- 07 2月, 2008 1 次提交
-
-
由 David Chinner 提交于
These are mostly locking annotations, marking things static, casts where needed and declaring stuff in header files. SGI-PV: 971186 SGI-Modid: xfs-linux-melb:xfs-kern:30002a Signed-off-by: NDavid Chinner <dgc@sgi.com> Signed-off-by: NChristoph Hellwig <hch@infradead.org> Signed-off-by: NLachlan McIlroy <lachlan@sgi.com>
-
- 20 9月, 2007 1 次提交
-
-
由 Eric Sandeen 提交于
xfs_filestream_mount() sets up an mru cache with: err = xfs_mru_cache_create(&mp->m_filestream, lifetime, grp_count, (xfs_mru_cache_free_func_t)xfs_fstrm_free_func); but that cast is causing problems... typedef void (*xfs_mru_cache_free_func_t)(unsigned long, void*); but: void xfs_fstrm_free_func( xfs_ino_t ino, fstrm_item_t *item) so on a 32-bit box, it's casting (32, 32) args into (64, 32) and I assume it's getting garbage for *item, which subsequently causes an explosion. With this change the filestreams xfsqa tests don't oops on my 32-bit box. SGI-PV: 967795 SGI-Modid: xfs-linux-melb:xfs-kern:29510a Signed-off-by: NEric Sandeen <sandeen@sandeen.net> Signed-off-by: NDavid Chinner <dgc@sgi.com> Signed-off-by: NTim Shimmin <tes@sgi.com>
-
- 17 9月, 2007 1 次提交
-
-
由 David Chinner 提交于
Instead of running the mru cache reaper all the time based on a timeout, we should only run it when the cache has active objects. This allows CPUs to sleep when there is no activity rather than be woken repeatedly just to check if there is anything to do. SGI-PV: 968554 SGI-Modid: xfs-linux-melb:xfs-kern:29305a Signed-off-by: NDavid Chinner <dgc@sgi.com> Signed-off-by: NDonald Douwsma <donaldd@sgi.com> Signed-off-by: NTim Shimmin <tes@sgi.com>
-
- 14 7月, 2007 1 次提交
-
-
由 David Chinner 提交于
In media spaces, video is often stored in a frame-per-file format. When dealing with uncompressed realtime HD video streams in this format, it is crucial that files do not get fragmented and that multiple files a placed contiguously on disk. When multiple streams are being ingested and played out at the same time, it is critical that the filesystem does not cross the streams and interleave them together as this creates seek and readahead cache miss latency and prevents both ingest and playout from meeting frame rate targets. This patch set creates a "stream of files" concept into the allocator to place all the data from a single stream contiguously on disk so that RAID array readahead can be used effectively. Each additional stream gets placed in different allocation groups within the filesystem, thereby ensuring that we don't cross any streams. When an AG fills up, we select a new AG for the stream that is not in use. The core of the functionality is the stream tracking - each inode that we create in a directory needs to be associated with the directories' stream. Hence every time we create a file, we look up the directories' stream object and associate the new file with that object. Once we have a stream object for a file, we use the AG that the stream object point to for allocations. If we can't allocate in that AG (e.g. it is full) we move the entire stream to another AG. Other inodes in the same stream are moved to the new AG on their next allocation (i.e. lazy update). Stream objects are kept in a cache and hold a reference on the inode. Hence the inode cannot be reclaimed while there is an outstanding stream reference. This means that on unlink we need to remove the stream association and we also need to flush all the associations on certain events that want to reclaim all unreferenced inodes (e.g. filesystem freeze). SGI-PV: 964469 SGI-Modid: xfs-linux-melb:xfs-kern:29096a Signed-off-by: NDavid Chinner <dgc@sgi.com> Signed-off-by: NBarry Naujok <bnaujok@sgi.com> Signed-off-by: NDonald Douwsma <donaldd@sgi.com> Signed-off-by: NChristoph Hellwig <hch@infradead.org> Signed-off-by: NTim Shimmin <tes@sgi.com> Signed-off-by: NVlad Apostolov <vapo@sgi.com>
-