1. 22 5月, 2010 3 次提交
    • E
      net: Expose all network devices in a namespaces in sysfs · a1b3f594
      Eric W. Biederman 提交于
      This reverts commit aaf8cdc3.
      
      Drivers like the ipw2100 call device_create_group when they
      are initialized and device_remove_group when they are shutdown.
      Moving them between namespaces deletes their sysfs groups early.
      
      In particular the following call chain results.
      netdev_unregister_kobject -> device_del -> kobject_del -> sysfs_remove_dir
      With sysfs_remove_dir recursively deleting all of it's subdirectories,
      and nothing adding them back.
      
      Ouch!
      
      Therefore we need to call something that ultimate calls sysfs_mv_dir
      as that sysfs function can move sysfs directories between namespaces
      without deleting their subdirectories or their contents.   Allowing
      us to avoid placing extra boiler plate into every driver that does
      something interesting with sysfs.
      
      Currently the function that provides that capability is device_rename.
      That is the code works without nasty side effects as originally written.
      
      So remove the misguided fix for moving devices between namespaces.  The
      bug in the kobject layer that inspired it has now been recognized and
      fixed.
      Signed-off-by: NEric W. Biederman <ebiederm@xmission.com>
      Acked-by: NDavid S. Miller <davem@davemloft.net>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
      a1b3f594
    • E
      net/sysfs: Fix the bitrot in network device kobject namespace support · d6523ddf
      Eric W. Biederman 提交于
      I had a couple of stupid bugs in:
      netns: Teach network device kobjects which namespace they are in.
      
      - I duplicated the Kconfig for the NET_NS
      - The build was broken when sysfs was not compiled in
      
      The sysfs breakage is because after I moved the operations
      for the sysfs to the kobject layer, to make things cleaner
      I forgot to move the ifdefs.  Opps.
      
      I'm not quite certain how I got introduced a second NET_NS Kconfig,
      but it was probably a 3 way merge somewhere along the way that
      did not notice that the NET_NS Kconfig option had mvoed and thout
      that was a bug.  It probably slipped in because it used to be the
      sysfs patches were the first patches in my network namespace patches.
      Some things just don't go like you would expect.
      
      Neither of these bugs actually affect anything in the common case
      but they should be fixed.
      
      Thanks to Serge for noticing they were present.
      Reported-by: NSerge E. Hallyn <serue@us.ibm.com>
      Signed-off-by: NEric W. Biederman <ebiederm@aristanetworks.com>
      Acked-by: NDavid S. Miller <davem@davemloft.net>
      
      d6523ddf
    • E
      netns: Teach network device kobjects which namespace they are in. · 608b4b95
      Eric W. Biederman 提交于
      The problem.  Network devices show up in sysfs and with the network
      namespace active multiple devices with the same name can show up in
      the same directory, ouch!
      
      To avoid that problem and allow existing applications in network namespaces
      to see the same interface that is currently presented in sysfs, this
      patch enables the tagging directory support in sysfs.
      
      By using the network namespace pointers as tags to separate out the
      the sysfs directory entries we ensure that we don't have conflicts
      in the directories and applications only see a limited set of
      the network devices.
      Signed-off-by: NEric W. Biederman <ebiederm@xmission.com>
      Acked-by: NDavid S. Miller <davem@davemloft.net>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
      608b4b95
  2. 20 4月, 2010 1 次提交
  3. 17 4月, 2010 1 次提交
    • T
      rfs: Receive Flow Steering · fec5e652
      Tom Herbert 提交于
      This patch implements receive flow steering (RFS).  RFS steers
      received packets for layer 3 and 4 processing to the CPU where
      the application for the corresponding flow is running.  RFS is an
      extension of Receive Packet Steering (RPS).
      
      The basic idea of RFS is that when an application calls recvmsg
      (or sendmsg) the application's running CPU is stored in a hash
      table that is indexed by the connection's rxhash which is stored in
      the socket structure.  The rxhash is passed in skb's received on
      the connection from netif_receive_skb.  For each received packet,
      the associated rxhash is used to look up the CPU in the hash table,
      if a valid CPU is set then the packet is steered to that CPU using
      the RPS mechanisms.
      
      The convolution of the simple approach is that it would potentially
      allow OOO packets.  If threads are thrashing around CPUs or multiple
      threads are trying to read from the same sockets, a quickly changing
      CPU value in the hash table could cause rampant OOO packets--
      we consider this a non-starter.
      
