- 01 6月, 2018 3 次提交
-
-
由 Marc Zyngier 提交于
As for Spectre variant-2, we rely on SMCCC 1.1 to provide the discovery mechanism for detecting the SSBD mitigation. A new capability is also allocated for that purpose, and a config option. Reviewed-by: NJulien Grall <julien.grall@arm.com> Reviewed-by: NMark Rutland <mark.rutland@arm.com> Acked-by: NWill Deacon <will.deacon@arm.com> Reviewed-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Marc Zyngier 提交于
In a heterogeneous system, we can end up with both affected and unaffected CPUs. Let's check their status before calling into the firmware. Reviewed-by: NJulien Grall <julien.grall@arm.com> Reviewed-by: NMark Rutland <mark.rutland@arm.com> Acked-by: NWill Deacon <will.deacon@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Marc Zyngier 提交于
In order for the kernel to protect itself, let's call the SSBD mitigation implemented by the higher exception level (either hypervisor or firmware) on each transition between userspace and kernel. We must take the PSCI conduit into account in order to target the right exception level, hence the introduction of a runtime patching callback. Reviewed-by: NMark Rutland <mark.rutland@arm.com> Reviewed-by: NJulien Grall <julien.grall@arm.com> Acked-by: NWill Deacon <will.deacon@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 23 5月, 2018 3 次提交
-
-
由 Mark Rutland 提交于
In do_page_fault(), we handle some kernel faults early, and simply die() with a message. For faults handled later, we dump the faulting address, decode the ESR, walk the page tables, and perform a number of steps to ensure that this data is reported. Let's unify the handling of fatal kernel faults with a new die_kernel_fault() helper, handling all of these details. This is largely the same as the existing logic in __do_kernel_fault(), except that addresses are consistently padded to 16 hex characters, as would be expected for a 64-bit address. The messages currently logged in do_page_fault are adjusted to fit into the die_kernel_fault() message template. Acked-by: NWill Deacon <will.deacon@arm.com> Signed-off-by: NMark Rutland <mark.rutland@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Mark Rutland 提交于
The naming of is_permission_fault() makes it sound like it should return true for permission faults from EL0, but by design, it only does so for faults from EL1. Let's make this clear by dropping el1 in the name, as we do for is_el1_instruction_abort(). Acked-by: NWill Deacon <will.deacon@arm.com> Signed-off-by: NMark Rutland <mark.rutland@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Will Deacon 提交于
Now that we're seeing CPUs shipping with LSE atomics, default them to 'on' in Kconfig. CPUs without the instructions will continue to use LDXR/STXR-based sequences, but they will be placed out-of-line by the compiler. Acked-by: NMark Rutland <mark.rutland@arm.com> Acked-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 18 5月, 2018 7 次提交
-
-
由 Dave Martin 提交于
Writes to ZCR_EL1 are self-synchronising, and so may be expensive in typical implementations. This patch adopts the approach used for costly system register writes elsewhere in the kernel: the system register write is suppressed if it would not change the stored value. Since the common case will be that of switching between tasks that use the same vector length as one another, prediction hit rates on the conditional branch should be reasonably good, with lower expected amortised cost than the unconditional execution of a heavyweight self-synchronising instruction. Signed-off-by: NDave Martin <Dave.Martin@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Jeremy Linton 提交于
