1. 10 12月, 2016 1 次提交
    • C
      fs: try to clone files first in vfs_copy_file_range · a76b5b04
      Christoph Hellwig 提交于
      A clone is a perfectly fine implementation of a file copy, so most
      file systems just implement the copy that way.  Instead of duplicating
      this logic move it to the VFS.  Currently btrfs and XFS implement copies
      the same way as clones and there is no behavior change for them, cifs
      only implements clones and grow support for copy_file_range with this
      patch.  NFS implements both, so this will allow copy_file_range to work
      on servers that only implement CLONE and be lot more efficient on servers
      that implements CLONE and COPY.
      Signed-off-by: NChristoph Hellwig <hch@lst.de>
      a76b5b04
  2. 04 10月, 2016 1 次提交
    • O
      Btrfs: catch invalid free space trees · 6675df31
      Omar Sandoval 提交于
      There are two separate issues that can lead to corrupted free space
      trees.
      
      1. The free space tree bitmaps had an endianness issue on big-endian
         systems which is fixed by an earlier patch in this series.
      2. btrfs-progs before v4.7.3 modified filesystems without updating the
         free space tree.
      
      To catch both of these issues at once, we need to force the free space
      tree to be rebuilt. To do so, add a FREE_SPACE_TREE_VALID compat_ro bit.
      If the bit isn't set, we know that it was either produced by a broken
      big-endian kernel or may have been corrupted by btrfs-progs.
      
      This also provides us with a way to add rudimentary read-write support
      for the free space tree to btrfs-progs: it can just clear this bit and
      have the kernel rebuild the free space tree.
      
      Cc: stable@vger.kernel.org # 4.5+
      Tested-by: NHolger Hoffstätte <holger@applied-asynchrony.com>
      Tested-by: NChandan Rajendra <chandan@linux.vnet.ibm.com>
      Signed-off-by: NOmar Sandoval <osandov@fb.com>
      Signed-off-by: NDavid Sterba <dsterba@suse.com>
      6675df31
  3. 27 9月, 2016 5 次提交
  4. 26 9月, 2016 3 次提交
  5. 16 9月, 2016 1 次提交
  6. 06 9月, 2016 1 次提交
    • W
      btrfs: introduce tickets_id to determine whether asynchronous metadata reclaim work makes progress · ce129655
      Wang Xiaoguang 提交于
      In btrfs_async_reclaim_metadata_space(), we use ticket's address to
      determine whether asynchronous metadata reclaim work is making progress.
      
      	ticket = list_first_entry(&space_info->tickets,
      				  struct reserve_ticket, list);
      	if (last_ticket == ticket) {
      		flush_state++;
      	} else {
      		last_ticket = ticket;
      		flush_state = FLUSH_DELAYED_ITEMS_NR;
      		if (commit_cycles)
      			commit_cycles--;
      	}
      
      But indeed it's wrong, we should not rely on local variable's address to
      do this check, because addresses may be same. In my test environment, I
      dd one 168MB file in a 256MB fs, found that for this file, every time
      wait_reserve_ticket() called, local variable ticket's address is same,
      