      To avoid OOO packets, this solution implements two types of hash
      tables: rps_sock_flow_table and rps_dev_flow_table.
      
      rps_sock_table is a global hash table.  Each entry is just a CPU
      number and it is populated in recvmsg and sendmsg as described above.
      This table contains the "desired" CPUs for flows.
      
      rps_dev_flow_table is specific to each device queue.  Each entry
      contains a CPU and a tail queue counter.  The CPU is the "current"
      CPU for a matching flow.  The tail queue counter holds the value
      of a tail queue counter for the associated CPU's backlog queue at
      the time of last enqueue for a flow matching the entry.
      
      Each backlog queue has a queue head counter which is incremented
      on dequeue, and so a queue tail counter is computed as queue head
      count + queue length.  When a packet is enqueued on a backlog queue,
      the current value of the queue tail counter is saved in the hash
      entry of the rps_dev_flow_table.
      
      And now the trick: when selecting the CPU for RPS (get_rps_cpu)
      the rps_sock_flow table and the rps_dev_flow table for the RX queue
      are consulted.  When the desired CPU for the flow (found in the
      rps_sock_flow table) does not match the current CPU (found in the
      rps_dev_flow table), the current CPU is changed to the desired CPU
      if one of the following is true:
      
      - The current CPU is unset (equal to RPS_NO_CPU)
      - Current CPU is offline
      - The current CPU's queue head counter >= queue tail counter in the
      rps_dev_flow table.  This checks if the queue tail has advanced
      beyond the last packet that was enqueued using this table entry.
      This guarantees that all packets queued using this entry have been
      dequeued, thus preserving in order delivery.
      
      Making each queue have its own rps_dev_flow table has two advantages:
      1) the tail queue counters will be written on each receive, so
      keeping the table local to interrupting CPU s good for locality.  2)
      this allows lockless access to the table-- the CPU number and queue
      tail counter need to be accessed together under mutual exclusion
      from netif_receive_skb, we assume that this is only called from
      device napi_poll which is non-reentrant.
      
      This patch implements RFS for TCP and connected UDP sockets.
      It should be usable for other flow oriented protocols.
      
      There are two configuration parameters for RFS.  The
      "rps_flow_entries" kernel init parameter sets the number of
      entries in the rps_sock_flow_table, the per rxqueue sysfs entry
      "rps_flow_cnt" contains the number of entries in the rps_dev_flow
      table for the rxqueue.  Both are rounded to power of two.
      
      The obvious benefit of RFS (over just RPS) is that it achieves
      CPU locality between the receive processing for a flow and the
      applications processing; this can result in increased performance
      (higher pps, lower latency).
      
      The benefits of RFS are dependent on cache hierarchy, application
      load, and other factors.  On simple benchmarks, we don't necessarily
      see improvement and sometimes see degradation.  However, for more
      complex benchmarks and for applications where cache pressure is
      much higher this technique seems to perform very well.
      
      Below are some benchmark results which show the potential benfit of
      this patch.  The netperf test has 500 instances of netperf TCP_RR
      test with 1 byte req. and resp.  The RPC test is an request/response
      test similar in structure to netperf RR test ith 100 threads on
      each host, but does more work in userspace that netperf.
      
      e1000e on 8 core Intel
         No RFS or RPS		104K tps at 30% CPU
         No RFS (best RPS config):    290K tps at 63% CPU
         RFS				303K tps at 61% CPU
      
      RPC test	tps	CPU%	50/90/99% usec latency	Latency StdDev
        No RFS/RPS	103K	48%	757/900/3185		4472.35
        RPS only:	174K	73%	415/993/2468		491.66
        RFS		223K	73%	379/651/1382		315.61
      Signed-off-by: NTom Herbert <therbert@google.com>
      Signed-off-by: NEric Dumazet <eric.dumazet@gmail.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      fec5e652
  4. 30 3月, 2010 1 次提交
    • T
      include cleanup: Update gfp.h and slab.h includes to prepare for breaking... · 5a0e3ad6
      Tejun Heo 提交于
      include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
      
      percpu.h is included by sched.h and module.h and thus ends up being
      included when building most .c files.  percpu.h includes slab.h which
      in turn includes gfp.h making everything defined by the two files
      universally available and complicating inclusion dependencies.
      
      percpu.h -> slab.h dependency is about to be removed.  Prepare for
      this change by updating users of gfp and slab facilities include those
      headers directly instead of assuming availability.  As this conversion
      needs to touch large number of source files, the following script is
      used as the basis of conversion.
      
        http://userweb.kernel.org/~tj/misc/slabh-sweep.py
      
      The script does the followings.
      