Now that we have an accurate view of the physical topology we need to represent it correctly to the scheduler. Generally MC should equal the LLC in the system, but there are a number of special cases that need to be dealt with. In the case of NUMA in socket, we need to assure that the sched domain we build for the MC layer isn't larger than the DIE above it. Similarly for LLC's that might exist in cross socket interconnect or directory hardware we need to assure that MC is shrunk to the socket or NUMA node. This patch builds a sibling mask for the LLC, and then picks the smallest of LLC, socket siblings, or NUMA node siblings, which gives us the behavior described above. This is ever so slightly different than the similar alternative where we look for a cache layer less than or equal to the socket/NUMA siblings. The logic to pick the MC layer affects all arm64 machines, but only changes the behavior for DT/MPIDR systems if the NUMA domain is smaller than the core siblings (generally set to the cluster). Potentially this fixes a possible bug in DT systems, but really it only affects ACPI systems where the core siblings is correctly set to the socket siblings. Thus all currently available ACPI systems should have MC equal to LLC, including the NUMA in socket machines where the LLC is partitioned between the NUMA nodes. Tested-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Tested-by: NVijaya Kumar K <vkilari@codeaurora.org> Tested-by: NXiongfeng Wang <wangxiongfeng2@huawei.com> Tested-by: NTomasz Nowicki <Tomasz.Nowicki@cavium.com> Acked-by: NSudeep Holla <sudeep.holla@arm.com> Acked-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: NMorten Rasmussen <morten.rasmussen@arm.com> Signed-off-by: NJeremy Linton <jeremy.linton@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Jeremy Linton 提交于
Propagate the topology information from the PPTT tree to the cpu_topology array. We can get the thread id and core_id by assuming certain levels of the PPTT tree correspond to those concepts. The package_id is flagged in the tree and can be found by calling find_acpi_cpu_topology_package() which terminates its search when it finds an ACPI node flagged as the physical package. If the tree doesn't contain enough levels to represent all of the requested levels then the root node will be returned for all subsequent levels. Tested-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Tested-by: NVijaya Kumar K <vkilari@codeaurora.org> Tested-by: NXiongfeng Wang <wangxiongfeng2@huawei.com> Tested-by: NTomasz Nowicki <Tomasz.Nowicki@cavium.com> Acked-by: NSudeep Holla <sudeep.holla@arm.com> Acked-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: NMorten Rasmussen <morten.rasmussen@arm.com> Signed-off-by: NJeremy Linton <jeremy.linton@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Jeremy Linton 提交于
The cluster concept isn't architecturally defined for arm64. Lets match the name of the arm64 topology field to the kernel macro that uses it. Tested-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Tested-by: NVijaya Kumar K <vkilari@codeaurora.org> Tested-by: NXiongfeng Wang <wangxiongfeng2@huawei.com> Tested-by: NTomasz Nowicki <Tomasz.Nowicki@cavium.com> Acked-by: NSudeep Holla <sudeep.holla@arm.com> Acked-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: NMorten Rasmussen <morten.rasmussen@arm.com> Signed-off-by: NJeremy Linton <jeremy.linton@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Jeremy Linton 提交于
The /sys cache entries should support ACPI/PPTT generated cache topology information. For arm64, if ACPI is enabled, determine the max number of cache levels and populate them using the PPTT table if one is available. Tested-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Tested-by: NVijaya Kumar K <vkilari@codeaurora.org> Tested-by: NXiongfeng Wang <wangxiongfeng2@huawei.com> Tested-by: NTomasz Nowicki <Tomasz.Nowicki@cavium.com> Reviewed-by: NSudeep Holla <sudeep.holla@arm.com> Acked-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NJeremy Linton <jeremy.linton@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Jeremy Linton 提交于
Now that we have a PPTT parser, in preparation for its use on arm64, lets build it. Tested-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Tested-by: NVijaya Kumar K <vkilari@codeaurora.org> Tested-by: NXiongfeng Wang <wangxiongfeng2@huawei.com> Tested-by: NTomasz Nowicki <Tomasz.Nowicki@cavium.com> Reviewed-by: NSudeep Holla <sudeep.holla@arm.com> Acked-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NJeremy Linton <jeremy.linton@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Jeremy Linton 提交于
