypervisor, we need to be able to map some text somewhere else. The "idmap" region (for lack of a better name) is ideally suited for this, as we have a huge range that hardly has anything in it. Let's extend the IO allocator to also deal with executable mappings, thus providing the required feature. Acked-by: NCatalin Marinas <catalin.marinas@arm.com> Reviewed-by: NAndrew Jones <drjones@redhat.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Marc Zyngier 提交于
The main idea behind randomising the EL2 VA is that we usually have a few spare bits between the most significant bit of the VA mask and the most significant bit of the linear mapping. Those bits could be a bunch of zeroes, and could be useful to move things around a bit. Of course, the more memory you have, the less randomisation you get... Alternatively, these bits could be the result of KASLR, in which case they are already random. But it would be nice to have a *different* randomization, just to make the job of a potential attacker a bit more difficult. Inserting these random bits is a bit involved. We don't have a spare register (short of rewriting all the kern_hyp_va call sites), and the immediate we want to insert is too random to be used with the ORR instruction. The best option I could come up with is the following sequence: and x0, x0, #va_mask ror x0, x0, #first_random_bit add x0, x0, #(random & 0xfff) add x0, x0, #(random >> 12), lsl #12 ror x0, x0, #(63 - first_random_bit) making it a fairly long sequence, but one that a decent CPU should be able to execute without breaking a sweat. It is of course NOPed out on VHE. The last 4 instructions can also be turned into NOPs if it appears that there is no free bits to use. Acked-by: NCatalin Marinas <catalin.marinas@arm.com> Reviewed-by: NJames Morse <james.morse@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Marc Zyngier 提交于
We so far mapped our HYP IO (which is essentially the GICv2 control registers) using the same method as for memory. It recently appeared that is a bit unsafe: We compute the HYP VA using the kern_hyp_va helper, but that helper is only designed to deal with kernel VAs coming from the linear map, and not from the vmalloc region... This could in turn cause some bad aliasing between the two, amplified by the upcoming VA randomisation. A solution is to come up with our very own basic VA allocator for MMIO. Since half of the HYP address space only contains a single page (the idmap), we have plenty to borrow from. Let's use the idmap as a base, and allocate downwards from it. GICv2 now lives on the other side of the great VA barrier. Acked-by: NCatalin Marinas <catalin.marinas@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Marc Zyngier 提交于
Unmapping the idmap range using 52bit PA is quite broken, as we don't take into account the right number of PGD entries, and rely on PTRS_PER_PGD. The result is that pgd_index() truncates the address, and we end-up in the weed. Let's introduce a new unmap_hyp_idmap_range() that knows about this, together with a kvm_pgd_index() helper, which hides a bit of the complexity of the issue. Fixes: 98732d1b ("KVM: arm/arm64: fix HYP ID map extension to 52 bits") Reported-by: NJames Morse <james.morse@arm.com> Reviewed-by: NCatalin Marinas <catalin.marinas@arm.com> Reviewed-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Marc Zyngier 提交于
Although the idmap section of KVM can only be at most 4kB and must be aligned on a 4kB boundary, the rest of the code expects it to be page aligned. Things get messy when tearing down the HYP page tables when PAGE_SIZE is 64K, and the idmap section isn't 64K aligned. Let's fix this by computing aligned boundaries that the HYP code will use. Acked-by: NCatalin Marinas <catalin.marinas@arm.com> Reported-by: NJames Morse <james.morse@arm.com> Reviewed-by: NJames Morse <james.morse@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Marc Zyngier 提交于
As we're about to change the way we map devices at HYP, we need to move away from kern_hyp_va on an IO address. One way of achieving this is to store the VAs in kvm_vgic_global_state, and use that directly from the HYP code. This requires a small change to create_hyp_io_mappings so that it can also return a HYP VA. We take this opportunity to nuke the vctrl_base field in the emulated distributor, as it is not used anymore. Acked-by: NCatalin Marinas <catalin.marinas@arm.com> Reviewed-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Marc Zyngier 提交于
Both HYP io mappings call ioremap, followed by create_hyp_io_mappings. Let's move the ioremap call into create_hyp_io_mappings itself, which simplifies the code a bit and allows for further refactoring. Reviewed-by: NChristoffer Dall <christoffer.dall@linaro.org> Acked-by: NCatalin Marinas <catalin.marinas@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Marc Zyngier 提交于