      * Scan files for gfp and slab usages and update includes such that
        only the necessary includes are there.  ie. if only gfp is used,
        gfp.h, if slab is used, slab.h.
      
      * When the script inserts a new include, it looks at the include
        blocks and try to put the new include such that its order conforms
        to its surrounding.  It's put in the include block which contains
        core kernel includes, in the same order that the rest are ordered -
        alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
        doesn't seem to be any matching order.
      
      * If the script can't find a place to put a new include (mostly
        because the file doesn't have fitting include block), it prints out
        an error message indicating which .h file needs to be added to the
        file.
      
      The conversion was done in the following steps.
      
      1. The initial automatic conversion of all .c files updated slightly
         over 4000 files, deleting around 700 includes and adding ~480 gfp.h
         and ~3000 slab.h inclusions.  The script emitted errors for ~400
         files.
      
      2. Each error was manually checked.  Some didn't need the inclusion,
         some needed manual addition while adding it to implementation .h or
         embedding .c file was more appropriate for others.  This step added
         inclusions to around 150 files.
      
      3. The script was run again and the output was compared to the edits
         from #2 to make sure no file was left behind.
      
      4. Several build tests were done and a couple of problems were fixed.
         e.g. lib/decompress_*.c used malloc/free() wrappers around slab
         APIs requiring slab.h to be added manually.
      
      5. The script was run on all .h files but without automatically
         editing them as sprinkling gfp.h and slab.h inclusions around .h
         files could easily lead to inclusion dependency hell.  Most gfp.h
         inclusion directives were ignored as stuff from gfp.h was usually
         wildly available and often used in preprocessor macros.  Each
         slab.h inclusion directive was examined and added manually as
         necessary.
      
      6. percpu.h was updated not to include slab.h.
      
      7. Build test were done on the following configurations and failures
         were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
         distributed build env didn't work with gcov compiles) and a few
         more options had to be turned off depending on archs to make things
         build (like ipr on powerpc/64 which failed due to missing writeq).
      
         * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
         * powerpc and powerpc64 SMP allmodconfig
         * sparc and sparc64 SMP allmodconfig
         * ia64 SMP allmodconfig
         * s390 SMP allmodconfig
         * alpha SMP allmodconfig
         * um on x86_64 SMP allmodconfig
      
      8. percpu.h modifications were reverted so that it could be applied as
         a separate patch and serve as bisection point.
      
      Given the fact that I had only a couple of failures from tests on step
      6, I'm fairly confident about the coverage of this conversion patch.
      If there is a breakage, it's likely to be something in one of the arch
      headers which should be easily discoverable easily on most builds of
      the specific arch.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Guess-its-ok-by: NChristoph Lameter <cl@linux-foundation.org>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
      5a0e3ad6
  5. 29 3月, 2010 1 次提交
  6. 23 3月, 2010 1 次提交
  7. 17 3月, 2010 1 次提交
    • T
      rps: Receive Packet Steering · 0a9627f2
      Tom Herbert 提交于
      This patch implements software receive side packet steering (RPS).  RPS
      distributes the load of received packet processing across multiple CPUs.
      
      Problem statement: Protocol processing done in the NAPI context for received
      packets is serialized per device queue and becomes a bottleneck under high
      packet load.  This substantially limits pps that can be achieved on a single
      queue NIC and provides no scaling with multiple cores.
      
      This solution queues packets early on in the receive path on the backlog queues
      of other CPUs.   This allows protocol processing (e.g. IP and TCP) to be
      performed on packets in parallel.   For each device (or each receive queue in
      a multi-queue device) a mask of CPUs is set to indicate the CPUs that can
      process packets. A CPU is selected on a per packet basis by hashing contents
      of the packet header (e.g. the TCP or UDP 4-tuple) and using the result to index
      into the CPU mask.  The IPI mechanism is used to raise networking receive
      softirqs between CPUs.  This effectively emulates in software what a multi-queue
      NIC can provide, but is generic requiring no device support.
      
      Many devices now provide a hash over the 4-tuple on a per packet basis
      (e.g. the Toeplitz hash).  This patch allow drivers to set the HW reported hash
      in an skb field, and that value in turn is used to index into the RPS maps.
      Using the HW generated hash can avoid cache misses on the packet when
      steering it to a remote CPU.
      
