- 07 9月, 2018 2 次提交
-
-
由 Marc Zyngier 提交于
kvm_unmap_hva is long gone, and we only have kvm_unmap_hva_range to deal with. Drop the now obsolete code. Fixes: fb1522e0 ("KVM: update to new mmu_notifier semantic v2") Cc: James Hogan <jhogan@kernel.org> Reviewed-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@arm.com>
-
由 Marc Zyngier 提交于
When triggering a CoW, we unmap the RO page via an MMU notifier (invalidate_range_start), and then populate the new PTE using another one (change_pte). In the meantime, we'll have copied the old page into the new one. The problem is that the data for the new page is sitting in the cache, and should the guest have an uncached mapping to that page (or its MMU off), following accesses will bypass the cache. In a way, this is similar to what happens on a translation fault: We need to clean the page to the PoC before mapping it. So let's just do that. This fixes a KVM unit test regression observed on a HiSilicon platform, and subsequently reproduced on Seattle. Fixes: a9c0e12e ("KVM: arm/arm64: Only clean the dcache on translation fault") Cc: stable@vger.kernel.org # v4.16+ Reported-by: NMike Galbraith <efault@gmx.de> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@arm.com>
-
- 13 8月, 2018 2 次提交
-
-
由 Punit Agrawal 提交于
When there is contention on faulting in a particular page table entry at stage 2, the break-before-make requirement of the architecture can lead to additional refaulting due to TLB invalidation. Avoid this by skipping a page table update if the new value of the PTE matches the previous value. Cc: stable@vger.kernel.org Fixes: d5d8184d ("KVM: ARM: Memory virtualization setup") Reviewed-by: NSuzuki Poulose <suzuki.poulose@arm.com> Acked-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NPunit Agrawal <punit.agrawal@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Punit Agrawal 提交于
Contention on updating a PMD entry by a large number of vcpus can lead to duplicate work when handling stage 2 page faults. As the page table update follows the break-before-make requirement of the architecture, it can lead to repeated refaults due to clearing the entry and flushing the tlbs. This problem is more likely when - * there are large number of vcpus * the mapping is large block mapping such as when using PMD hugepages (512MB) with 64k pages. Fix this by skipping the page table update if there is no change in the entry being updated. Cc: stable@vger.kernel.org Fixes: ad361f09 ("KVM: ARM: Support hugetlbfs backed huge pages") Reviewed-by: NSuzuki Poulose <suzuki.poulose@arm.com> Acked-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NPunit Agrawal <punit.agrawal@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 09 7月, 2018 4 次提交
-
-
由 Marc Zyngier 提交于
There is no need to perform cache maintenance operations when creating the HYP page tables if we have the multiprocessing extensions. ARMv7 mandates them with the virtualization support, and ARMv8 just mandates them unconditionally. Let's remove these operations. Acked-by: NMark Rutland <mark.rutland@arm.com> Acked-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Marc Zyngier 提交于
The {pmd,pud,pgd}_populate accessors usage have always been a bit weird in KVM. We don't have a struct mm to pass (and neither does the kernel most of the time, but still...), and the 32bit code has all kind of cache maintenance that doesn't make sense on ARMv7+ when MP extensions are mandatory (which is the case when the VEs are present). Let's bite the bullet and provide our own implementations. The only bit of architectural code left has to do with building the table entry itself (arm64 having up to 52bit PA, arm lacking PUD level). Acked-by: NMark Rutland <mark.rutland@arm.com> Acked-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Marc Zyngier 提交于
The arm and arm64 KVM page tables accessors are pointlessly different between the two architectures, and likely both wrong one way or another: arm64 lacks a dsb(), and arm doesn't use WRITE_ONCE. Let's unify them. Acked-by: NMark Rutland <mark.rutland@arm.com> Acked-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Marc Zyngier 提交于