      For above codes, assume a previous ticket's address is addrA, last_ticket
      is addrA. Btrfs_async_reclaim_metadata_space() finished this ticket and
      wake up it, then another ticket is added, but with the same address addrA,
      now last_ticket will be same to current ticket, then current ticket's flush
      work will start from current flush_state, not initial FLUSH_DELAYED_ITEMS_NR,
      which may result in some enospc issues(I have seen this in my test machine).
      Signed-off-by: NWang Xiaoguang <wangxg.fnst@cn.fujitsu.com>
      Reviewed-by: NJosef Bacik <jbacik@fb.com>
      Signed-off-by: NDavid Sterba <dsterba@suse.com>
      ce129655
  7. 25 8月, 2016 3 次提交
    • W
      btrfs: fix fsfreeze hang caused by delayed iputs deal · 9e7cc91a
      Wang Xiaoguang 提交于
      When running fstests generic/068, sometimes we got below deadlock:
        xfs_io          D ffff8800331dbb20     0  6697   6693 0x00000080
        ffff8800331dbb20 ffff88007acfc140 ffff880034d895c0 ffff8800331dc000
        ffff880032d243e8 fffffffeffffffff ffff880032d24400 0000000000000001
        ffff8800331dbb38 ffffffff816a9045 ffff880034d895c0 ffff8800331dbba8
        Call Trace:
        [<ffffffff816a9045>] schedule+0x35/0x80
        [<ffffffff816abab2>] rwsem_down_read_failed+0xf2/0x140
        [<ffffffff8118f5e1>] ? __filemap_fdatawrite_range+0xd1/0x100
        [<ffffffff8134f978>] call_rwsem_down_read_failed+0x18/0x30
        [<ffffffffa06631fc>] ? btrfs_alloc_block_rsv+0x2c/0xb0 [btrfs]
        [<ffffffff810d32b5>] percpu_down_read+0x35/0x50
        [<ffffffff81217dfc>] __sb_start_write+0x2c/0x40
        [<ffffffffa067f5d5>] start_transaction+0x2a5/0x4d0 [btrfs]
        [<ffffffffa067f857>] btrfs_join_transaction+0x17/0x20 [btrfs]
        [<ffffffffa068ba34>] btrfs_evict_inode+0x3c4/0x5d0 [btrfs]
        [<ffffffff81230a1a>] evict+0xba/0x1a0
        [<ffffffff812316b6>] iput+0x196/0x200
        [<ffffffffa06851d0>] btrfs_run_delayed_iputs+0x70/0xc0 [btrfs]
        [<ffffffffa067f1d8>] btrfs_commit_transaction+0x928/0xa80 [btrfs]
        [<ffffffffa0646df0>] btrfs_freeze+0x30/0x40 [btrfs]
        [<ffffffff81218040>] freeze_super+0xf0/0x190
        [<ffffffff81229275>] do_vfs_ioctl+0x4a5/0x5c0
        [<ffffffff81003176>] ? do_audit_syscall_entry+0x66/0x70
        [<ffffffff810038cf>] ? syscall_trace_enter_phase1+0x11f/0x140
        [<ffffffff81229409>] SyS_ioctl+0x79/0x90
        [<ffffffff81003c12>] do_syscall_64+0x62/0x110
        [<ffffffff816acbe1>] entry_SYSCALL64_slow_path+0x25/0x25
      
      >From this warning, freeze_super() already holds SB_FREEZE_FS, but
      btrfs_freeze() will call btrfs_commit_transaction() again, if
      btrfs_commit_transaction() finds that it has delayed iputs to handle,
      it'll start_transaction(), which will try to get SB_FREEZE_FS lock
      again, then deadlock occurs.
      
      The root cause is that in btrfs, sync_filesystem(sb) does not make
      sure all metadata is updated. There still maybe some codes adding
      delayed iputs, see below sample race window:
      
               CPU1                                  |         CPU2
      |-> freeze_super()                             |
          |-> sync_filesystem(sb);                   |
          |                                          |-> cleaner_kthread()
          |                                          |   |-> btrfs_delete_unused_bgs()
          |                                          |       |-> btrfs_remove_chunk()
          |                                          |           |-> btrfs_remove_block_group()
          |                                          |               |-> btrfs_add_delayed_iput()
          |                                          |
          |-> sb->s_writers.frozen = SB_FREEZE_FS;   |
          |-> sb_wait_write(sb, SB_FREEZE_FS);       |
          |   acquire SB_FREEZE_FS lock.             |
          |                                          |
          |-> btrfs_freeze()                         |
              |-> btrfs_commit_transaction()         |
                  |-> btrfs_run_delayed_iputs()      |
                  |   will handle delayed iputs,     |
                  |   that means start_transaction() |
                  |   will be called, which will try |
                  |   to get SB_FREEZE_FS lock.      |
      
      To fix this issue, introduce a "int fs_frozen" to record internally whether
      fs has been frozen. If fs has been frozen, we can not handle delayed iputs.
      Signed-off-by: NWang Xiaoguang <wangxg.fnst@cn.fujitsu.com>
      Reviewed-by: NDavid Sterba <dsterba@suse.com>
      [ add comment to btrfs_freeze ]
      Signed-off-by: NDavid Sterba <dsterba@suse.com>
      Signed-off-by: NChris Mason <clm@fb.com>
      9e7cc91a
    • W
      btrfs: update btrfs_space_info's bytes_may_use timely · 18513091
      Wang Xiaoguang 提交于
      This patch can fix some false ENOSPC errors, below test script can
      reproduce one false ENOSPC error:
      	#!/bin/bash
      	dd if=/dev/zero of=fs.img bs=$((1024*1024)) count=128
      	dev=$(losetup --show -f fs.img)
      	mkfs.btrfs -f -M $dev
      	mkdir /tmp/mntpoint
      	mount $dev /tmp/mntpoint
      	cd /tmp/mntpoint
      	xfs_io -f -c "falloc 0 $((64*1024*1024))" testfile
      
