1. 08 5月, 2007 21 次提交
    • B
      blackfin architecture · 1394f032
      Bryan Wu 提交于
      This adds support for the Analog Devices Blackfin processor architecture, and
      currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561
      (Dual Core) devices, with a variety of development platforms including those
      avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP,
      BF561-EZKIT), and Bluetechnix!  Tinyboards.
      
      The Blackfin architecture was jointly developed by Intel and Analog Devices
      Inc.  (ADI) as the Micro Signal Architecture (MSA) core and introduced it in
      December of 2000.  Since then ADI has put this core into its Blackfin
      processor family of devices.  The Blackfin core has the advantages of a clean,
      orthogonal,RISC-like microprocessor instruction set.  It combines a dual-MAC
      (Multiply/Accumulate), state-of-the-art signal processing engine and
      single-instruction, multiple-data (SIMD) multimedia capabilities into a single
      instruction-set architecture.
      
      The Blackfin architecture, including the instruction set, is described by the
      ADSP-BF53x/BF56x Blackfin Processor Programming Reference
      http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf
      
      The Blackfin processor is already supported by major releases of gcc, and
      there are binary and source rpms/tarballs for many architectures at:
      http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete
      documentation, including "getting started" guides available at:
      http://docs.blackfin.uclinux.org/ which provides links to the sources and
      patches you will need in order to set up a cross-compiling environment for
      bfin-linux-uclibc
      
      This patch, as well as the other patches (toolchain, distribution,
      uClibc) are actively supported by Analog Devices Inc, at:
      http://blackfin.uclinux.org/
      
      We have tested this on LTP, and our test plan (including pass/fails) can
      be found at:
      http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel
      
      [m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files]
      Signed-off-by: NBryan Wu <bryan.wu@analog.com>
      Signed-off-by: NMariusz Kozlowski <m.kozlowski@tuxland.pl>
      Signed-off-by: NAubrey Li <aubrey.li@analog.com>
      Signed-off-by: NJie Zhang <jie.zhang@analog.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      1394f032
    • C
      slab allocators: Remove SLAB_DEBUG_INITIAL flag · 50953fe9
      Christoph Lameter 提交于
      I have never seen a use of SLAB_DEBUG_INITIAL.  It is only supported by
      SLAB.
      
      I think its purpose was to have a callback after an object has been freed
      to verify that the state is the constructor state again?  The callback is
      performed before each freeing of an object.
      
      I would think that it is much easier to check the object state manually
      before the free.  That also places the check near the code object
      manipulation of the object.
      
      Also the SLAB_DEBUG_INITIAL callback is only performed if the kernel was
      compiled with SLAB debugging on.  If there would be code in a constructor
      handling SLAB_DEBUG_INITIAL then it would have to be conditional on
      SLAB_DEBUG otherwise it would just be dead code.  But there is no such code
      in the kernel.  I think SLUB_DEBUG_INITIAL is too problematic to make real
      use of, difficult to understand and there are easier ways to accomplish the
      same effect (i.e.  add debug code before kfree).
      
      There is a related flag SLAB_CTOR_VERIFY that is frequently checked to be
      clear in fs inode caches.  Remove the pointless checks (they would even be
      pointless without removeal of SLAB_DEBUG_INITIAL) from the fs constructors.
      