Its helpful to be able to lookup the acpi_processor_id associated with a logical cpu. Provide an arm64 helper to do this. Tested-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Tested-by: NVijaya Kumar K <vkilari@codeaurora.org> Tested-by: NXiongfeng Wang <wangxiongfeng2@huawei.com> Tested-by: NTomasz Nowicki <Tomasz.Nowicki@cavium.com> Acked-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: NSudeep Holla <sudeep.holla@arm.com> Signed-off-by: NJeremy Linton <jeremy.linton@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 16 5月, 2018 4 次提交
-
-
由 Will Deacon 提交于
When waiting for a cacheline to change state in cmpwait, we may immediately wake-up the first time around the outer loop if the event register was already set (for example, because of the event stream). Avoid these spurious wakeups by explicitly clearing the event register before loading the cacheline and setting the exclusive monitor. Signed-off-by: NWill Deacon <will.deacon@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Robin Murphy 提交于
It is probably safe to assume that all Armv8-A implementations have a multiplier whose efficiency is comparable or better than a sequence of three or so register-dependent arithmetic instructions. Select ARCH_HAS_FAST_MULTIPLIER to get ever-so-slightly nicer codegen in the few dusty old corners which care. In a contrived benchmark calling hweight64() in a loop, this does indeed turn out to be a small win overall, with no measurable impact on Cortex-A57 but about 5% performance improvement on Cortex-A53. Acked-by: NWill Deacon <will.deacon@arm.com> Signed-off-by: NRobin Murphy <robin.murphy@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Vincenzo Frascino 提交于
"make includecheck" detected few duplicated includes in arch/arm64. This patch removes the double inclusions. Signed-off-by: NVincenzo Frascino <vincenzo.frascino@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Masahiro Yamada 提交于
VMLINUX_SYMBOL() is no-op unless CONFIG_HAVE_UNDERSCORE_SYMBOL_PREFIX is defined. It has ever been selected only by BLACKFIN and METAG. VMLINUX_SYMBOL() is unneeded for ARM64-specific code. Signed-off-by: NMasahiro Yamada <yamada.masahiro@socionext.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 15 5月, 2018 1 次提交
-
-
由 Catalin Marinas 提交于
This patch increases the ARCH_DMA_MINALIGN to 128 so that it covers the currently known Cache Writeback Granule (CTR_EL0.CWG) on arm64 and moves the fallback in cache_line_size() from L1_CACHE_BYTES to this constant. In addition, it warns (and taints) if the CWG is larger than ARCH_DMA_MINALIGN as this is not safe with non-coherent DMA. Cc: Will Deacon <will.deacon@arm.com> Cc: Robin Murphy <robin.murphy@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 11 5月, 2018 1 次提交
-
-
由 Catalin Marinas 提交于
This reverts commit 97303480. Commit 97303480 ("arm64: Increase the max granular size") increased the cache line size to 128 to match Cavium ThunderX, apparently for some performance benefit which could not be confirmed. This change, however, has an impact on the network packet allocation in certain circumstances, requiring slightly over a 4K page with a significant performance degradation. The patch reverts L1_CACHE_SHIFT back to 6 (64-byte cache line). Cc: Will Deacon <will.deacon@arm.com> Cc: Robin Murphy <robin.murphy@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 04 5月, 2018 2 次提交
-
-
由 James Morse 提交于
Proxying the cpuif accesses at EL2 makes use of vcpu_data_guest_to_host and co, which check the endianness, which call into vcpu_read_sys_reg... which isn't mapped at EL2 (it was inlined before, and got moved OoL with the VHE optimizations). The result is of course a nice panic. Let's add some specialized cruft to keep the broken platforms that require this hack alive. But, this code used vcpu_data_guest_to_host(), which expected us to write the value to host memory, instead we have trapped the guest's read or write to an mmio-device, and are about to replay it using the host's readl()/writel() which also perform swabbing based on the host endianness. This goes wrong when both host and guest are big-endian, as readl()/writel() will undo the