Up to ARMv8.3, the combinaison of Stage-1 and Stage-2 attributes results in the strongest attribute of the two stages. This means that the hypervisor has to perform quite a lot of cache maintenance just in case the guest has some non-cacheable mappings around. ARMv8.4 solves this problem by offering a different mode (FWB) where Stage-2 has total control over the memory attribute (this is limited to systems where both I/O and instruction fetches are coherent with the dcache). This is achieved by having a different set of memory attributes in the page tables, and a new bit set in HCR_EL2. On such a system, we can then safely sidestep any form of dcache management. Acked-by: NCatalin Marinas <catalin.marinas@arm.com> Reviewed-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 21 6月, 2018 1 次提交
-
-
由 Jia He 提交于
There is a panic in armv8a server(QDF2400) under memory pressure tests (start 20 guests and run memhog in the host). ---------------------------------begin-------------------------------- [35380.800950] BUG: Bad page state in process qemu-kvm pfn:dd0b6 [35380.805825] page:ffff7fe003742d80 count:-4871 mapcount:-2126053375 mapping: (null) index:0x0 [35380.815024] flags: 0x1fffc00000000000() [35380.818845] raw: 1fffc00000000000 0000000000000000 0000000000000000 ffffecf981470000 [35380.826569] raw: dead000000000100 dead000000000200 ffff8017c001c000 0000000000000000 [35380.805825] page:ffff7fe003742d80 count:-4871 mapcount:-2126053375 mapping: (null) index:0x0 [35380.815024] flags: 0x1fffc00000000000() [35380.818845] raw: 1fffc00000000000 0000000000000000 0000000000000000 ffffecf981470000 [35380.826569] raw: dead000000000100 dead000000000200 ffff8017c001c000 0000000000000000 [35380.834294] page dumped because: nonzero _refcount [...] --------------------------------end-------------------------------------- The root cause might be what was fixed at [1]. But from the KVM points of view, it would be better if the issue was caught earlier. If the size is not PAGE_SIZE aligned, unmap_stage2_range might unmap the wrong(more or less) page range. Hence it caused the "BUG: Bad page state" Let's WARN in that case, so that the issue is obvious. [1] https://lkml.org/lkml/2018/5/3/1042Reviewed-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: jia.he@hxt-semitech.com [maz: tidied up commit message] Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 25 4月, 2018 1 次提交
-
-
由 Eric W. Biederman 提交于
Call clear_siginfo to ensure every stack allocated siginfo is properly initialized before being passed to the signal sending functions. Note: It is not safe to depend on C initializers to initialize struct siginfo on the stack because C is allowed to skip holes when initializing a structure. The initialization of struct siginfo in tracehook_report_syscall_exit was moved from the helper user_single_step_siginfo into tracehook_report_syscall_exit itself, to make it clear that the local variable siginfo gets fully initialized. In a few cases the scope of struct siginfo has been reduced to make it clear that siginfo siginfo is not used on other paths in the function in which it is declared. Instances of using memset to initialize siginfo have been replaced with calls clear_siginfo for clarity. Signed-off-by: N"Eric W. Biederman" <ebiederm@xmission.com>
-
- 19 3月, 2018 9 次提交
-
-
由 Marc Zyngier 提交于
Until now, all EL2 executable mappings were derived from their EL1 VA. Since we want to decouple the vectors mapping from the rest of the hypervisor, we need to be able to map some text somewhere else. The "idmap" region (for lack of a better name) is ideally suited for this, as we have a huge range that hardly has anything in it. Let's extend the IO allocator to also deal with executable mappings, thus providing the required feature. Acked-by: NCatalin Marinas <catalin.marinas@arm.com> Reviewed-by: NAndrew Jones <drjones@redhat.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Marc Zyngier 提交于