      Above script will fail for ENOSPC reason, but indeed fs still has free
      space to satisfy this request. Please see call graph:
      btrfs_fallocate()
      |-> btrfs_alloc_data_chunk_ondemand()
      |   bytes_may_use += 64M
      |-> btrfs_prealloc_file_range()
          |-> btrfs_reserve_extent()
              |-> btrfs_add_reserved_bytes()
              |   alloc_type is RESERVE_ALLOC_NO_ACCOUNT, so it does not
              |   change bytes_may_use, and bytes_reserved += 64M. Now
              |   bytes_may_use + bytes_reserved == 128M, which is greater
              |   than btrfs_space_info's total_bytes, false enospc occurs.
              |   Note, the bytes_may_use decrease operation will be done in
              |   end of btrfs_fallocate(), which is too late.
      
      Here is another simple case for buffered write:
                          CPU 1              |              CPU 2
                                             |
      |-> cow_file_range()                   |-> __btrfs_buffered_write()
          |-> btrfs_reserve_extent()         |   |
          |                                  |   |
          |                                  |   |
          |    .....                         |   |-> btrfs_check_data_free_space()
          |                                  |
          |                                  |
          |-> extent_clear_unlock_delalloc() |
      
      In CPU 1, btrfs_reserve_extent()->find_free_extent()->
      btrfs_add_reserved_bytes() do not decrease bytes_may_use, the decrease
      operation will be delayed to be done in extent_clear_unlock_delalloc().
      Assume in this case, btrfs_reserve_extent() reserved 128MB data, CPU2's
      btrfs_check_data_free_space() tries to reserve 100MB data space.
      If
      	100MB > data_sinfo->total_bytes - data_sinfo->bytes_used -
      		data_sinfo->bytes_reserved - data_sinfo->bytes_pinned -
      		data_sinfo->bytes_readonly - data_sinfo->bytes_may_use
      btrfs_check_data_free_space() will try to allcate new data chunk or call
      btrfs_start_delalloc_roots(), or commit current transaction in order to
      reserve some free space, obviously a lot of work. But indeed it's not
      necessary as long as decreasing bytes_may_use timely, we still have
      free space, decreasing 128M from bytes_may_use.
      
      To fix this issue, this patch chooses to update bytes_may_use for both
      data and metadata in btrfs_add_reserved_bytes(). For compress path, real
      extent length may not be equal to file content length, so introduce a
      ram_bytes argument for btrfs_reserve_extent(), find_free_extent() and
      btrfs_add_reserved_bytes(), it's becasue bytes_may_use is increased by
      file content length. Then compress path can update bytes_may_use
      correctly. Also now we can discard RESERVE_ALLOC_NO_ACCOUNT, RESERVE_ALLOC
      and RESERVE_FREE.
      
      As we know, usually EXTENT_DO_ACCOUNTING is used for error path. In
      run_delalloc_nocow(), for inode marked as NODATACOW or extent marked as
      PREALLOC, we also need to update bytes_may_use, but can not pass
      EXTENT_DO_ACCOUNTING, because it also clears metadata reservation, so
      here we introduce EXTENT_CLEAR_DATA_RESV flag to indicate btrfs_clear_bit_hook()
      to update btrfs_space_info's bytes_may_use.
      
      Meanwhile __btrfs_prealloc_file_range() will call
      btrfs_free_reserved_data_space() internally for both sucessful and failed
      path, btrfs_prealloc_file_range()'s callers does not need to call
      btrfs_free_reserved_data_space() any more.
      Signed-off-by: NWang Xiaoguang <wangxg.fnst@cn.fujitsu.com>
      Reviewed-by: NJosef Bacik <jbacik@fb.com>
      Signed-off-by: NDavid Sterba <dsterba@suse.com>
      Signed-off-by: NChris Mason <clm@fb.com>
      18513091
    • J
      btrfs: properly track when rescan worker is running · d2c609b8
      Jeff Mahoney 提交于
      The qgroup_flags field is overloaded such that it reflects the on-disk
      status of qgroups and the runtime state.  The BTRFS_QGROUP_STATUS_FLAG_RESCAN
      flag is used to indicate that a rescan operation is in progress, but if
      the file system is unmounted while a rescan is running, the rescan
      operation is paused.  If the file system is then mounted read-only,
      the flag will still be present but the rescan operation will not have
      been resumed.  When we go to umount, btrfs_qgroup_wait_for_completion
      will see the flag and interpret it to mean that the rescan worker is
      still running and will wait for a completion that will never come.
      