guest's swabbing, causing the big-endian value to be written to device-memory. What needs doing? A big-endian guest will have pre-swabbed data before storing, undo this. If its necessary for the host, writel() will re-swab it. For a read a big-endian guest expects to swab the data after the load. The hosts's readl() will correct for host endianness, giving us the device-memory's value in the register. For a big-endian guest, swab it as if we'd only done the load. For a little-endian guest, nothing needs doing as readl()/writel() leave the correct device-memory value in registers. Tested on Juno with that rarest of things: a big-endian 64K host. Based on a patch from Marc Zyngier. Reported-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Fixes: bf8feb39 ("arm64: KVM: vgic-v2: Add GICV access from HYP") Signed-off-by: NJames Morse <james.morse@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 James Morse 提交于
A typo in kvm_vcpu_set_be()'s call: | vcpu_write_sys_reg(vcpu, SCTLR_EL1, sctlr) causes us to use the 32bit register value as an index into the sys_reg[] array, and sail off the end of the linear map when we try to bring up big-endian secondaries. | Unable to handle kernel paging request at virtual address ffff80098b982c00 | Mem abort info: | ESR = 0x96000045 | Exception class = DABT (current EL), IL = 32 bits | SET = 0, FnV = 0 | EA = 0, S1PTW = 0 | Data abort info: | ISV = 0, ISS = 0x00000045 | CM = 0, WnR = 1 | swapper pgtable: 4k pages, 48-bit VAs, pgdp = 000000002ea0571a | [ffff80098b982c00] pgd=00000009ffff8803, pud=0000000000000000 | Internal error: Oops: 96000045 [#1] PREEMPT SMP | Modules linked in: | CPU: 2 PID: 1561 Comm: kvm-vcpu-0 Not tainted 4.17.0-rc3-00001-ga912e2261ca6-dirty #1323 | Hardware name: ARM Juno development board (r1) (DT) | pstate: 60000005 (nZCv daif -PAN -UAO) | pc : vcpu_write_sys_reg+0x50/0x134 | lr : vcpu_write_sys_reg+0x50/0x134 | Process kvm-vcpu-0 (pid: 1561, stack limit = 0x000000006df4728b) | Call trace: | vcpu_write_sys_reg+0x50/0x134 | kvm_psci_vcpu_on+0x14c/0x150 | kvm_psci_0_2_call+0x244/0x2a4 | kvm_hvc_call_handler+0x1cc/0x258 | handle_hvc+0x20/0x3c | handle_exit+0x130/0x1ec | kvm_arch_vcpu_ioctl_run+0x340/0x614 | kvm_vcpu_ioctl+0x4d0/0x840 | do_vfs_ioctl+0xc8/0x8d0 | ksys_ioctl+0x78/0xa8 | sys_ioctl+0xc/0x18 | el0_svc_naked+0x30/0x34 | Code: 73620291 604d00b0 00201891 1ab10194 (957a33f8) |---[ end trace 4b4a4f9628596602 ]--- Fix the order of the arguments. Fixes: 8d404c4c ("KVM: arm64: Rewrite system register accessors to read/write functions") CC: Christoffer Dall <cdall@cs.columbia.edu> Signed-off-by: NJames Morse <james.morse@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 27 4月, 2018 1 次提交
-
-
由 Mark Rutland 提交于
Our out-of-line atomics are built with a special calling convention, preventing pointless stack spilling, and allowing us to patch call sites with ARMv8.1 atomic instructions. Instrumentation inserted by the compiler may result in calls to functions not following this special calling convention, resulting in registers being unexpectedly clobbered, and various problems resulting from this. For example, if a kernel is built with KCOV and ARM64_LSE_ATOMICS, the compiler inserts calls to __sanitizer_cov_trace_pc in the prologues of the atomic functions. This has been observed to result in spurious cmpxchg failures, leading to a hang early on in the boot process. This patch avoids such issues by preventing instrumentation of our out-of-line atomics. Signed-off-by: NMark Rutland <mark.rutland@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 26 4月, 2018 1 次提交
-
-
由 Mark Rutland 提交于
It's possible for userspace to control idx. Sanitize idx when using it as an array index. Found by smatch. Signed-off-by: NMark Rutland <mark.rutland@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 25 4月, 2018 4 次提交
-
-
由 Jason A. Donenfeld 提交于
Commit fb872273 ("arm64: support __int128 on gcc 5+") added support for arm64 __int128 with gcc with a version-conditional, but neglected to enable this for clang, which in fact appears to support aarch64 __int128. This commit therefore enables it if the compiler is clang, using the same type of makefile conditional used elsewhere in the tree. Signed-off-by: NJason A. Donenfeld <Jason@zx2c4.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Mark Rutland 提交于