The main idea behind randomising the EL2 VA is that we usually have a few spare bits between the most significant bit of the VA mask and the most significant bit of the linear mapping. Those bits could be a bunch of zeroes, and could be useful to move things around a bit. Of course, the more memory you have, the less randomisation you get... Alternatively, these bits could be the result of KASLR, in which case they are already random. But it would be nice to have a *different* randomization, just to make the job of a potential attacker a bit more difficult. Inserting these random bits is a bit involved. We don't have a spare register (short of rewriting all the kern_hyp_va call sites), and the immediate we want to insert is too random to be used with the ORR instruction. The best option I could come up with is the following sequence: and x0, x0, #va_mask ror x0, x0, #first_random_bit add x0, x0, #(random & 0xfff) add x0, x0, #(random >> 12), lsl #12 ror x0, x0, #(63 - first_random_bit) making it a fairly long sequence, but one that a decent CPU should be able to execute without breaking a sweat. It is of course NOPed out on VHE. The last 4 instructions can also be turned into NOPs if it appears that there is no free bits to use. Acked-by: NCatalin Marinas <catalin.marinas@arm.com> Reviewed-by: NJames Morse <james.morse@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Marc Zyngier 提交于
We so far mapped our HYP IO (which is essentially the GICv2 control registers) using the same method as for memory. It recently appeared that is a bit unsafe: We compute the HYP VA using the kern_hyp_va helper, but that helper is only designed to deal with kernel VAs coming from the linear map, and not from the vmalloc region... This could in turn cause some bad aliasing between the two, amplified by the upcoming VA randomisation. A solution is to come up with our very own basic VA allocator for MMIO. Since half of the HYP address space only contains a single page (the idmap), we have plenty to borrow from. Let's use the idmap as a base, and allocate downwards from it. GICv2 now lives on the other side of the great VA barrier. Acked-by: NCatalin Marinas <catalin.marinas@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Marc Zyngier 提交于
Unmapping the idmap range using 52bit PA is quite broken, as we don't take into account the right number of PGD entries, and rely on PTRS_PER_PGD. The result is that pgd_index() truncates the address, and we end-up in the weed. Let's introduce a new unmap_hyp_idmap_range() that knows about this, together with a kvm_pgd_index() helper, which hides a bit of the complexity of the issue. Fixes: 98732d1b ("KVM: arm/arm64: fix HYP ID map extension to 52 bits") Reported-by: NJames Morse <james.morse@arm.com> Reviewed-by: NCatalin Marinas <catalin.marinas@arm.com> Reviewed-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Marc Zyngier 提交于
Although the idmap section of KVM can only be at most 4kB and must be aligned on a 4kB boundary, the rest of the code expects it to be page aligned. Things get messy when tearing down the HYP page tables when PAGE_SIZE is 64K, and the idmap section isn't 64K aligned. Let's fix this by computing aligned boundaries that the HYP code will use. Acked-by: NCatalin Marinas <catalin.marinas@arm.com> Reported-by: NJames Morse <james.morse@arm.com> Reviewed-by: NJames Morse <james.morse@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Marc Zyngier 提交于
As we're about to change the way we map devices at HYP, we need to move away from kern_hyp_va on an IO address. One way of achieving this is to store the VAs in kvm_vgic_global_state, and use that directly from the HYP code. This requires a small change to create_hyp_io_mappings so that it can also return a HYP VA. We take this opportunity to nuke the vctrl_base field in the emulated distributor, as it is not used anymore. Acked-by: NCatalin Marinas <catalin.marinas@arm.com> Reviewed-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Marc Zyngier 提交于
Both HYP io mappings call ioremap, followed by create_hyp_io_mappings. Let's move the ioremap call into create_hyp_io_mappings itself, which simplifies the code a bit and allows for further refactoring. Reviewed-by: NChristoffer Dall <christoffer.dall@linaro.org> Acked-by: NCatalin Marinas <catalin.marinas@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Marc Zyngier 提交于
Displaying the HYP VA information is slightly counterproductive when using VA randomization. Turn it into a debug feature only, and adjust the last displayed value to reflect the top of RAM instead of ~0. Acked-by: NChristoffer Dall <christoffer.dall@linaro.org> Acked-by: NCatalin Marinas <catalin.marinas@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Christoffer Dall 提交于