      This is the last slab flag that SLUB did not support.  Remove the check for
      unimplemented flags from SLUB.
      Signed-off-by: NChristoph Lameter <clameter@sgi.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      50953fe9
    • B
      get_unmapped_area handles MAP_FIXED on x86_64 · 11300a64
      Benjamin Herrenschmidt 提交于
      Handle MAP_FIXED in x86_64 arch_get_unmapped_area(), simple case, just return
      the address as passed in
      Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: Andi Kleen <ak@suse.de>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      11300a64
    • B
      get_unmapped_area handles MAP_FIXED on sparc64 · ac35ee48
      Benjamin Herrenschmidt 提交于
      Handle MAP_FIXED in hugetlb_get_unmapped_area on sparc64 by just using
      prepare_hugepage_range()
      Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
      Acked-by: NWilliam Irwin <bill.irwin@oracle.com>
      Cc: "David S. Miller" <davem@davemloft.net>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      ac35ee48
    • B
      get_unmapped_area handles MAP_FIXED on parisc · 869e5101
      Benjamin Herrenschmidt 提交于
      Handle MAP_FIXED in parisc arch_get_unmapped_area(), just return the address.
      We might want to also check for possible cache aliasing issues now that we get
      called in that case (like ARM or MIPS), leave a comment for the maintainers to
      pick up.
      Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: Kyle McMartin <kyle@mcmartin.ca>
      Cc: Grant Grundler <grundler@parisc-linux.org>
      Cc: Matthew Wilcox <willy@debian.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      869e5101
    • B
      get_unmapped_area handles MAP_FIXED on ia64 · afa37394
      Benjamin Herrenschmidt 提交于
      Handle MAP_FIXED in ia64 arch_get_unmapped_area and
      hugetlb_get_unmapped_area(), just call prepare_hugepage_range in the later and
      is_hugepage_only_range() in the former.
      Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
      Acked-by: NWilliam Irwin <bill.irwin@oracle.com>
      Cc: "Luck, Tony" <tony.luck@intel.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      afa37394
    • B
      get_unmapped_area handles MAP_FIXED on i386 · 5a8130f2
      Benjamin Herrenschmidt 提交于
      Handle MAP_FIXED in i386 hugetlb_get_unmapped_area(), just call
      prepare_hugepage_range.
      Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
      Acked-by: NWilliam Irwin <bill.irwin@oracle.com>
      Cc: Andi Kleen <ak@suse.de>
      Cc: Adam Litke <agl@us.ibm.com>
      Cc: David Gibson <david@gibson.dropbear.id.au>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      5a8130f2
    • B
      get_unmapped_area handles MAP_FIXED on frv · 2fd3beba
      Benjamin Herrenschmidt 提交于
      Handle MAP_FIXED in arch_get_unmapped_area on frv.  Trivial case, just return
      the address.
      Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: David Howells <dhowells@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      2fd3beba
    • B
      get_unmapped_area handles MAP_FIXED on arm · acec0ac0
      Benjamin Herrenschmidt 提交于
      ARM already had a case for MAP_FIXED in arch_get_unmapped_area() though it was
      not called before.  Fix the comment to reflect that it will now be called.
      Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
      Acked-by: NRussell King <rmk+kernel@arm.linux.org.uk>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      acec0ac0
    • B
      get_unmapped_area handles MAP_FIXED on alpha · 4b87b3b2
      Benjamin Herrenschmidt 提交于
      Handle MAP_FIXED in alpha's arch_get_unmapped_area(), simple case, just return
      the address as passed in
      Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: Richard Henderson <rth@twiddle.net>
      Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      4b87b3b2
    • B
      get_unmapped_area handles MAP_FIXED on powerpc · d506a772
      Benjamin Herrenschmidt 提交于
      The current get_unmapped_area code calls the f_ops->get_unmapped_area or the
      arch one (via the mm) only when MAP_FIXED is not passed.  That makes it
      impossible for archs to impose proper constraints on regions of the virtual
      address space.  To work around that, get_unmapped_area() then calls some
      hugetlbfs specific hacks.
      
      This cause several problems, among others:
      
      - It makes it impossible for a driver or filesystem to do the same thing
        that hugetlbfs does (for example, to allow a driver to use larger page sizes
        to map external hardware) if that requires applying a constraint on the
        addresses (constraining that mapping in certain regions and other mappings
        out of those regions).
      
      - Some archs like arm, mips, sparc, sparc64, sh and sh64 already want
        MAP_FIXED to be passed down in order to deal with aliasing issues.  The code
        is there to handle it...  but is never called.
      
      This series of patches moves the logic to handle MAP_FIXED down to the various
      arch/driver get_unmapped_area() implementations, and then changes the generic
      code to always call them.  The hugetlbfs hacks then disappear from the generic
      code.
      
      Since I need to do some special 64K pages mappings for SPEs on cell, I need to
      work around the first problem at least.  I have further patches thus
      implementing a "slices" layer that handles multiple page sizes through slices
      of the address space for use by hugetlbfs, the SPE code, and possibly others,
      but it requires that serie of patches first/
      
      There is still a potential (but not practical) issue due to the fact that
      filesystems/drivers implemeting g_u_a will effectively bypass all arch checks.
       This is not an issue in practice as the only filesystems/drivers using that
      hook are doing so for arch specific purposes in the first place.
      