Our arm64_skip_faulting_instruction() helper advances the userspace singlestep state machine, but this is also called by the kernel BRK handler, as used for WARN*(). Thus, if we happen to hit a WARN*() while the user singlestep state machine is in the active-no-pending state, we'll advance to the active-pending state without having executed a user instruction, and will take a step exception earlier than expected when we return to userspace. Let's fix this by only advancing the state machine when skipping a user instruction. Signed-off-by: NMark Rutland <mark.rutland@arm.com> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Kim Phillips 提交于
Commit a257e025 ("arm64/kernel: don't ban ADRP to work around Cortex-A53 erratum #843419") introduced a function whose name ends with "_veneer". This clashes with commit bd8b22d2 ("Kbuild: kallsyms: ignore veneers emitted by the ARM linker"), which removes symbols ending in "_veneer" from kallsyms. The problem was manifested as 'perf test -vvvvv vmlinux' failed, correctly claiming the symbol 'module_emit_adrp_veneer' was present in vmlinux, but not in kallsyms. ... ERR : 0xffff00000809aa58: module_emit_adrp_veneer not on kallsyms ... test child finished with -1 ---- end ---- vmlinux symtab matches kallsyms: FAILED! Fix the problem by renaming module_emit_adrp_veneer to module_emit_veneer_for_adrp. Now the test passes. Fixes: a257e025 ("arm64/kernel: don't ban ADRP to work around Cortex-A53 erratum #843419") Acked-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Cc: Will Deacon <will.deacon@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Michal Marek <mmarek@suse.cz> Signed-off-by: NKim Phillips <kim.phillips@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Mark Rutland 提交于
We transiently switch to KERNEL_DS in compat_ptrace_gethbpregs() and compat_ptrace_sethbpregs(), but in either case this is pointless as we don't perform any uaccess during this window. let's rip out the redundant addr_limit manipulation. Acked-by: NCatalin Marinas <catalin.marinas@arm.com> Signed-off-by: NMark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 24 4月, 2018 2 次提交
-
-
由 Shaokun Zhang 提交于
The addr parameter isn't used for anything. Let's simplify and get rid of it, like arm. Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: NShaokun Zhang <zhangshaokun@hisilicon.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Mark Rutland 提交于
We're missing a sentinel entry in kpti_safe_list. Thus is_midr_in_range_list() can walk past the end of kpti_safe_list. Depending on the contents of memory, this could erroneously match a CPU's MIDR, cause a data abort, or other bad outcomes. Add the sentinel entry to avoid this. Fixes: be5b2998 ("arm64: capabilities: Add support for checks based on a list of MIDRs") Signed-off-by: NMark Rutland <mark.rutland@arm.com> Reported-by: NJan Kiszka <jan.kiszka@siemens.com> Tested-by: NJan Kiszka <jan.kiszka@siemens.com> Reviewed-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 20 4月, 2018 1 次提交
-
-
由 Marc Zyngier 提交于
Although we've implemented PSCI 0.1, 0.2 and 1.0, we expose either 0.1 or 1.0 to a guest, defaulting to the latest version of the PSCI implementation that is compatible with the requested version. This is no different from doing a firmware upgrade on KVM. But in order to give a chance to hypothetical badly implemented guests that would have a fit by discovering something other than PSCI 0.2, let's provide a new API that allows userspace to pick one particular version of the API. This is implemented as a new class of "firmware" registers, where we expose the PSCI version. This allows the PSCI version to be save/restored as part of a guest migration, and also set to any supported version if the guest requires it. Cc: stable@vger.kernel.org #4.16 Reviewed-by: NChristoffer Dall <cdall@kernel.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 19 4月, 2018 8 次提交
-
-
由 Srinath Mannam 提交于