We currently have a separate read-modify-write of the HCR_EL2 on entry to the guest for the sole purpose of setting the VF and VI bits, if set. Since this is most rarely the case (only when using userspace IRQ chip and interrupts are in flight), let's get rid of this operation and instead modify the bits in the vcpu->arch.hcr[_el2] directly when needed. Acked-by: NMarc Zyngier <marc.zyngier@arm.com> Reviewed-by: NAndrew Jones <drjones@redhat.com> Reviewed-by: NJulien Thierry <julien.thierry@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 15 3月, 2018 1 次提交
-
-
由 Ard Biesheuvel 提交于
On my GICv3 system, the following is printed to the kernel log at boot: kvm [1]: 8-bit VMID kvm [1]: IDMAP page: d20e35000 kvm [1]: HYP VA range: 800000000000:ffffffffffff kvm [1]: vgic-v2@2c020000 kvm [1]: GIC system register CPU interface enabled kvm [1]: vgic interrupt IRQ1 kvm [1]: virtual timer IRQ4 kvm [1]: Hyp mode initialized successfully The KVM IDMAP is a mapping of a statically allocated kernel structure, and so printing its physical address leaks the physical placement of the kernel when physical KASLR in effect. So change the kvm_info() to kvm_debug() to remove it from the log output. While at it, trim the output a bit more: IRQ numbers can be found in /proc/interrupts, and the HYP VA and vgic-v2 lines are not highly informational either. Cc: <stable@vger.kernel.org> Acked-by: NWill Deacon <will.deacon@arm.com> Acked-by: NChristoffer Dall <cdall@kernel.org> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 16 1月, 2018 1 次提交
-
-
由 Kristina Martsenko 提交于
Commit fa2a8445 incorrectly masks the index of the HYP ID map pgd entry, causing a non-VHE kernel to hang during boot. This happens when VA_BITS=48 and the ID map text is in 52-bit physical memory. In this case we don't need an extra table level but need more entries in the top-level table, so we need to map into hyp_pgd and need to use __kvm_idmap_ptrs_per_pgd to mask in the extra bits. However, __create_hyp_mappings currently masks by PTRS_PER_PGD instead. Fix it so that we always use __kvm_idmap_ptrs_per_pgd for the HYP ID map. This ensures that we use the larger mask for the top-level ID map table when it has more entries. In all other cases, PTRS_PER_PGD is used as normal. Fixes: fa2a8445 ("arm64: allow ID map to be extended to 52 bits") Acked-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NKristina Martsenko <kristina.martsenko@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 11 1月, 2018 1 次提交
-
-
由 Punit Agrawal 提交于
KVM only supports PMD hugepages at stage 2 but doesn't actually check that the provided hugepage memory pagesize is PMD_SIZE before populating stage 2 entries. In cases where the backing hugepage size is smaller than PMD_SIZE (such as when using contiguous hugepages), KVM can end up creating stage 2 mappings that extend beyond the supplied memory. Fix this by checking for the pagesize of userspace vma before creating PMD hugepage at stage 2. Fixes: 66b3923a ("arm64: hugetlb: add support for PTE contiguous bit") Signed-off-by: NPunit Agrawal <punit.agrawal@arm.com> Cc: Marc Zyngier <marc.zyngier@arm.com> Cc: <stable@vger.kernel.org> # v4.5+ Reviewed-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
- 08 1月, 2018 5 次提交
-
-
由 Marc Zyngier 提交于
The vcpu parameter isn't used for anything, and gets in the way of further cleanups. Let's get rid of it. Acked-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
由 Marc Zyngier 提交于
So far, we loose the Exec property whenever we take permission faults, as we always reconstruct the PTE/PMD from scratch. This can be counter productive as we can end-up with the following fault sequence: X -> RO -> ROX -> RW -> RWX Instead, we can lookup the existing PTE/PMD and clear the XN bit in the new entry if it was already cleared in the old one, leadig to a much nicer fault sequence: X -> ROX -> RWX Reviewed-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
由 Marc Zyngier 提交于