      The CPU mask is set on a per device and per queue basis in the sysfs variable
      /sys/class/net/<device>/queues/rx-<n>/rps_cpus.  This is a set of canonical
      bit maps for receive queues in the device (numbered by <n>).  If a device
      does not support multi-queue, a single variable is used for the device (rx-0).
      
      Generally, we have found this technique increases pps capabilities of a single
      queue device with good CPU utilization.  Optimal settings for the CPU mask
      seem to depend on architectures and cache hierarcy.  Below are some results
      running 500 instances of netperf TCP_RR test with 1 byte req. and resp.
      Results show cumulative transaction rate and system CPU utilization.
      
      e1000e on 8 core Intel
         Without RPS: 108K tps at 33% CPU
         With RPS:    311K tps at 64% CPU
      
      forcedeth on 16 core AMD
         Without RPS: 156K tps at 15% CPU
         With RPS:    404K tps at 49% CPU
      
      bnx2x on 16 core AMD
         Without RPS  567K tps at 61% CPU (4 HW RX queues)
         Without RPS  738K tps at 96% CPU (8 HW RX queues)
         With RPS:    854K tps at 76% CPU (4 HW RX queues)
      
      Caveats:
      - The benefits of this patch are dependent on architecture and cache hierarchy.
      Tuning the masks to get best performance is probably necessary.
      - This patch adds overhead in the path for processing a single packet.  In
      a lightly loaded server this overhead may eliminate the advantages of
      increased parallelism, and possibly cause some relative performance degradation.
      We have found that masks that are cache aware (share same caches with
      the interrupting CPU) mitigate much of this.
      - The RPS masks can be changed dynamically, however whenever the mask is changed
      this introduces the possibility of generating out of order packets.  It's
      probably best not change the masks too frequently.
      Signed-off-by: NTom Herbert <therbert@google.com>
      
       include/linux/netdevice.h |   32 ++++-
       include/linux/skbuff.h    |    3 +
       net/core/dev.c            |  335 +++++++++++++++++++++++++++++++++++++--------
       net/core/net-sysfs.c      |  225 ++++++++++++++++++++++++++++++-
       net/core/skbuff.c         |    2 +
       5 files changed, 538 insertions(+), 59 deletions(-)
      Signed-off-by: NEric Dumazet <eric.dumazet@gmail.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      0a9627f2
  8. 20 2月, 2010 1 次提交
  9. 26 11月, 2009 1 次提交
  10. 31 10月, 2009 1 次提交
  11. 28 10月, 2009 1 次提交
  12. 08 10月, 2009 1 次提交
    • J
      wext: refactor · 3d23e349
      Johannes Berg 提交于
      Refactor wext to
       * split out iwpriv handling
       * split out iwspy handling
       * split out procfs support
       * allow cfg80211 to have wireless extensions compat code
         w/o CONFIG_WIRELESS_EXT
      
      After this, drivers need to
       - select WIRELESS_EXT	- for wext support
       - select WEXT_PRIV	- for iwpriv support
       - select WEXT_SPY	- for iwspy support
      
      except cfg80211 -- which gets new hooks in wext-core.c
      and can then get wext handlers without CONFIG_WIRELESS_EXT.
      
      Wireless extensions procfs support is auto-selected
      based on PROC_FS and anything that requires the wext core
      (i.e. WIRELESS_EXT or CFG80211_WEXT).
      Signed-off-by: NJohannes Berg <johannes@sipsolutions.net>
      Signed-off-by: NJohn W. Linville <linville@tuxdriver.com>
      3d23e349
  13. 05 10月, 2009 2 次提交
    • J
      wext: let get_wireless_stats() sleep · a160ee69
      Johannes Berg 提交于
      A number of drivers (recently including cfg80211-based ones)
      assume that all wireless handlers, including statistics, can
      sleep and they often also implicitly assume that the rtnl is
      held around their invocation. This is almost always true now
      except when reading from sysfs:
      
        BUG: sleeping function called from invalid context at kernel/mutex.c:280
        in_atomic(): 1, irqs_disabled(): 0, pid: 10450, name: head
        2 locks held by head/10450:
         #0:  (&buffer->mutex){+.+.+.}, at: [<c10ceb99>] sysfs_read_file+0x24/0xf4
         #1:  (dev_base_lock){++.?..}, at: [<c12844ee>] wireless_show+0x1a/0x4c
        Pid: 10450, comm: head Not tainted 2.6.32-rc3 #1
        Call Trace:
         [<c102301c>] __might_sleep+0xf0/0xf7
         [<c1324355>] mutex_lock_nested+0x1a/0x33
         [<f8cea53b>] wdev_lock+0xd/0xf [cfg80211]
         [<f8cea58f>] cfg80211_wireless_stats+0x45/0x12d [cfg80211]
         [<c13118d6>] get_wireless_stats+0x16/0x1c
         [<c12844fe>] wireless_show+0x2a/0x4c
      