Correct all SATA ahci and phy controller register addresses and interrupt lines to proper values. Fixes: 344a2e51 ("arm64: dts: Add SATA DT nodes for Stingray SoC") Signed-off-by: NSrinath Mannam <srinath.mannam@broadcom.com> Reviewed-by: NRay Jui <ray.jui@broadcom.com> Reviewed-by: NScott Branden <scott.branden@broadcom.com> Reviewed-by: NAndrew Gospodarek <andrew.gospodarek@broadcom.com> Signed-off-by: NFlorian Fainelli <f.fainelli@gmail.com>
-
由 Martin Blumenstingl 提交于
The Khadas VIM2 board connects the dwc3 controller to an internal 4-port USB hub which. Two of these ports are accessible directly soldered to the board, while the other two are accessible through the 40-pin "GPIO" header. Signed-off-by: NMartin Blumenstingl <martin.blumenstingl@googlemail.com> Signed-off-by: NKevin Hilman <khilman@baylibre.com>
-
由 Martin Blumenstingl 提交于
The Nexbox A95X provides two USB ports. Enable the SoC's USB controller on this board to make these USB ports usable. Signed-off-by: NMartin Blumenstingl <martin.blumenstingl@googlemail.com> Signed-off-by: NKevin Hilman <khilman@baylibre.com>
-
由 Martin Blumenstingl 提交于
The LibreTech CC ("Le Potato") board provides four USB connectors. These are provided by a hub which is connected to the SoC's USB controller. Enable the SoC's USB controller to make the USB ports usable. Also turn on the HDMI_5V regulator when powering on the PHY because (even though it's not shown in the schematics) HDMI_5V also supplies the USB VBUS. Signed-off-by: NMartin Blumenstingl <martin.blumenstingl@googlemail.com> Signed-off-by: NKevin Hilman <khilman@baylibre.com>
-
由 Martin Blumenstingl 提交于
All S905D (GXL) and S912 (GXM) reference boards (namely these are P230, P231, Q200 and Q201) provide USB connectors. This enables the USB controller on these boards to make the USB ports actually usable. Signed-off-by: NMartin Blumenstingl <martin.blumenstingl@googlemail.com> Signed-off-by: NKevin Hilman <khilman@baylibre.com>
-
由 Martin Blumenstingl 提交于
All boards based on the P212 reference design (the P212 reference board itself and the Khadas VIM) have USB connectors (in case of the Khadas VIM the first port is exposed through the USB Type-C connector, the second port is connected to a 4-port USB hub). This enables the USB controller on these boards to make the USB ports actually usable. Signed-off-by: NMartin Blumenstingl <martin.blumenstingl@googlemail.com> Signed-off-by: NKevin Hilman <khilman@baylibre.com>
-
由 Martin Blumenstingl 提交于
The USB configuration on GXM is slightly different than on GXL. The dwc3 controller's internal hub has three USB2 ports (instead of 2 on GXL) along with a dedicated USB2 PHY for this port. However, it seems that there are no pins on GXM which would allow connecting the third port to a physical USB port. Passing the third PHY is required though, because without it none of the other USB ports is working (this seems to be a limitation of how the internal USB hub works, if one PHY is disabled then no USB port works). Signed-off-by: NMartin Blumenstingl <martin.blumenstingl@googlemail.com> Signed-off-by: NKevin Hilman <khilman@baylibre.com>
-
由 Martin Blumenstingl 提交于
This adds USB host support to the Meson GXL SoC. A dwc3 controller is used for host-mode, while a dwc2 controller (not added in this patch because I could not get it working) is used for device-mode only. The dwc3 controller's internal roothub has two USB2 ports enabled but no USB3 port. Each of the ports is supplied by a separate PHY. The USB pins are connected to the SoC's USBHOST_A and USBOTG_B pins. Due to the way the roothub works internally the USB PHYs are left enabled. When the dwc3 controller is disabled the PHY is never powered on so it does not draw any extra power. However, when the dwc3 host controller is enabled then all PHYs also have to be enabled, otherwise USB devices will not be detected (regardless of whether they are plugged into an enabled port or not). This means that only the dwc3 controller has to be enabled on boards with USB support (instead of requiring all boards to enable the PHYs additionally with the chance of forgetting to enable one and breaking all other ports with that as well). This also adds the USB3 PHY which currently only does some basic initialization. That however is required because without it high-speed devices (like USB thumb drives) do not work on some devices (probably because the bootloader does not configure the USB3 PHY registers). Signed-off-by: NMartin Blumenstingl <martin.blumenstingl@googlemail.com> Signed-off-by: NKevin Hilman <khilman@baylibre.com>