      This patch uses a separate flag to indicate when the worker is
      running.  The locking and state surrounding the qgroup rescan worker
      needs a lot of attention beyond this patch but this is enough to
      avoid a hung umount.
      
      Cc: <stable@vger.kernel.org> # v4.4+
      Signed-off-by; Jeff Mahoney <jeffm@suse.com>
      Reviewed-by: NQu Wenruo <quwenruo@cn.fujitsu.com>
      Signed-off-by: NDavid Sterba <dsterba@suse.com>
      Signed-off-by: NChris Mason <clm@fb.com>
      d2c609b8
  8. 26 7月, 2016 8 次提交
  9. 08 7月, 2016 3 次提交
    • J
      Btrfs: add tracepoints for flush events · f376df2b
      Josef Bacik 提交于
      We want to track when we're triggering flushing from our reservation code and
      what flushing is being done when we start flushing.  Thanks,
      Signed-off-by: NJosef Bacik <jbacik@fb.com>
      Signed-off-by: NDavid Sterba <dsterba@suse.com>
      f376df2b
    • J
      Btrfs: introduce ticketed enospc infrastructure · 957780eb
      Josef Bacik 提交于
      Our enospc flushing sucks.  It is born from a time where we were early
      enospc'ing constantly because multiple threads would race in for the same
      reservation and randomly starve other ones out.  So I came up with this solution
      to block any other reservations from happening while one guy tried to flush
      stuff to satisfy his reservation.  This gives us pretty good correctness, but
      completely crap latency.
      
      The solution I've come up with is ticketed reservations.  Basically we try to
      make our reservation, and if we can't we put a ticket on a list in order and
      kick off an async flusher thread.  This async flusher thread does the same old
      flushing we always did, just asynchronously.  As space is freed and added back
      to the space_info it checks and sees if we have any tickets that need
      satisfying, and adds space to the tickets and wakes up anything we've satisfied.
      
      Once the flusher thread stops making progress it wakes up all the current
      tickets and tells them to take a hike.
      
      There is a priority list for things that can't flush, since the async flusher
      could do anything we need to avoid deadlocks.  These guys get priority for
      having their reservation made, and will still do manual flushing themselves in
      case the async flusher isn't running.
      
      This patch gives us significantly better latencies.  Thanks,
      Signed-off-by: NJosef Bacik <jbacik@fb.com>
      Signed-off-by: NDavid Sterba <dsterba@suse.com>
      957780eb
    • J
      Btrfs: fix callers of btrfs_block_rsv_migrate · 25d609f8
      Josef Bacik 提交于
      So btrfs_block_rsv_migrate just unconditionally calls block_rsv_migrate_bytes.
      Not only this but it unconditionally changes the size of the block_rsv.  This
      isn't a bug strictly speaking, but it makes truncate block rsv's look funny
      because every time we migrate bytes over its size grows, even though we only
      want it to be a specific size.  So collapse this into one function that takes an
      update_size argument and make truncate and evict not update the size for
      consistency sake.  Thanks,
      Signed-off-by: NJosef Bacik <jbacik@fb.com>
      Signed-off-by: NDavid Sterba <dsterba@suse.com>
      25d609f8
  10. 23 6月, 2016 1 次提交
    • J
      Btrfs: track transid for delayed ref flushing · 31b9655f
      Josef Bacik 提交于
      Using the offwakecputime bpf script I noticed most of our time was spent waiting
      on the delayed ref throttling.  This is what is supposed to happen, but
      sometimes the transaction can commit and then we're waiting for throttling that
      doesn't matter anymore.  So change this stuff to be a little smarter by tracking
      the transid we were in when we initiated the throttling.  If the transaction we
      get is different then we can just bail out.  This resulted in a 50% speedup in
      my fs_mark test, and reduced the amount of time spent throttling by 60 seconds
      over the entire run (which is about 30 minutes).  Thanks,
      Signed-off-by: NJosef Bacik <jbacik@fb.com>
      Signed-off-by: NChris Mason <clm@fb.com>
      31b9655f
  11. 08 6月, 2016 1 次提交
  12. 26 5月, 2016 1 次提交
  13. 13 5月, 2016 2 次提交
    • F
      Btrfs: fix race between block group relocation and nocow writes · f78c436c
      Filipe Manana 提交于
      Relocation of a block group waits for all existing tasks flushing
      dellaloc, starting direct IO writes and any ordered extents before
      starting the relocation process. However for direct IO writes that end
      up doing nocow (inode either has the flag nodatacow set or the write is
      against a prealloc extent) we have a short time window that allows for a
      race that makes relocation proceed without waiting for the direct IO
      write to complete first, resulting in data loss after the relocation
      finishes. This is illustrated by the following diagram:
      