      Fix this by using the rtnl instead of dev_base_lock.
      Reported-by: NMiles Lane <miles.lane@gmail.com>
      Signed-off-by: NJohannes Berg <johannes@sipsolutions.net>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      a160ee69
    • A
      net: export device speed and duplex via sysfs · d519e17e
      Andy Gospodarek 提交于
      This patch exports the link-speed (in Mbps) and duplex of an interface
      via sysfs.  This eliminates the need to use ethtool just to check the
      link-speed.  Not requiring 'ethtool' and not relying on the SIOCETHTOOL
      ioctl should be helpful in an embedded environment where space is at a
      premium as well.
      
      NOTE: This patch also intentionally allows non-root users to check the link
      speed and duplex -- something not possible with ethtool.
      
      Here's some sample output:
      
      # cat /sys/class/net/eth0/speed
      100
      # cat /sys/class/net/eth0/duplex
      half
      # ethtool eth0
      Settings for eth0:
              Supported ports: [ TP ]
              Supported link modes:   10baseT/Half 10baseT/Full
                                      100baseT/Half 100baseT/Full
                                      1000baseT/Half 1000baseT/Full
              Supports auto-negotiation: Yes
              Advertised link modes:  Not reported
              Advertised auto-negotiation: No
              Speed: 100Mb/s
              Duplex: Half
              Port: Twisted Pair
              PHYAD: 1
              Transceiver: internal
              Auto-negotiation: off
              Supports Wake-on: g
              Wake-on: g
              Current message level: 0x000000ff (255)
              Link detected: yes
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      d519e17e
  14. 29 9月, 2009 1 次提交
  15. 16 9月, 2009 1 次提交
  16. 06 8月, 2009 1 次提交
  17. 27 5月, 2009 1 次提交
  18. 19 5月, 2009 1 次提交
  19. 10 3月, 2009 1 次提交
  20. 03 3月, 2009 1 次提交
  21. 26 11月, 2008 1 次提交
  22. 20 11月, 2008 1 次提交
  23. 11 11月, 2008 1 次提交
  24. 28 10月, 2008 1 次提交
  25. 23 9月, 2008 1 次提交
    • S
      net: network device name ifalias support · 0b815a1a
      Stephen Hemminger 提交于
      This patch add support for keeping an additional character alias
      associated with an network interface. This is useful for maintaining
      the SNMP ifAlias value which is a user defined value. Routers use this
      to hold information like which circuit or line it is connected to. It
      is just an arbitrary text label on the network device.
      
      There are two exposed interfaces with this patch, the value can be
      read/written either via netlink or sysfs.
      
      This could be maintained just by the snmp daemon, but it is more
      generally useful for other management tools, and the kernel is good
      place to act as an agreed upon interface to store it.
      Signed-off-by: NStephen Hemminger <shemminger@vyatta.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      0b815a1a
  26. 15 7月, 2008 1 次提交
  27. 18 6月, 2008 1 次提交
    • J
      bonding: Allow setting max_bonds to zero · b8a9787e
      Jay Vosburgh 提交于
      	Permit bonding to function rationally if max_bonds is set to
      zero.  This will load the module, but create no master devices (which can
      be created via sysfs).
      
      	Requires some change to bond_create_sysfs; currently, the
      netdev sysfs directory is determined from the first bonding device created,
      but this is no longer possible.  Instead, an interface from net/core is
      created to create and destroy files in net_class.
      
      	Based on a patch submitted by Phil Oester <kernel@linuxaces.com>.
      Modified by Jay Vosburgh to fix the sysfs issue mentioned above and to
      update the documentation.
      Signed-off-by: NPhil Oester <kernel@linuxace.com>
      Signed-off-by: NJay Vosburgh <fubar@us.ibm.com>
      Signed-off-by: NJeff Garzik <jgarzik@redhat.com>
      b8a9787e
  28. 22 5月, 2008 1 次提交
  29. 03 5月, 2008 1 次提交
    • D
      netns: Fix device renaming for sysfs · aaf8cdc3
      Daniel Lezcano 提交于
      When a netdev is moved across namespaces with the
      'dev_change_net_namespace' function, the 'device_rename' function is
      used to fixup kobject and refresh the sysfs tree. The device_rename
      function will call kobject_rename and this one will check if there is
      an object with the same name and this is the case because we are
      renaming the object with the same name.
      