      There is also a problem with mremap that will completely bypass all arch
      checks.  I'll try to address that separately, I'm not 100% certain yet how,
      possibly by making it not work when the vma has a file whose f_ops has a
      get_unmapped_area callback, and by making it use is_hugepage_only_range()
      before expanding into a new area.
      
      Also, I want to turn is_hugepage_only_range() into a more generic
      is_normal_page_range() as that's really what it will end up meaning when used
      in stack grow, brk grow and mremap.
      
      None of the above "issues" however are introduced by this patch, they are
      already there, so I think the patch can go ini for 2.6.22.
      
      This patch:
      
      Handle MAP_FIXED in powerpc's arch_get_unmapped_area() in all 3
      implementations of it.
      Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
      Acked-by: NWilliam Irwin <bill.irwin@oracle.com>
      Cc: Paul Mackerras <paulus@samba.org>
      Cc: Richard Henderson <rth@twiddle.net>
      Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
      Cc: Russell King <rmk+kernel@arm.linux.org.uk>
      Cc: David Howells <dhowells@redhat.com>
      Cc: Andi Kleen <ak@suse.de>
      Cc: "Luck, Tony" <tony.luck@intel.com>
      Cc: Kyle McMartin <kyle@mcmartin.ca>
      Cc: Grant Grundler <grundler@parisc-linux.org>
      Cc: Matthew Wilcox <willy@debian.org>
      Cc: "David S. Miller" <davem@davemloft.net>
      Cc: Adam Litke <agl@us.ibm.com>
      Cc: David Gibson <david@gibson.dropbear.id.au>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      d506a772
    • C
      slab allocators: remove multiple alignment specifications · f0f3980b
      Christoph Lameter 提交于
      It is not necessary to tell the slab allocators to align to a cacheline
      if an explicit alignment was already specified. It is rather confusing
      to specify multiple alignments.
      
      Make sure that the call sites only use one form of alignment.
      Signed-off-by: NChristoph Lameter <clameter@sgi.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      f0f3980b
    • C
      slab allocators: Remove obsolete SLAB_MUST_HWCACHE_ALIGN · 5af60839
      Christoph Lameter 提交于
      This patch was recently posted to lkml and acked by Pekka.
      
      The flag SLAB_MUST_HWCACHE_ALIGN is
      
      1. Never checked by SLAB at all.
      
      2. A duplicate of SLAB_HWCACHE_ALIGN for SLUB
      
      3. Fulfills the role of SLAB_HWCACHE_ALIGN for SLOB.
      
      The only remaining use is in sparc64 and ppc64 and their use there
      reflects some earlier role that the slab flag once may have had. If
      its specified then SLAB_HWCACHE_ALIGN is also specified.
      
      The flag is confusing, inconsistent and has no purpose.
      
      Remove it.
      Acked-by: NPekka Enberg <penberg@cs.helsinki.fi>
      Signed-off-by: NChristoph Lameter <clameter@sgi.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      5af60839
    • D
      Quicklist support for sparc64 · 3a2cba99
      David Miller 提交于
      I ported this to sparc64 as per the patch below, tested on UP SunBlade1500 and
      24 cpu Niagara T1000.
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      Signed-off-by: NChristoph Lameter <clameter@sgi.com>
      Cc: "David S. Miller" <davem@davemloft.net>
      Cc: Andi Kleen <ak@suse.de>
      Cc: "Luck, Tony" <tony.luck@intel.com>
      Cc: William Lee Irwin III <wli@holomorphy.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      3a2cba99
    • C
      Make page->private usable in compound pages · d85f3385
      Christoph Lameter 提交于
      If we add a new flag so that we can distinguish between the first page and the
      tail pages then we can avoid to use page->private in the first page.
      page->private == page for the first page, so there is no real information in
      there.
      
      Freeing up page->private makes the use of compound pages more transparent.
      They become more usable like real pages.  Right now we have to be careful f.e.
       if we are going beyond PAGE_SIZE allocations in the slab on i386 because we
      can then no longer use the private field.  This is one of the issues that
      cause us not to support debugging for page size slabs in SLAB.
      
      Having page->private available for SLUB would allow more meta information in
      the page struct.  I can probably avoid the 16 bit ints that I have in there
      right now.
      