The only case where we actually need to perform a dcache maintenance is when we map the page for the first time, and subsequent permission faults do not require cache maintenance. Let's make it conditional on not being a permission fault (and thus a translation fault). Reviewed-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
由 Marc Zyngier 提交于
We've so far eagerly invalidated the icache, no matter how the page was faulted in (data or prefetch abort). But we can easily track execution by setting the XN bits in the S2 page tables, get the prefetch abort at HYP and perform the icache invalidation at that time only. As for most VMs, the instruction working set is pretty small compared to the data set, this is likely to save some traffic (specially as the invalidation is broadcast). Reviewed-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
由 Marc Zyngier 提交于
As we're about to introduce opportunistic invalidation of the icache, let's split dcache and icache flushing. Acked-by: NChristoffer Dall <cdall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
- 23 12月, 2017 1 次提交
-
-
由 Kristina Martsenko 提交于
Currently, when using VA_BITS < 48, if the ID map text happens to be placed in physical memory above VA_BITS, we increase the VA size (up to 48) and create a new table level, in order to map in the ID map text. This is okay because the system always supports 48 bits of VA. This patch extends the code such that if the system supports 52 bits of VA, and the ID map text is placed that high up, then we increase the VA size accordingly, up to 52. One difference from the current implementation is that so far the condition of VA_BITS < 48 has meant that the top level table is always "full", with the maximum number of entries, and an extra table level is always needed. Now, when VA_BITS = 48 (and using 64k pages), the top level table is not full, and we simply need to increase the number of entries in it, instead of creating a new table level. Tested-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Reviewed-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Tested-by: NBob Picco <bob.picco@oracle.com> Reviewed-by: NBob Picco <bob.picco@oracle.com> Signed-off-by: NKristina Martsenko <kristina.martsenko@arm.com> [catalin.marinas@arm.com: reduce arguments to __create_hyp_mappings()] [catalin.marinas@arm.com: reworked/renamed __cpu_uses_extended_idmap_level()] Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 18 12月, 2017 1 次提交
-
-
由 Marc Zyngier 提交于
When we unmap the HYP memory, we try to be clever and unmap one PGD at a time. If we start with a non-PGD aligned address and try to unmap a whole PGD, things go horribly wrong in unmap_hyp_range (addr and end can never match, and it all goes really badly as we keep incrementing pgd and parse random memory as page tables...). The obvious fix is to let unmap_hyp_range do what it does best, which is to iterate over a range. The size of the linear mapping, which begins at PAGE_OFFSET, can be easily calculated by subtracting PAGE_OFFSET form high_memory, because high_memory is defined as the linear map address of the last byte of DRAM, plus one. The size of the vmalloc region is given trivially by VMALLOC_END - VMALLOC_START. Cc: stable@vger.kernel.org Reported-by: NAndre Przywara <andre.przywara@arm.com> Tested-by: NAndre Przywara <andre.przywara@arm.com> Reviewed-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
- 05 9月, 2017 1 次提交
-
-
由 James Morse 提交于
The ARM-ARM has two bits in the ESR/HSR relevant to external aborts. A range of {I,D}FSC values (of which bit 5 is always set) and bit 9 'EA' which provides: > an IMPLEMENTATION DEFINED classification of External Aborts. This bit is in addition to the {I,D}FSC range, and has an implementation defined meaning. KVM should always ignore this bit when handling external aborts from a guest. Remove the ESR_ELx_EA definition and rewrite its helper kvm_vcpu_dabt_isextabt() to check the {I,D}FSC range. This merges kvm_vcpu_dabt_isextabt() and the recently added is_abort_sea() helper. CC: Tyler Baicar <tbaicar@codeaurora.org> Reported-by: Ngengdongjiu <gengdj.1984@gmail.com> Signed-off-by: NJames Morse <james.morse@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <cdall@linaro.org>
-
- 25 7月, 2017 1 次提交
-
-
由 Suzuki K Poulose 提交于