                 CPU 1                                     CPU 2
      
       btrfs_relocate_block_group(bg X)
      
                                                     direct IO write starts against
                                                     an extent in block group X
                                                     using nocow mode (inode has the
                                                     nodatacow flag or the write is
                                                     for a prealloc extent)
      
                                                     btrfs_direct_IO()
                                                       btrfs_get_blocks_direct()
                                                         --> can_nocow_extent() returns 1
      
         btrfs_inc_block_group_ro(bg X)
           --> turns block group into RO mode
      
         btrfs_wait_ordered_roots()
           --> returns and does not know about
               the DIO write happening at CPU 2
               (the task there has not created
                yet an ordered extent)
      
         relocate_block_group(bg X)
           --> rc->stage == MOVE_DATA_EXTENTS
      
           find_next_extent()
             --> returns extent that the DIO
                 write is going to write to
      
           relocate_data_extent()
      
             relocate_file_extent_cluster()
      
               --> reads the extent from disk into
                   pages belonging to the relocation
                   inode and dirties them
      
                                                         --> creates DIO ordered extent
      
                                                       btrfs_submit_direct()
                                                         --> submits bio against a location
                                                             on disk obtained from an extent
                                                             map before the relocation started
      
         btrfs_wait_ordered_range()
           --> writes all the pages read before
               to disk (belonging to the
               relocation inode)
      
         relocation finishes
      
                                                       bio completes and wrote new data
                                                       to the old location of the block
                                                       group
      
      So fix this by tracking the number of nocow writers for a block group and
      make sure relocation waits for that number to go down to 0 before starting
      to move the extents.
      
      The same race can also happen with buffered writes in nocow mode since the
      patch I recently made titled "Btrfs: don't do unnecessary delalloc flushes
      when relocating", because we are no longer flushing all delalloc which
      served as a synchonization mechanism (due to page locking) and ensured
      the ordered extents for nocow buffered writes were created before we
      called btrfs_wait_ordered_roots(). The race with direct IO writes in nocow
      mode existed before that patch (no pages are locked or used during direct
      IO) and that fixed only races with direct IO writes that do cow.
      Signed-off-by: NFilipe Manana <fdmanana@suse.com>
      Reviewed-by: NJosef Bacik <jbacik@fb.com>
      f78c436c
    • F
      Btrfs: don't do unnecessary delalloc flushes when relocating · 9cfa3e34
      Filipe Manana 提交于
      Before we start the actual relocation process of a block group, we do
      calls to flush delalloc of all inodes and then wait for ordered extents
      to complete. However we do these flush calls just to make sure we don't
      race with concurrent tasks that have actually already started to run
      delalloc and have allocated an extent from the block group we want to
      relocate, right before we set it to readonly mode, but have not yet
      created the respective ordered extents. The flush calls make us wait
      for such concurrent tasks because they end up calling
      filemap_fdatawrite_range() (through btrfs_start_delalloc_roots() ->
      __start_delalloc_inodes() -> btrfs_alloc_delalloc_work() ->
      btrfs_run_delalloc_work()) which ends up serializing us with those tasks
      due to attempts to lock the same pages (and the delalloc flush procedure
      calls the allocator and creates the ordered extents before unlocking the
      pages).
      
      These flushing calls not only make us waste time (cpu, IO) but also reduce
      the chances of writing larger extents (applications might be writing to
      contiguous ranges and we flush before they finish dirtying the whole
      ranges).
      