      Also if page->private is available then a compound page may be equipped with
      buffer heads.  This may free up the way for filesystems to support larger
      blocks than page size.
      
      We add PageTail as an alias of PageReclaim.  Compound pages cannot currently
      be reclaimed.  Because of the alias one needs to check PageCompound first.
      
      The RFC for the this approach was discussed at
      http://marc.info/?t=117574302800001&r=1&w=2
      
      [nacc@us.ibm.com: fix hugetlbfs]
      Signed-off-by: NChristoph Lameter <clameter@sgi.com>
      Signed-off-by: NNishanth Aravamudan <nacc@us.ibm.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      d85f3385
    • C
      PowerPC: Disable SLUB for configurations in which slab page structs are modified · 30520864
      Christoph Lameter 提交于
      PowerPC uses the slab allocator to manage the lowest level of the page
      table.  In high cpu configurations we also use the page struct to split the
      page table lock.  Disallow the selection of SLUB for that case.
      Signed-off-by: NChristoph Lameter <clameter@sgi.com>
      Cc: Hugh Dickins <hugh@veritas.com>
      Cc: Paul Mackerras <paulus@samba.org>
      Acked-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      30520864
    • C
      SLUB core · 81819f0f
      Christoph Lameter 提交于
      This is a new slab allocator which was motivated by the complexity of the
      existing code in mm/slab.c. It attempts to address a variety of concerns
      with the existing implementation.
      
      A. Management of object queues
      
         A particular concern was the complex management of the numerous object
         queues in SLAB. SLUB has no such queues. Instead we dedicate a slab for
         each allocating CPU and use objects from a slab directly instead of
         queueing them up.
      
      B. Storage overhead of object queues
      
         SLAB Object queues exist per node, per CPU. The alien cache queue even
         has a queue array that contain a queue for each processor on each
         node. For very large systems the number of queues and the number of
         objects that may be caught in those queues grows exponentially. On our
         systems with 1k nodes / processors we have several gigabytes just tied up
         for storing references to objects for those queues  This does not include
         the objects that could be on those queues. One fears that the whole
         memory of the machine could one day be consumed by those queues.
      
      C. SLAB meta data overhead
      
         SLAB has overhead at the beginning of each slab. This means that data
         cannot be naturally aligned at the beginning of a slab block. SLUB keeps
         all meta data in the corresponding page_struct. Objects can be naturally
         aligned in the slab. F.e. a 128 byte object will be aligned at 128 byte
         boundaries and can fit tightly into a 4k page with no bytes left over.
         SLAB cannot do this.
      
      D. SLAB has a complex cache reaper
      
         SLUB does not need a cache reaper for UP systems. On SMP systems
         the per CPU slab may be pushed back into partial list but that
         operation is simple and does not require an iteration over a list
         of objects. SLAB expires per CPU, shared and alien object queues
         during cache reaping which may cause strange hold offs.
      
      E. SLAB has complex NUMA policy layer support
      
         SLUB pushes NUMA policy handling into the page allocator. This means that
         allocation is coarser (SLUB does interleave on a page level) but that
         situation was also present before 2.6.13. SLABs application of
         policies to individual slab objects allocated in SLAB is
         certainly a performance concern due to the frequent references to
         memory policies which may lead a sequence of objects to come from
         one node after another. SLUB will get a slab full of objects
         from one node and then will switch to the next.
      
      F. Reduction of the size of partial slab lists
      
         SLAB has per node partial lists. This means that over time a large
         number of partial slabs may accumulate on those lists. These can
         only be reused if allocator occur on specific nodes. SLUB has a global
         pool of partial slabs and will consume slabs from that pool to
         decrease fragmentation.
      
      G. Tunables
      
         SLAB has sophisticated tuning abilities for each slab cache. One can
         manipulate the queue sizes in detail. However, filling the queues still
         requires the uses of the spin lock to check out slabs. SLUB has a global
         parameter (min_slab_order) for tuning. Increasing the minimum slab
         order can decrease the locking overhead. The bigger the slab order the
         less motions of pages between per CPU and partial lists occur and the
         better SLUB will be scaling.
      