Displaying the HYP VA information is slightly counterproductive when using VA randomization. Turn it into a debug feature only, and adjust the last displayed value to reflect the top of RAM instead of ~0. Acked-by: NChristoffer Dall <christoffer.dall@linaro.org> Acked-by: NCatalin Marinas <catalin.marinas@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Christoffer Dall 提交于
We can finally get completely rid of any calls to the VGICv3 save/restore functions when the AP lists are empty on VHE systems. This requires carefully factoring out trap configuration from saving and restoring state, and carefully choosing what to do on the VHE and non-VHE path. One of the challenges is that we cannot save/restore the VMCR lazily because we can only write the VMCR when ICC_SRE_EL1.SRE is cleared when emulating a GICv2-on-GICv3, since otherwise all Group-0 interrupts end up being delivered as FIQ. To solve this problem, and still provide fast performance in the fast path of exiting a VM when no interrupts are pending (which also optimized the latency for actually delivering virtual interrupts coming from physical interrupts), we orchestrate a dance of only doing the activate/deactivate traps in vgic load/put for VHE systems (which can have ICC_SRE_EL1.SRE cleared when running in the host), and doing the configuration on every round-trip on non-VHE systems. Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Christoffer Dall 提交于
The APRs can only have bits set when the guest acknowledges an interrupt in the LR and can only have a bit cleared when the guest EOIs an interrupt in the LR. Therefore, if we have no LRs with any pending/active interrupts, the APR cannot change value and there is no need to clear it on every exit from the VM (hint: it will have already been cleared when we exited the guest the last time with the LRs all EOIed). The only case we need to take care of is when we migrate the VCPU away from a CPU or migrate a new VCPU onto a CPU, or when we return to userspace to capture the state of the VCPU for migration. To make sure this works, factor out the APR save/restore functionality into separate functions called from the VCPU (and by extension VGIC) put/load hooks. Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Christoffer Dall 提交于
Just like we can program the GICv2 hypervisor control interface directly from the core vgic code, we can do the same for the GICv3 hypervisor control interface on VHE systems. We do this by simply calling the save/restore functions when we have VHE and we can then get rid of the save/restore function calls from the VHE world switch function. One caveat is that we now write GICv3 system register state before the potential early exit path in the run loop, and because we sync back state in the early exit path, we have to ensure that we read a consistent GIC state from the sync path, even though we have never actually run the guest with the newly written GIC state. We solve this by inserting an ISB in the early exit path. Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Christoffer Dall 提交于
The vgic-v2-sr.c file now only contains the logic to replay unaligned accesses to the virtual CPU interface on 16K and 64K page systems, which is only relevant on 64-bit platforms. Therefore move this file to the arm64 KVM tree, remove the compile directive from the 32-bit side makefile, and remove the ifdef in the C file. Since this file also no longer saves/restores anything, rename the file to vgic-v2-cpuif-proxy.c to more accurately describe the logic in this file. Reviewed-by: NAndre Przywara <andre.przywara@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Christoffer Dall 提交于
We can program the GICv2 hypervisor control interface logic directly from the core vgic code and can instead do the save/restore directly from the flush/sync functions, which can lead to a number of future optimizations. Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Christoffer Dall 提交于
There is really no need to store the vgic_elrsr on the VGIC data structures as the only need we have for the elrsr is to figure out if an LR is inactive when we save the VGIC state upon returning from the guest. We can might as well store this in a temporary local variable. Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Christoffer Dall 提交于