The mmu_notifier_release() callback of KVM triggers cleaning up the stage2 page table on kvm-arm. However there could be other notifier callbacks in parallel with the mmu_notifier_release(), which could cause the call backs ending up in an empty stage2 page table. Make sure we check it for all the notifier callbacks. Cc: stable@vger.kernel.org Fixes: commit 293f2936 ("kvm-arm: Unmap shadow pagetables properly") Reported-by: NAlex Graf <agraf@suse.de> Reviewed-by: NChristoffer Dall <cdall@linaro.org> Signed-off-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 23 6月, 2017 2 次提交
-
-
由 Tyler Baicar 提交于
Currently external aborts are unsupported by the guest abort handling. Add handling for SEAs so that the host kernel reports SEAs which occur in the guest kernel. When an SEA occurs in the guest kernel, the guest exits and is routed to kvm_handle_guest_abort(). Prior to this patch, a print message of an unsupported FSC would be printed and nothing else would happen. With this patch, the code gets routed to the APEI handling of SEAs in the host kernel to report the SEA information. Signed-off-by: NTyler Baicar <tbaicar@codeaurora.org> Acked-by: NCatalin Marinas <catalin.marinas@arm.com> Acked-by: NMarc Zyngier <marc.zyngier@arm.com> Acked-by: NChristoffer Dall <cdall@linaro.org> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 James Morse 提交于
Once we enable ARCH_SUPPORTS_MEMORY_FAILURE on arm64, notifications for broken memory can call memory_failure() in mm/memory-failure.c to offline pages of memory, possibly signalling user space processes and notifying all the in-kernel users. memory_failure() has two modes, early and late. Early is used by machine-managers like Qemu to receive a notification when a memory error is notified to the host. These can then be relayed to the guest before the affected page is accessed. To enable this, the process must set PR_MCE_KILL_EARLY in PR_MCE_KILL_SET using the prctl() syscall. Once the early notification has been handled, nothing stops the machine-manager or guest from accessing the affected page. If the machine-manager does this the page will fail to be mapped and SIGBUS will be sent. This patch adds the equivalent path for when the guest accesses the page, sending SIGBUS to the machine-manager. These two signals can be distinguished by the machine-manager using their si_code: BUS_MCEERR_AO for 'action optional' early notifications, and BUS_MCEERR_AR for 'action required' synchronous/late notifications. Do as x86 does, and deliver the SIGBUS when we discover pfn == KVM_PFN_ERR_HWPOISON. Use the hugepage size as si_addr_lsb if this vma was allocated as a hugepage. Transparent hugepages will be split by memory_failure() before we see them here. Cc: Punit Agrawal <punit.agrawal@arm.com> Signed-off-by: NJames Morse <james.morse@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 06 6月, 2017 1 次提交
-
-
由 Marc Zyngier 提交于
Under memory pressure, we start ageing pages, which amounts to parsing the page tables. Since we don't want to allocate any extra level, we pass NULL for our private allocation cache. Which means that stage2_get_pud() is allowed to fail. This results in the following splat: [ 1520.409577] Unable to handle kernel NULL pointer dereference at virtual address 00000008 [ 1520.417741] pgd = ffff810f52fef000 [ 1520.421201] [00000008] *pgd=0000010f636c5003, *pud=0000010f56f48003, *pmd=0000000000000000 [ 1520.429546] Internal error: Oops: 96000006 [#1] PREEMPT SMP [ 1520.435156] Modules linked in: [ 1520.438246] CPU: 15 PID: 53550 Comm: qemu-system-aar Tainted: G W 4.12.0-rc4-00027-g1885c397eaec #7205 [ 1520.448705] Hardware name: FOXCONN R2-1221R-A4/C2U4N_MB, BIOS G31FB12A 10/26/2016 [ 1520.463726] task: ffff800ac5fb4e00 task.stack: ffff800ce04e0000 [ 1520.469666] PC is at stage2_get_pmd+0x34/0x110 [ 1520.474119] LR is at kvm_age_hva_handler+0x44/0xf0 [ 1520.478917] pc : [<ffff0000080b137c>] lr : [<ffff0000080b149c>] pstate: 40000145 [ 1520.486325] sp : ffff800ce04e33d0 [ 1520.489644] x29: ffff800ce04e33d0 x28: 0000000ffff40064 [ 1520.494967] x27: 0000ffff27e00000 x26: 0000000000000000 [ 1520.500289] x25: ffff81051ba65008 x24: 0000ffff40065000 [ 1520.505618] x23: 0000ffff40064000 x22: 0000000000000000 [ 1520.510947] x21: ffff810f52b20000 x20: 0000000000000000 [ 1520.516274] x19: 0000000058264000 x18: 0000000000000000 [ 