      So make sure we don't flush delalloc and just wait for concurrent tasks
      that have already started flushing delalloc and have allocated an extent
      from the block group we are about to relocate.
      
      This change also ends up fixing a race with direct IO writes that makes
      relocation not wait for direct IO ordered extents. This race is
      illustrated by the following diagram:
      
              CPU 1                                       CPU 2
      
       btrfs_relocate_block_group(bg X)
      
                                                 starts direct IO write,
                                                 target inode currently has no
                                                 ordered extents ongoing nor
                                                 dirty pages (delalloc regions),
                                                 therefore the root for our inode
                                                 is not in the list
                                                 fs_info->ordered_roots
      
                                                 btrfs_direct_IO()
                                                   __blockdev_direct_IO()
                                                     btrfs_get_blocks_direct()
                                                       btrfs_lock_extent_direct()
                                                         locks range in the io tree
                                                       btrfs_new_extent_direct()
                                                         btrfs_reserve_extent()
                                                           --> extent allocated
                                                               from bg X
      
         btrfs_inc_block_group_ro(bg X)
      
         btrfs_start_delalloc_roots()
           __start_delalloc_inodes()
             --> does nothing, no dealloc ranges
                 in the inode's io tree so the
                 inode's root is not in the list
                 fs_info->delalloc_roots
      
         btrfs_wait_ordered_roots()
           --> does not find the inode's root in the
               list fs_info->ordered_roots
      
           --> ends up not waiting for the direct IO
               write started by the task at CPU 2
      
         relocate_block_group(rc->stage ==
           MOVE_DATA_EXTENTS)
      
           prepare_to_relocate()
             btrfs_commit_transaction()
      
           iterates the extent tree, using its
           commit root and moves extents into new
           locations
      
                                                         btrfs_add_ordered_extent_dio()
                                                           --> now a ordered extent is
                                                               created and added to the
                                                               list root->ordered_extents
                                                               and the root added to the
                                                               list fs_info->ordered_roots
                                                           --> this is too late and the
                                                               task at CPU 1 already
                                                               started the relocation
      
           btrfs_commit_transaction()
      
                                                         btrfs_finish_ordered_io()
                                                           btrfs_alloc_reserved_file_extent()
                                                             --> adds delayed data reference
                                                                 for the extent allocated
                                                                 from bg X
      
         relocate_block_group(rc->stage ==
           UPDATE_DATA_PTRS)
      
           prepare_to_relocate()
             btrfs_commit_transaction()
               --> delayed refs are run, so an extent
                   item for the allocated extent from
                   bg X is added to extent tree
               --> commit roots are switched, so the
                   next scan in the extent tree will
                   see the extent item
      
           sees the extent in the extent tree
      
      When this happens the relocation produces the following warning when it
      finishes:
      