      G. Slab merging
      
         We often have slab caches with similar parameters. SLUB detects those
         on boot up and merges them into the corresponding general caches. This
         leads to more effective memory use. About 50% of all caches can
         be eliminated through slab merging. This will also decrease
         slab fragmentation because partial allocated slabs can be filled
         up again. Slab merging can be switched off by specifying
         slub_nomerge on boot up.
      
         Note that merging can expose heretofore unknown bugs in the kernel
         because corrupted objects may now be placed differently and corrupt
         differing neighboring objects. Enable sanity checks to find those.
      
      H. Diagnostics
      
         The current slab diagnostics are difficult to use and require a
         recompilation of the kernel. SLUB contains debugging code that
         is always available (but is kept out of the hot code paths).
         SLUB diagnostics can be enabled via the "slab_debug" option.
         Parameters can be specified to select a single or a group of
         slab caches for diagnostics. This means that the system is running
         with the usual performance and it is much more likely that
         race conditions can be reproduced.
      
      I. Resiliency
      
         If basic sanity checks are on then SLUB is capable of detecting
         common error conditions and recover as best as possible to allow the
         system to continue.
      
      J. Tracing
      
         Tracing can be enabled via the slab_debug=T,<slabcache> option
         during boot. SLUB will then protocol all actions on that slabcache
         and dump the object contents on free.
      
      K. On demand DMA cache creation.
      
         Generally DMA caches are not needed. If a kmalloc is used with
         __GFP_DMA then just create this single slabcache that is needed.
         For systems that have no ZONE_DMA requirement the support is
         completely eliminated.
      
      L. Performance increase
      
         Some benchmarks have shown speed improvements on kernbench in the
         range of 5-10%. The locking overhead of slub is based on the
         underlying base allocation size. If we can reliably allocate
         larger order pages then it is possible to increase slub
         performance much further. The anti-fragmentation patches may
         enable further performance increases.
      
      Tested on:
      i386 UP + SMP, x86_64 UP + SMP + NUMA emulation, IA64 NUMA + Simulator
      
      SLUB Boot options
      
      slub_nomerge		Disable merging of slabs
      slub_min_order=x	Require a minimum order for slab caches. This
      			increases the managed chunk size and therefore
      			reduces meta data and locking overhead.
      slub_min_objects=x	Mininum objects per slab. Default is 8.
      slub_max_order=x	Avoid generating slabs larger than order specified.
      slub_debug		Enable all diagnostics for all caches
      slub_debug=<options>	Enable selective options for all caches
      slub_debug=<o>,<cache>	Enable selective options for a certain set of
      			caches
      
      Available Debug options
      F		Double Free checking, sanity and resiliency
      R		Red zoning
      P		Object / padding poisoning
      U		Track last free / alloc
      T		Trace all allocs / frees (only use for individual slabs).
      
      To use SLUB: Apply this patch and then select SLUB as the default slab
      allocator.
      
      [hugh@veritas.com: fix an oops-causing locking error]
      [akpm@linux-foundation.org: various stupid cleanups and small fixes]
      Signed-off-by: NChristoph Lameter <clameter@sgi.com>
      Signed-off-by: NHugh Dickins <hugh@veritas.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      81819f0f
    • H
      Introduce CONFIG_HAS_DMA · 411f0f3e
      Heiko Carstens 提交于
      Architectures that don't support DMA can say so by adding a config NO_DMA
      to their Kconfig file.  This will prevent compilation of some dma specific
      driver code.  Also dma-mapping-broken.h isn't needed anymore on at least
      s390.  This avoids compilation and linking of otherwise dead/broken code.
      
      Other architectures that include dma-mapping-broken.h are arm26, h8300,
      m68k, m68knommu and v850.  If these could be converted as well we could get
      rid of the header file.
      Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com>
      "John W. Linville" <linville@tuxdriver.com>
      Cc: Kyle McMartin <kyle@parisc-linux.org>
      Cc: <James.Bottomley@SteelEye.com>
      Cc: Tejun Heo <htejun@gmail.com>
      Cc: Jeff Garzik <jeff@garzik.org>
      Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
      Cc: <geert@linux-m68k.org>
      Cc: <zippel@linux-m68k.org>
      Cc: <spyro@f2s.com>
      Cc: <uclinux-v850@lsi.nec.co.jp>
      Cc: <ysato@users.sourceforge.jp>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      411f0f3e
    • D
      serial: define FIXED_PORT flag for serial_core · abb4a239
      David Gibson 提交于
      At present, the serial core always allows setserial in userspace to change the
      port address, irq and base clock of any serial port.  That makes sense for
      legacy ISA ports, but not for (say) embedded ns16550 compatible serial ports
      at peculiar addresses.  In these cases, the kernel code configuring the ports
      must know exactly where they are, and their clocking arrangements (which can
      be unusual on embedded boards).  It doesn't make sense for userspace to change
      these settings.
      
