- 27 11月, 2013 1 次提交
-
-
由 Thomas Gleixner 提交于
Tony reported that aa0d5326 ("ia64: Use preempt_schedule_irq") broke PREEMPT=n builds on ia64. Ok, wrapped my brain around it. I tripped over the magic asm foo which has a single need_resched check and schedule point for both sys call return and interrupt return. So you need the schedule_preempt_irq() for kernel preemption from interrupt return while on a normal syscall preemption a schedule would be sufficient. But using schedule_preempt_irq() is not harmful here in any way. It just sets the preempt_active bit also in cases where it would not be required. Even on preempt=n kernels adding the preempt_active bit is completely harmless. So instead of having an extra function, moving the existing one out of the ifdef PREEMPT looks like the sanest thing to do. It would also allow getting rid of various other sti/schedule/cli asm magic in other archs. Reported-and-Tested-by: NTony Luck <tony.luck@gmail.com> Fixes: aa0d5326 ("ia64: Use preempt_schedule_irq") Signed-off-by: NThomas Gleixner <tglx@linutronix.de> [slightly edited Changelog] Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1311211230030.30673@ionos.tec.linutronix.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 20 11月, 2013 2 次提交
-
-
由 Shigeru Yoshida 提交于
Fix a trivial typo in rq_attach_root(). Signed-off-by: NShigeru Yoshida <shigeru.yoshida@gmail.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20131117.121236.1990617639803941055.shigeru.yoshida@gmail.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
Commit 37dc6b50 ("sched: Remove unnecessary iteration over sched domains to update nr_busy_cpus") forgot to clear 'sd_busy' under some conditions leading to a possible NULL deref in set_cpu_sd_state_idle(). Reported-by: NAnton Blanchard <anton@samba.org> Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20131118113701.GF3866@twins.programming.kicks-ass.netSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 13 11月, 2013 1 次提交
-
-
由 Peter Zijlstra 提交于
Large multi-threaded apps like to hit this using do_sys_times() and then queue up on the rq->lock. Avoid when possible. Larry reported ~20% performance increase his test case. Reported-by: NLarry Woodman <lwoodman@redhat.com> Suggested-by: NPaul Turner <pjt@google.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Link: http://lkml.kernel.org/r/20131111172925.GG26898@twins.programming.kicks-ass.netSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 06 11月, 2013 3 次提交
-
-
由 Preeti U Murthy 提交于
nr_busy_cpus parameter is used by nohz_kick_needed() to find out the number of busy cpus in a sched domain which has SD_SHARE_PKG_RESOURCES flag set. Therefore instead of updating nr_busy_cpus at every level of sched domain, since it is irrelevant, we can update this parameter only at the parent domain of the sd which has this flag set. Introduce a per-cpu parameter sd_busy which represents this parent domain. In nohz_kick_needed() we directly query the nr_busy_cpus parameter associated with the groups of sd_busy. By associating sd_busy with the highest domain which has SD_SHARE_PKG_RESOURCES flag set, we cover all lower level domains which could have this flag set and trigger nohz_idle_balancing if any of the levels have more than one busy cpu. sd_busy is irrelevant for asymmetric load balancing. However sd_asym has been introduced to represent the highest sched domain which has SD_ASYM_PACKING flag set so that it can be queried directly when required. While we are at it, we might as well change the nohz_idle parameter to be updated at the sd_busy domain level alone and not the base domain level of a CPU. This will unify the concept of busy cpus at just one level of sched domain where it is currently used. Signed-off-by: Preeti U Murthy<preeti@linux.vnet.ibm.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Cc: svaidy@linux.vnet.ibm.com Cc: vincent.guittot@linaro.org Cc: bitbucket@online.de Cc: benh@kernel.crashing.org Cc: anton@samba.org Cc: Morten.Rasmussen@arm.com Cc: pjt@google.com Cc: peterz@infradead.org Cc: mikey@neuling.org Link: http://lkml.kernel.org/r/20131030031252.23426.4417.stgit@preeti.in.ibm.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
Completions already have their own header file: linux/completion.h Move the implementation out of kernel/sched/core.c and into its own file: kernel/sched/completion.c. Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Link: http://lkml.kernel.org/n/tip-x2y49rmxu5dljt66ai2lcfuw@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
For some reason only the wait part of the wait api lives in kernel/sched/wait.c and the wake part still lives in kernel/sched/core.c; ammend this. Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Link: http://lkml.kernel.org/n/tip-ftycee88naznulqk7ei5mbci@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 29 10月, 2013 1 次提交
-
-
由 Ben Segall 提交于
When we transition cfs_bandwidth_used to false, any currently throttled groups will incorrectly return false from cfs_rq_throttled. While tg_set_cfs_bandwidth will unthrottle them eventually, currently running code (including at least dequeue_task_fair and distribute_cfs_runtime) will cause errors. Fix this by turning off cfs_bandwidth_used only after unthrottling all cfs_rqs. Tested: toggle bandwidth back and forth on a loaded cgroup. Caused crashes in minutes without the patch, hasn't crashed with it. Signed-off-by: NBen Segall <bsegall@google.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Cc: pjt@google.com Link: http://lkml.kernel.org/r/20131016181611.22647.80365.stgit@sword-of-the-dawn.mtv.corp.google.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 28 10月, 2013 1 次提交
-
-
由 Michael wang 提交于