      The use of 'device_rename' seems for me wrong because we usually don't
      rename it but just move it across namespaces. As we just want to do a
      mini "netdev_[un]register", IMO the functions
      'netdev_[un]register_kobject' should be used instead, like an usual
      network device [un]registering.
      
      This patch replace device_rename by netdev_unregister_kobject,
      followed by netdev_register_kobject.
      
      The netdev_register_kobject will call device_initialize and will raise
      a warning indicating the device was already initialized. In order to
      fix that, I split the device initialization into a separate function
      and use it together with 'netdev_register_kobject' into
      register_netdevice. So we can safely call 'netdev_register_kobject' in
      'dev_change_net_namespace'.
      
      This fix will allow to properly use the sysfs per namespace which is
      coming from -mm tree.
      Signed-off-by: NDaniel Lezcano <dlezcano@fr.ibm.com>
      Acked-by: NBenjamin Thery <benjamin.thery@bull.net>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      aaf8cdc3
  30. 21 4月, 2008 1 次提交
  31. 29 1月, 2008 2 次提交
  32. 24 10月, 2007 1 次提交
  33. 13 10月, 2007 1 次提交
    • K
      Driver core: change add_uevent_var to use a struct · 7eff2e7a
      Kay Sievers 提交于
      This changes the uevent buffer functions to use a struct instead of a
      long list of parameters. It does no longer require the caller to do the
      proper buffer termination and size accounting, which is currently wrong
      in some places. It fixes a known bug where parts of the uevent
      environment are overwritten because of wrong index calculations.
      
      Many thanks to Mathieu Desnoyers for finding bugs and improving the
      error handling.
      Signed-off-by: NKay Sievers <kay.sievers@vrfy.org>
      Cc: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca>
      Cc: Cornelia Huck <cornelia.huck@de.ibm.com>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
      
      7eff2e7a
  34. 11 10月, 2007 2 次提交
    • E
      [NET]: Fix running without sysfs · 8b41d188
      Eric W. Biederman 提交于
      When sysfs support is compiled out the kernel still keeps and maintains
      the kobject tree.  So it is not safe to skip our kobject reference counting or
      to avoid becoming members of the kobject tree.  It is safe to not add
      the networking specific sysfs attributes.
      
      This patch removes the sysfs special cases from net/core/dev.c
      renames functions from netdev_sysfs_xxxx to netdev_kobject_xxxx
      and always compiles in net-sysfs.c
      
      net-sysfs.c is modified with a CONFIG_SYSFS guard around the parts
      that are actually sysfs specific.
      Signed-off-by: NEric W. Biederman <ebiederm@xmission.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      8b41d188
    • S
      [NET]: Make NAPI polling independent of struct net_device objects. · bea3348e
      Stephen Hemminger 提交于
      Several devices have multiple independant RX queues per net
      device, and some have a single interrupt doorbell for several
      queues.
      
      In either case, it's easier to support layouts like that if the
      structure representing the poll is independant from the net
      device itself.
      
      The signature of the ->poll() call back goes from:
      
      	int foo_poll(struct net_device *dev, int *budget)
      
      to
      
      	int foo_poll(struct napi_struct *napi, int budget)
      
      The caller is returned the number of RX packets processed (or
      the number of "NAPI credits" consumed if you want to get
      abstract).  The callee no longer messes around bumping
      dev->quota, *budget, etc. because that is all handled in the
      caller upon return.
      
      The napi_struct is to be embedded in the device driver private data
      structures.
      
      Furthermore, it is the driver's responsibility to disable all NAPI
      instances in it's ->stop() device close handler.  Since the
      napi_struct is privatized into the driver's private data structures,
      only the driver knows how to get at all of the napi_struct instances
      it may have per-device.
      
      With lots of help and suggestions from Rusty Russell, Roland Dreier,
      Michael Chan, Jeff Garzik, and Jamal Hadi Salim.
      
      Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra,
      Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan.
      
      [ Ported to current tree and all drivers converted.  Integrated
        Stephen's follow-on kerneldoc additions, and restored poll_list
        handling to the old style to fix mutual exclusion issues.  -DaveM ]
      Signed-off-by: NStephen Hemminger <shemminger@linux-foundation.org>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      bea3348e
  35. 20 5月, 2007 1 次提交