      [ 7260.832836] ------------[ cut here ]------------
      [ 7260.834653] WARNING: CPU: 5 PID: 6765 at fs/btrfs/relocation.c:4318 btrfs_relocate_block_group+0x245/0x2a1 [btrfs]()
      [ 7260.838268] Modules linked in: btrfs crc32c_generic xor ppdev raid6_pq psmouse sg acpi_cpufreq evdev i2c_piix4 tpm_tis serio_raw tpm i2c_core pcspkr parport_pc
      [ 7260.850935] CPU: 5 PID: 6765 Comm: btrfs Not tainted 4.5.0-rc6-btrfs-next-28+ #1
      [ 7260.852998] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS by qemu-project.org 04/01/2014
      [ 7260.852998]  0000000000000000 ffff88020bf57bc0 ffffffff812648b3 0000000000000000
      [ 7260.852998]  0000000000000009 ffff88020bf57bf8 ffffffff81051608 ffffffffa03c1b2d
      [ 7260.852998]  ffff8800b2bbb800 0000000000000000 ffff8800b17bcc58 ffff8800399dd000
      [ 7260.852998] Call Trace:
      [ 7260.852998]  [<ffffffff812648b3>] dump_stack+0x67/0x90
      [ 7260.852998]  [<ffffffff81051608>] warn_slowpath_common+0x99/0xb2
      [ 7260.852998]  [<ffffffffa03c1b2d>] ? btrfs_relocate_block_group+0x245/0x2a1 [btrfs]
      [ 7260.852998]  [<ffffffff810516d4>] warn_slowpath_null+0x1a/0x1c
      [ 7260.852998]  [<ffffffffa03c1b2d>] btrfs_relocate_block_group+0x245/0x2a1 [btrfs]
      [ 7260.852998]  [<ffffffffa039d9de>] btrfs_relocate_chunk.isra.29+0x66/0xdb [btrfs]
      [ 7260.852998]  [<ffffffffa039f314>] btrfs_balance+0xde1/0xe4e [btrfs]
      [ 7260.852998]  [<ffffffff8127d671>] ? debug_smp_processor_id+0x17/0x19
      [ 7260.852998]  [<ffffffffa03a9583>] btrfs_ioctl_balance+0x255/0x2d3 [btrfs]
      [ 7260.852998]  [<ffffffffa03ac96a>] btrfs_ioctl+0x11e0/0x1dff [btrfs]
      [ 7260.852998]  [<ffffffff811451df>] ? handle_mm_fault+0x443/0xd63
      [ 7260.852998]  [<ffffffff81491817>] ? _raw_spin_unlock+0x31/0x44
      [ 7260.852998]  [<ffffffff8108b36a>] ? arch_local_irq_save+0x9/0xc
      [ 7260.852998]  [<ffffffff811876ab>] vfs_ioctl+0x18/0x34
      [ 7260.852998]  [<ffffffff81187cb2>] do_vfs_ioctl+0x550/0x5be
      [ 7260.852998]  [<ffffffff81190c30>] ? __fget_light+0x4d/0x71
      [ 7260.852998]  [<ffffffff81187d77>] SyS_ioctl+0x57/0x79
      [ 7260.852998]  [<ffffffff81492017>] entry_SYSCALL_64_fastpath+0x12/0x6b
      [ 7260.893268] ---[ end trace eb7803b24ebab8ad ]---
      
      This is because at the end of the first stage, in relocate_block_group(),
      we commit the current transaction, which makes delayed refs run, the
      commit roots are switched and so the second stage will find the extent
      item that the ordered extent added to the delayed refs. But this extent
      was not moved (ordered extent completed after first stage finished), so
      at the end of the relocation our block group item still has a positive
      used bytes counter, triggering a warning at the end of
      btrfs_relocate_block_group(). Later on when trying to read the extent
      contents from disk we hit a BUG_ON() due to the inability to map a block
      with a logical address that belongs to the block group we relocated and
      is no longer valid, resulting in the following trace:
      