Commit 6acce3ef: sched: Remove get_online_cpus() usage has left one extra put_online_cpus() inside sched_setaffinity(), remove it to fix the WARN: ------------[ cut here ]------------ WARNING: CPU: 0 PID: 3166 at kernel/cpu.c:84 put_online_cpus+0x43/0x70() ... [<ffffffff810c3fef>] put_online_cpus+0x43/0x70 [ [<ffffffff810efd59>] sched_setaffinity+0x7d/0x1f9 [ ... Reported-by: NFengguang Wu <fengguang.wu@intel.com> Tested-by: NFengguang Wu <fengguang.wu@intel.com> Signed-off-by: NMichael Wang <wangyun@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/526DD0EE.1090309@linux.vnet.ibm.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 16 10月, 2013 2 次提交
-
-
由 Peter Zijlstra 提交于
Remove get_online_cpus() usage from the scheduler; there's 4 sites that use it: - sched_init_smp(); where its completely superfluous since we're in 'early' boot and there simply cannot be any hotplugging. - sched_getaffinity(); we already take a raw spinlock to protect the task cpus_allowed mask, this disables preemption and therefore also stabilizes cpu_online_mask as that's modified using stop_machine. However switch to active mask for symmetry with sched_setaffinity()/set_cpus_allowed_ptr(). We guarantee active mask stability by inserting sync_rcu/sched() into _cpu_down. - sched_setaffinity(); we don't appear to need get_online_cpus() either, there's two sites where hotplug appears relevant: * cpuset_cpus_allowed(); for the !cpuset case we use possible_mask, for the cpuset case we hold task_lock, which is a spinlock and thus for mainline disables preemption (might cause pain on RT). * set_cpus_allowed_ptr(); Holds all scheduler locks and thus has preemption properly disabled; also it already deals with hotplug races explicitly where it releases them. - migrate_swap(); we can make stop_two_cpus() do the heavy lifting for us with a little trickery. By adding a sync_sched/rcu() after the CPU_DOWN_PREPARE notifier we can provide preempt/rcu guarantees for cpu_active_mask. Use these to validate that both our cpus are active when queueing the stop work before we queue the stop_machine works for take_cpu_down(). Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Cc: "Srivatsa S. Bhat" <srivatsa.bhat@linux.vnet.ibm.com> Cc: Paul McKenney <paulmck@linux.vnet.ibm.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Oleg Nesterov <oleg@redhat.com> Link: http://lkml.kernel.org/r/20131011123820.GV3081@twins.programming.kicks-ass.netSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
There is a subtle race in migrate_swap, when task P, on CPU A, decides to swap places with task T, on CPU B. Task P: - call migrate_swap Task T: - go to sleep, removing itself from the runqueue Task P: - double lock the runqueues on CPU A & B Task T: - get woken up, place itself on the runqueue of CPU C Task P: - see that task T is on a runqueue, and pretend to remove it from the runqueue on CPU B Now CPUs B & C both have corrupted scheduler data structures. This patch fixes it, by holding the pi_lock for both of the tasks involved in the migrate swap. This prevents task T from waking up, and placing itself onto another runqueue, until after migrate_swap has released all locks. This means that, when migrate_swap checks, task T will be either on the runqueue where it was originally seen, or not on any runqueue at all. Migrate_swap deals correctly with of those cases. Tested-by: NJoe Mario <jmario@redhat.com> Acked-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NRik van Riel <riel@redhat.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Cc: hannes@cmpxchg.org Cc: aarcange@redhat.com Cc: srikar@linux.vnet.ibm.com Cc: tglx@linutronix.de Cc: hpa@zytor.com Link: http://lkml.kernel.org/r/20131010181722.GO13848@laptop.programming.kicks-ass.netSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 09 10月, 2013 14 次提交
-
-
由 Rik van Riel 提交于
With the scan rate code working (at least for multi-instance specjbb), the large hammer that is "sched: Do not migrate memory immediately after switching node" can be replaced with something smarter. Revert temporarily migration disabling and all traces of numa_migrate_seq. Signed-off-by: NRik van Riel <riel@redhat.com> Signed-off-by: NMel Gorman <mgorman@suse.de> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-61-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mel Gorman 提交于
With scan rate adaptions based on whether the workload has properly converged or not there should be no need for the scan period reset hammer. Get rid of it. Signed-off-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-60-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
This patch classifies scheduler domains and runqueues into types depending the number of tasks that are about their NUMA placement and the number that are currently running on their preferred node. The types are regular: There are tasks running that do not care about their NUMA placement. remote: There are tasks running that care about their placement but are currently running on a node remote to their ideal placement all: No distinction To implement this the patch tracks the number of tasks that are optimally NUMA placed (rq->nr_preferred_running) and the number of tasks running that care about their placement (nr_numa_running). The load balancer uses this information to avoid migrating idea placed NUMA tasks as long as better options for load balancing exists. For example, it will not consider balancing between a group whose tasks are all perfectly placed and a group with remote tasks. Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Signed-off-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Link: http://lkml.kernel.org/r/1381141781-10992-56-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Rik van Riel 提交于