      Therefore, this patch defines a UPF_FIXED_PORT flag for the uart_port
      structure.  If this flag is set when the serial port is configured, any
      attempts to alter the port's type, io address, irq or base clock with
      setserial are ignored.
      
      In addition this patch uses the new flag for on-chip serial ports probed in
      arch/powerpc/kernel/legacy_serial.c, and for other hard-wired serial ports
      probed by drivers/serial/of_serial.c.
      Signed-off-by: NDavid Gibson <dwg@au1.ibm.com>
      Cc: Russell King <rmk@arm.linux.org.uk>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      abb4a239
    • T
      RM9000 serial driver · bd71c182
      Thomas Koeller 提交于
      Add support for the integrated serial ports of the MIPS RM9122 processor
      and its relatives.
      
      The patch also does some whitespace cleanup.
      
      [akpm@linux-foundation.org: cleanups]
      Signed-off-by: NThomas Koeller <thomas.koeller@baslerweb.com>
      Cc: Ralf Baechle <ralf@linux-mips.org>
      Cc: Russell King <rmk@arm.linux.org.uk>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      bd71c182
    • M
      serial driver PMC MSP71xx · beab697a
      Marc St-Jean 提交于
      Serial driver patch for the PMC-Sierra MSP71xx devices.
      
      There are three different fixes:
      
      1 Fix for DesignWare APB THRE errata: In brief, this is a non-standard
        16550 in that the THRE interrupt will not re-assert itself simply by
        disabling and re-enabling the THRI bit in the IER, it is only re-enabled
        if a character is actually sent out.
      
        It appears that the "8250-uart-backup-timer.patch" in the "mm" tree
        also fixes it so we have dropped our initial workaround.  This patch now
        needs to be applied on top of that "mm" patch.
      
      2 Fix for Busy Detect on LCR write: The DesignWare APB UART has a feature
        which causes a new Busy Detect interrupt to be generated if it's busy
        when the LCR is written.  This fix saves the value of the LCR and
        rewrites it after clearing the interrupt.
      
      3 Workaround for interrupt/data concurrency issue: The SoC needs to
        ensure that writes that can cause interrupts to be cleared reach the UART
        before returning from the ISR.  This fix reads a non-destructive register
        on the UART so the read transaction completion ensures the previously
        queued write transaction has also completed.
      Signed-off-by: NMarc St-Jean <Marc_St-Jean@pmc-sierra.com>
      Cc: Russell King <rmk@arm.linux.org.uk>
      Cc: Ralf Baechle <ralf@linux-mips.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      beab697a
  2. 07 5月, 2007 1 次提交
    • L
      Revert "[PATCH] x86: __pa and __pa_symbol address space separation" · e3ebadd9
      Linus Torvalds 提交于
      This was broken.  It adds complexity, for no good reason.  Rather than
      separate __pa() and __pa_symbol(), we should deprecate __pa_symbol(),
      and preferably __pa() too - and just use "virt_to_phys()" instead, which
      is more readable and has nicer semantics.
      
      However, right now, just undo the separation, and make __pa_symbol() be
      the exact same as __pa().  That fixes the bugs this patch introduced,
      and we can do the fairly obvious cleanups later.
      
      Do the new __phys_addr() function (which is now the actual workhorse for
      the unified __pa()/__pa_symbol()) as a real external function, that way
      all the potential issues with compile/link-time optimizations of
      constant symbol addresses go away, and we can also, if we choose to, add
      more sanity-checking of the argument.
      
      Cc: Eric W. Biederman <ebiederm@xmission.com>
      Cc: Vivek Goyal <vgoyal@in.ibm.com>
      Cc: Andi Kleen <ak@suse.de>
      Cc: Andrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      e3ebadd9
  3. 06 5月, 2007 5 次提交
  4. 05 5月, 2007 13 次提交