      [ 7344.885290] BTRFS critical (device sdi): unable to find logical 12845056 len 4096
      [ 7344.887518] ------------[ cut here ]------------
      [ 7344.888431] kernel BUG at fs/btrfs/inode.c:1833!
      [ 7344.888431] invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC
      [ 7344.888431] Modules linked in: btrfs crc32c_generic xor ppdev raid6_pq psmouse sg acpi_cpufreq evdev i2c_piix4 tpm_tis serio_raw tpm i2c_core pcspkr parport_pc
      [ 7344.888431] CPU: 0 PID: 6831 Comm: od Tainted: G        W       4.5.0-rc6-btrfs-next-28+ #1
      [ 7344.888431] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS by qemu-project.org 04/01/2014
      [ 7344.888431] task: ffff880215818600 ti: ffff880204684000 task.ti: ffff880204684000
      [ 7344.888431] RIP: 0010:[<ffffffffa037c88c>]  [<ffffffffa037c88c>] btrfs_merge_bio_hook+0x54/0x6b [btrfs]
      [ 7344.888431] RSP: 0018:ffff8802046878f0  EFLAGS: 00010282
      [ 7344.888431] RAX: 00000000ffffffea RBX: 0000000000001000 RCX: 0000000000000001
      [ 7344.888431] RDX: ffff88023ec0f950 RSI: ffffffff8183b638 RDI: 00000000ffffffff
      [ 7344.888431] RBP: ffff880204687908 R08: 0000000000000001 R09: 0000000000000000
      [ 7344.888431] R10: ffff880204687770 R11: ffffffff82f2d52d R12: 0000000000001000
      [ 7344.888431] R13: ffff88021afbfee8 R14: 0000000000006208 R15: ffff88006cd199b0
      [ 7344.888431] FS:  00007f1f9e1d6700(0000) GS:ffff88023ec00000(0000) knlGS:0000000000000000
      [ 7344.888431] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
      [ 7344.888431] CR2: 00007f1f9dc8cb60 CR3: 000000023e3b6000 CR4: 00000000000006f0
      [ 7344.888431] Stack:
      [ 7344.888431]  0000000000001000 0000000000001000 ffff880204687b98 ffff880204687950
      [ 7344.888431]  ffffffffa0395c8f ffffea0004d64d48 0000000000000000 0000000000001000
      [ 7344.888431]  ffffea0004d64d48 0000000000001000 0000000000000000 0000000000000000
      [ 7344.888431] Call Trace:
      [ 7344.888431]  [<ffffffffa0395c8f>] submit_extent_page+0xf5/0x16f [btrfs]
      [ 7344.888431]  [<ffffffffa03970ac>] __do_readpage+0x4a0/0x4f1 [btrfs]
      [ 7344.888431]  [<ffffffffa039680d>] ? btrfs_create_repair_bio+0xcb/0xcb [btrfs]
      [ 7344.888431]  [<ffffffffa037eeb4>] ? btrfs_writepage_start_hook+0xbc/0xbc [btrfs]
      [ 7344.888431]  [<ffffffff8108df55>] ? trace_hardirqs_on+0xd/0xf
      [ 7344.888431]  [<ffffffffa039728c>] __do_contiguous_readpages.constprop.26+0xc2/0xe4 [btrfs]
      [ 7344.888431]  [<ffffffffa037eeb4>] ? btrfs_writepage_start_hook+0xbc/0xbc [btrfs]
      [ 7344.888431]  [<ffffffffa039739b>] __extent_readpages.constprop.25+0xed/0x100 [btrfs]
      [ 7344.888431]  [<ffffffff81129d24>] ? lru_cache_add+0xe/0x10
      [ 7344.888431]  [<ffffffffa0397ea8>] extent_readpages+0x160/0x1aa [btrfs]
      [ 7344.888431]  [<ffffffffa037eeb4>] ? btrfs_writepage_start_hook+0xbc/0xbc [btrfs]
      [ 7344.888431]  [<ffffffff8115daad>] ? alloc_pages_current+0xa9/0xcd
      [ 7344.888431]  [<ffffffffa037cdc9>] btrfs_readpages+0x1f/0x21 [btrfs]
      [ 7344.888431]  [<ffffffff81128316>] __do_page_cache_readahead+0x168/0x1fc
      [ 7344.888431]  [<ffffffff811285a0>] ondemand_readahead+0x1f6/0x207
      [ 7344.888431]  [<ffffffff811285a0>] ? ondemand_readahead+0x1f6/0x207
      [ 7344.888431]  [<ffffffff8111cf34>] ? pagecache_get_page+0x2b/0x154
      [ 7344.888431]  [<ffffffff8112870e>] page_cache_sync_readahead+0x3d/0x3f
      [ 7344.888431]  [<ffffffff8111dbf7>] generic_file_read_iter+0x197/0x4e1
      [ 7344.888431]  [<ffffffff8117773a>] __vfs_read+0x79/0x9d
      [ 7344.888431]  [<ffffffff81178050>] vfs_read+0x8f/0xd2
      [ 7344.888431]  [<ffffffff81178a38>] SyS_read+0x50/0x7e
      [ 7344.888431]  [<ffffffff81492017>] entry_SYSCALL_64_fastpath+0x12/0x6b
      [ 7344.888431] Code: 8d 4d e8 45 31 c9 45 31 c0 48 8b 00 48 c1 e2 09 48 8b 80 80 fc ff ff 4c 89 65 e8 48 8b b8 f0 01 00 00 e8 1d 42 02 00 85 c0 79 02 <0f> 0b 4c 0
      [ 7344.888431] RIP  [<ffffffffa037c88c>] btrfs_merge_bio_hook+0x54/0x6b [btrfs]
      [ 7344.888431]  RSP <ffff8802046878f0>
      [ 7344.970544] ---[ end trace eb7803b24ebab8ae ]---
      Signed-off-by: NFilipe Manana <fdmanana@suse.com>
      Reviewed-by: NJosef Bacik <jbacik@fb.com>
      Reviewed-by: NLiu Bo <bo.li.liu@oracle.com>
      9cfa3e34
  14. 28 4月, 2016 9 次提交