-
- 18 4月, 2018 1 次提交
-
-
由 Mark Rutland 提交于
Since commit: a7e6f1ca ("arm64: signal: Force SIGKILL for unknown signals in force_signal_inject") ... any signal which is not SIGKILL will be upgraded to a SIGKILL be force_signal_inject(). This includes signals we do expect, such as SIGILL triggered by do_undefinstr(). Fix the check to use a logical AND rather than a logical OR, permitting signals whose layout is SIL_FAULT. Fixes: a7e6f1ca ("arm64: signal: Force SIGKILL for unknown signals in force_signal_inject") Cc: Will Deacon <will.deacon@arm.com> Reviewed-by: NDave Martin <Dave.Martin@arm.com> Signed-off-by: NMark Rutland <mark.rutland@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 17 4月, 2018 1 次提交
-
-
由 Mark Rutland 提交于
In arm64's kasan_init(), we use pfn_to_nid() to find the NUMA node a span of memory is in, hoping to allocate shadow from the same NUMA node. However, at this point, the page array has not been initialized, and thus this is bogus. Since commit: f165b378 ("mm: uninitialized struct page poisoning sanity") ... accessing fields of the page array results in a boot time Oops(), highlighting this problem: [ 0.000000] Unable to handle kernel paging request at virtual address dfff200000000000 [ 0.000000] Mem abort info: [ 0.000000] ESR = 0x96000004 [ 0.000000] Exception class = DABT (current EL), IL = 32 bits [ 0.000000] SET = 0, FnV = 0 [ 0.000000] EA = 0, S1PTW = 0 [ 0.000000] Data abort info: [ 0.000000] ISV = 0, ISS = 0x00000004 [ 0.000000] CM = 0, WnR = 0 [ 0.000000] [dfff200000000000] address between user and kernel address ranges [ 0.000000] Internal error: Oops: 96000004 [#1] PREEMPT SMP [ 0.000000] Modules linked in: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 4.16.0-07317-gf165b378 #42 [ 0.000000] Hardware name: ARM Juno development board (r1) (DT) [ 0.000000] pstate: 80000085 (Nzcv daIf -PAN -UAO) [ 0.000000] pc : __asan_load8+0x8c/0xa8 [ 0.000000] lr : __dump_page+0x3c/0x3b8 [ 0.000000] sp : ffff2000099b7ca0 [ 0.000000] x29: ffff2000099b7ca0 x28: ffff20000a1762c0 [ 0.000000] x27: ffff7e0000000000 x26: ffff2000099dd000 [ 0.000000] x25: ffff200009a3f960 x24: ffff200008f9c38c [ 0.000000] x23: ffff20000a9d3000 x22: ffff200009735430 [ 0.000000] x21: fffffffffffffffe x20: ffff7e0001e50420 [ 0.000000] x19: ffff7e0001e50400 x18: 0000000000001840 [ 0.000000] x17: ffffffffffff8270 x16: 0000000000001840 [ 0.000000] x15: 0000000000001920 x14: 0000000000000004 [ 0.000000] x13: 0000000000000000 x12: 0000000000000800 [ 0.000000] x11: 1ffff0012d0f89ff x10: ffff10012d0f89ff [ 0.000000] x9 : 0000000000000000 x8 : ffff8009687c5000 [ 0.000000] x7 : 0000000000000000 x6 : ffff10000f282000 [ 0.000000] x5 : 0000000000000040 x4 : fffffffffffffffe [ 0.000000] x3 : 0000000000000000 x2 : dfff200000000000 [ 0.000000] x1 : 0000000000000005 x0 : 0000000000000000 [ 0.000000] Process swapper (pid: 0, stack limit = 0x (ptrval)) [ 0.000000] Call trace: [ 0.000000] __asan_load8+0x8c/0xa8 [ 0.000000] __dump_page+0x3c/0x3b8 [ 0.000000] dump_page+0xc/0x18 [ 0.000000] kasan_init+0x2e8/0x5a8 [ 0.000000] setup_arch+0x294/0x71c [ 0.000000] start_kernel+0xdc/0x500 [ 0.000000] Code: aa0403e0 9400063c 17ffffee d343fc00 (38e26800) [ 0.000000] ---[ end trace 67064f0e9c0cc338 ]--- [ 0.000000] Kernel panic - not syncing: Attempted to kill the idle task! [ 0.000000] ---[ end Kernel panic - not syncing: Attempted to kill the idle task! ]--- Let's fix this by using early_pfn_to_nid(), as other architectures do in their kasan init code. Note that early_pfn_to_nid acquires the nid from the memblock array, which we iterate over in kasan_init(), so this should be fine. Signed-off-by: NMark Rutland <mark.rutland@arm.com> Fixes: 39d114dd ("arm64: add KASAN support") Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-