SPSR_EL1 is not used by a VHE host kernel and can be deferred, but we need to rework the accesses to this register to access the latest value depending on whether or not guest system registers are loaded on the CPU or only reside in memory. The handling of accessing the various banked SPSRs for 32-bit VMs is a bit clunky, but this will be improved in following patches which will first prepare and subsequently implement deferred save/restore of the 32-bit registers, including the 32-bit SPSRs. Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Reviewed-by: NAndrew Jones <drjones@redhat.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Christoffer Dall 提交于
Currently we access the system registers array via the vcpu_sys_reg() macro. However, we are about to change the behavior to some times modify the register file directly, so let's change this to two primitives: * Accessor macros vcpu_write_sys_reg() and vcpu_read_sys_reg() * Direct array access macro __vcpu_sys_reg() The accessor macros should be used in places where the code needs to access the currently loaded VCPU's state as observed by the guest. For example, when trapping on cache related registers, a write to a system register should go directly to the VCPU version of the register. The direct array access macro can be used in places where the VCPU is known to never be running (for example userspace access) or for registers which are never context switched (for example all the PMU system registers). This rewrites all users of vcpu_sys_regs to one of the macros described above. No functional change. Acked-by: NMarc Zyngier <marc.zyngier@arm.com> Reviewed-by: NAndrew Jones <drjones@redhat.com> Signed-off-by: NChristoffer Dall <cdall@cs.columbia.edu> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Christoffer Dall 提交于
The VHE switch function calls __timer_enable_traps and __timer_disable_traps which don't do anything on VHE systems. Therefore, simply remove these calls from the VHE switch function and make the functions non-conditional as they are now only called from the non-VHE switch path. Acked-by: NMarc Zyngier <marc.zyngier@arm.com> Reviewed-by: NAndrew Jones <drjones@redhat.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Christoffer Dall 提交于
So far this is mostly (see below) a copy of the legacy non-VHE switch function, but we will start reworking these functions in separate directions to work on VHE and non-VHE in the most optimal way in later patches. The only difference after this patch between the VHE and non-VHE run functions is that we omit the branch-predictor variant-2 hardening for QC Falkor CPUs, because this workaround is specific to a series of non-VHE ARMv8.0 CPUs. Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Christoffer Dall 提交于
As we are about to move a bunch of save/restore logic for VHE kernels to the load and put functions, we need some infrastructure to do this. Reviewed-by: NAndrew Jones <drjones@redhat.com> Acked-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Christoffer Dall 提交于
We currently have a separate read-modify-write of the HCR_EL2 on entry to the guest for the sole purpose of setting the VF and VI bits, if set. Since this is most rarely the case (only when using userspace IRQ chip and interrupts are in flight), let's get rid of this operation and instead modify the bits in the vcpu->arch.hcr[_el2] directly when needed. Acked-by: NMarc Zyngier <marc.zyngier@arm.com> Reviewed-by: NAndrew Jones <drjones@redhat.com> Reviewed-by: NJulien Thierry <julien.thierry@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Christoffer Dall 提交于
Moving the call to vcpu_load() in kvm_arch_vcpu_ioctl_run() to after we've called kvm_vcpu_first_run_init() simplifies some of the vgic and there is also no need to do vcpu_load() for things such as handling the immediate_exit flag. Reviewed-by: NJulien Grall <julien.grall@arm.com> Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Christoffer Dall 提交于
Calling vcpu_load() registers preempt notifiers for this vcpu and calls kvm_arch_vcpu_load(). The latter will soon be doing a lot of heavy lifting on arm/arm64 and will try to do things such as enabling the virtual timer and setting us up to handle interrupts from the timer hardware. Loading state onto hardware registers and enabling hardware to signal interrupts can be problematic when we're not actually about to run the VCPU, because it makes it difficult to establish the right context when handling interrupts from the timer, and it makes the register access code difficult to reason about. Luckily, now when we call vcpu_load in each ioctl implementation, we can simply remove the call from the non-KVM_RUN vcpu ioctls, and our kvm_arch_vcpu_load() is only used for loading vcpu content to the physical CPU when we're actually going to run the vcpu. Reviewed-by: NJulien Grall <julien.grall@arm.com> Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Reviewed-by: NAndrew Jones <drjones@redhat.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-