1520.521603] x17: 0000ffffa6fe7438 x16: ffff000008278b70 [ 1520.526940] x15: 000028ccd8000000 x14: 0000000000000008 [ 1520.532264] x13: ffff7e0018298000 x12: 0000000000000002 [ 1520.537582] x11: ffff000009241b93 x10: 0000000000000940 [ 1520.542908] x9 : ffff0000092ef800 x8 : 0000000000000200 [ 1520.548229] x7 : ffff800ce04e36a8 x6 : 0000000000000000 [ 1520.553552] x5 : 0000000000000001 x4 : 0000000000000000 [ 1520.558873] x3 : 0000000000000000 x2 : 0000000000000008 [ 1520.571696] x1 : ffff000008fd5000 x0 : ffff0000080b149c [ 1520.577039] Process qemu-system-aar (pid: 53550, stack limit = 0xffff800ce04e0000) [...] [ 1521.510735] [<ffff0000080b137c>] stage2_get_pmd+0x34/0x110 [ 1521.516221] [<ffff0000080b149c>] kvm_age_hva_handler+0x44/0xf0 [ 1521.522054] [<ffff0000080b0610>] handle_hva_to_gpa+0xb8/0xe8 [ 1521.527716] [<ffff0000080b3434>] kvm_age_hva+0x44/0xf0 [ 1521.532854] [<ffff0000080a58b0>] kvm_mmu_notifier_clear_flush_young+0x70/0xc0 [ 1521.539992] [<ffff000008238378>] __mmu_notifier_clear_flush_young+0x88/0xd0 [ 1521.546958] [<ffff00000821eca0>] page_referenced_one+0xf0/0x188 [ 1521.552881] [<ffff00000821f36c>] rmap_walk_anon+0xec/0x250 [ 1521.558370] [<ffff000008220f78>] rmap_walk+0x78/0xa0 [ 1521.563337] [<ffff000008221104>] page_referenced+0x164/0x180 [ 1521.569002] [<ffff0000081f1af0>] shrink_active_list+0x178/0x3b8 [ 1521.574922] [<ffff0000081f2058>] shrink_node_memcg+0x328/0x600 [ 1521.580758] [<ffff0000081f23f4>] shrink_node+0xc4/0x328 [ 1521.585986] [<ffff0000081f2718>] do_try_to_free_pages+0xc0/0x340 [ 1521.592000] [<ffff0000081f2a64>] try_to_free_pages+0xcc/0x240 [...] The trivial fix is to handle this NULL pud value early, rather than dereferencing it blindly. Cc: stable@vger.kernel.org Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Reviewed-by: NChristoffer Dall <cdall@linaro.org> Signed-off-by: NChristoffer Dall <cdall@linaro.org>
-
- 16 5月, 2017 2 次提交
-
-
由 Suzuki K Poulose 提交于
We yield the kvm->mmu_lock occassionaly while performing an operation (e.g, unmap or permission changes) on a large area of stage2 mappings. However this could possibly cause another thread to clear and free up the stage2 page tables while we were waiting for regaining the lock and thus the original thread could end up in accessing memory that was freed. This patch fixes the problem by making sure that the stage2 pagetable is still valid after we regain the lock. The fact that mmu_notifer->release() could be called twice (via __mmu_notifier_release and mmu_notifier_unregsister) enhances the possibility of hitting this race where there are two threads trying to unmap the entire guest shadow pages. While at it, cleanup the redudant checks around cond_resched_lock in stage2_wp_range(), as cond_resched_lock already does the same checks. Cc: Mark Rutland <mark.rutland@arm.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: andreyknvl@google.com Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: stable@vger.kernel.org Acked-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Reviewed-by: NChristoffer Dall <cdall@linaro.org> Signed-off-by: NChristoffer Dall <cdall@linaro.org>
-
由 Suzuki K Poulose 提交于
Make sure we don't use a cached value of the KVM stage2 PGD while resetting the PGD. Cc: Marc Zyngier <marc.zyngier@arm.com> Cc: stable@vger.kernel.org Signed-off-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Reviewed-by: NChristoffer Dall <cdall@linaro.org> Signed-off-by: NChristoffer Dall <cdall@linaro.org>
-
- 15 5月, 2017 1 次提交
-
-
由 Suzuki K Poulose 提交于
In kvm_free_stage2_pgd() we check the stage2 PGD before holding the lock and proceed to take the lock if it is valid. And we unmap the page tables, followed by releasing the lock. We reset the PGD only after dropping this lock, which could cause a race condition where another thread waiting on or even holding the lock, could potentially see that the PGD is still valid and proceed to perform a stage2 operation and later encounter a NULL PGD. [223090.242280] Unable to handle kernel NULL pointer dereference at virtual address 00000040 [223090.262330] PC is at unmap_stage2_range+0x8c/0x428 [223090.262332] LR is at kvm_unmap_hva_handler+0x2c/0x3c [223090.262531] Call trace: [223090.262533] [<ffff0000080adb78>] unmap_stage2_range+0x8c/0x428 [223090.262535] [<ffff0000080adf40>] kvm_unmap_hva_handler+0x2c/0x3c [223090.262537] [<ffff0000080ace2c>] handle_hva_to_gpa+0xb0/0x104 [223090.262539] [<ffff0000080af988>] kvm_unmap_hva+0x5c/0xbc [223090.262543] [<ffff0000080a2478>] kvm_mmu_notifier_invalidate_page+0x50/0x8c [223090.262547] [<ffff0000082274f8>] __mmu_notifier_invalidate_page+0x5c/0x84 [223090.262551] [<ffff00000820b700>] try_to_unmap_one+0x1d0/0x4a0 [223090.262553] [<ffff00000820c5c8>] rmap_walk+0x1cc/0x2e0 [223090.262555] [<ffff00000820c90c>] try_to_unmap+0x74/0xa4 [223090.262557] [<ffff000008230ce4>] migrate_pages+0x31c/0x5ac [223090.262561] [<ffff0000081f869c>] compact_zone+0x3fc/0x7ac [223090.262563] [<ffff0000081f8ae0>] compact_zone_order+0x94/0xb0 [223090.262564] [<ffff0000081f91c0>] try_to_compact_pages+0x108/0x290 [223090.262569] [<ffff0000081d5108>] __alloc_pages_direct_compact+0x70/0x1ac [223090.262571] [<ffff0000081d64a0>] __alloc_pages_nodemask+0x434/0x9f4 [223090.262572] [<ffff0000082256f0>] alloc_pages_vma+0x230/0x254 [223090.262574] [<ffff000008235e5c>] do_huge_pmd_anonymous_page+0x114/0x538 [223090.262576] [<ffff000008201bec>] handle_mm_fault+0xd40/0x17a4 [223090.262577] [<ffff0000081fb324>] __get_user_pages+0x12c/0x36c [223090.262578] [<ffff0000081fb804>] get_user_pages_unlocked+0xa4/0x1b8 [223090.262579] [<ffff0000080a3ce8>] __gfn_to_pfn_memslot+0x280/0x31c [223090.262580] [<ffff0000080a3dd0>] gfn_to_pfn_prot+0x4c/0x5c [223090.262582] [<ffff0000080af3f8>] kvm_handle_guest_abort+0x240/0x774 [223090.262584] [<ffff0000080b2bac>] handle_exit+0x11c/0x1ac [223090.262586] [<ffff0000080ab99c>] kvm_arch_vcpu_ioctl_run+0x31c/0x648 [223090.262587] [<ffff0000080a1d78>] kvm_vcpu_ioctl+0x378/0x768 [223090.262590] [<ffff00000825df5c>] do_vfs_ioctl+0x324/0x5a4 [223090.262591] [<ffff00000825e26c>] SyS_ioctl+0x90/0xa4 [223090.262595] [<ffff000008085d84>] el0_svc_naked+0x38/0x3c This patch moves the stage2 PGD manipulation under the lock. Reported-by: NAlexander Graf <agraf@suse.de> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Marc Zyngier <marc.zyngier@arm.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Reviewed-by: NChristoffer Dall <cdall@linaro.org> Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: NChristoffer Dall <cdall@linaro.org>
-
- 04 5月, 2017 1 次提交
-
-
由 Christoffer Dall 提交于
For some time now we have been having a lot of shared functionality between the arm and arm64 KVM support in arch/arm, which not only required a horrible inter-arch reference from the Makefile in arch/arm64/kvm, but also created confusion for newcomers to the code base, as was recently seen on the mailing list. Further, it causes confusion for things like cscope, which needs special attention to index specific shared files for arm64 from the arm tree. Move the shared files into virt/kvm/arm and move the trace points along with it. When moving the tracepoints we have to modify the way the vgic creates definitions of the trace points, so we take the chance to include the VGIC tracepoints in its very own special vgic trace.h file. Signed-off-by: NChristoffer Dall <cdall@linaro.org>
-
- 09 4月, 2017 2 次提交
-
-
由 Marc Zyngier 提交于
With __cpu_reset_hyp_mode having become fairly dumb, there is no need for kvm_get_idmap_start anymore. Acked-by: NCatalin Marinas <catalin.marinas@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <cdall@linaro.org>
-
由 Suzuki K Poulose 提交于
In order to perform an operation on a gpa range, we currently iterate over each page in a user memory slot for the given range. This is inefficient while dealing with a big range (e.g, a VMA), especially while unmaping a range. At present, with stage2 unmap on a range with a hugepage backed region, we clear the PMD when we unmap the first page in the loop. The remaining iterations simply traverse the page table down to the PMD level only to see that nothing is in there. This patch reworks the code to invoke the callback handlers on the biggest range possible within the memory slot to to reduce the number of times the handler is called. Cc: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: NChristoffer Dall <cdall@linaro.org> Signed-off-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: NChristoffer Dall <cdall@linaro.org>
-