A newly spawned thread inside a process should stay on the same NUMA node as its parent. This prevents processes from being "torn" across multiple NUMA nodes every time they spawn a new thread. Signed-off-by: NRik van Riel <riel@redhat.com> Signed-off-by: NMel Gorman <mgorman@suse.de> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-49-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
While parallel applications tend to align their data on the cache boundary, they tend not to align on the page or THP boundary. Consequently tasks that partition their data can still "false-share" pages presenting a problem for optimal NUMA placement. This patch uses NUMA hinting faults to chain tasks together into numa_groups. As well as storing the NID a task was running on when accessing a page a truncated representation of the faulting PID is stored. If subsequent faults are from different PIDs it is reasonable to assume that those two tasks share a page and are candidates for being grouped together. Note that this patch makes no scheduling decisions based on the grouping information. Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Signed-off-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Link: http://lkml.kernel.org/r/1381141781-10992-44-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mel Gorman 提交于
This patch implements a system-wide search for swap/migration candidates based on total NUMA hinting faults. It has a balance limit, however it doesn't properly consider total node balance. In the old scheme a task selected a preferred node based on the highest number of private faults recorded on the node. In this scheme, the preferred node is based on the total number of faults. If the preferred node for a task changes then task_numa_migrate will search the whole system looking for tasks to swap with that would improve both the overall compute balance and minimise the expected number of remote NUMA hinting faults. Not there is no guarantee that the node the source task is placed on by task_numa_migrate() has any relationship to the newly selected task->numa_preferred_nid due to compute overloading. Signed-off-by: NMel Gorman <mgorman@suse.de> [ Do not swap with tasks that cannot run on source cpu] Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> [ Fixed compiler warning on UP. ] Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-40-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
Use the new stop_two_cpus() to implement migrate_swap(), a function that flips two tasks between their respective cpus. I'm fairly sure there's a less crude way than employing the stop_two_cpus() method, but everything I tried either got horribly fragile and/or complex. So keep it simple for now. The notable detail is how we 'migrate' tasks that aren't runnable anymore. We'll make it appear like we migrated them before they went to sleep. The sole difference is the previous cpu in the wakeup path, so we override this. Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: NMel Gorman <mgorman@suse.de> Link: http://lkml.kernel.org/r/1381141781-10992-39-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Rik van Riel 提交于
The load balancer can move tasks between nodes and does not take NUMA locality into account. With automatic NUMA balancing this may result in the tasks working set being migrated to the new node. However, as the fault buffer will still store faults from the old node the schduler may decide to reset the preferred node and migrate the task back resulting in more migrations. The ideal would be that the scheduler did not migrate tasks with a heavy memory footprint but this may result nodes being overloaded. We could also discard the fault information on task migration but this would still cause all the tasks working set to be migrated. This patch simply avoids migrating the memory for a short time after a task is migrated. Signed-off-by: NRik van Riel <riel@redhat.com> Signed-off-by: NMel Gorman <mgorman@suse.de> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-31-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mel Gorman 提交于
A preferred node is selected based on the node the most NUMA hinting faults was incurred on. There is no guarantee that the task is running on that node at the time so this patch rescheules the task to run on the most idle CPU of the selected node when selected. This avoids waiting for the balancer to make a decision. Signed-off-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-25-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mel Gorman 提交于
This patch favours moving tasks towards NUMA node that recorded a higher number of NUMA faults during active load balancing. Ideally this is self-reinforcing as the longer the task runs on that node, the more faults it should incur causing task_numa_placement to keep the task running on that node. In reality a big weakness is that the nodes CPUs can be overloaded and it would be more efficient to queue tasks on an idle node and migrate to the new node. This would require additional smarts in the balancer so for now the balancer will simply prefer to place the task on the preferred node for a PTE scans which is controlled by the numa_balancing_settle_count sysctl. Once the settle_count number of scans has complete the schedule is free to place the task on an alternative node if the load is imbalanced. [srikar@linux.vnet.ibm.com: Fixed statistics] Signed-off-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> [ Tunable and use higher faults instead of preferred. ] Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-23-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mel Gorman 提交于
NUMA hinting fault counts and placement decisions are both recorded in the same array which distorts the samples in an unpredictable fashion. The values linearly accumulate during the scan and then decay creating a sawtooth-like pattern in the per-node counts. It also means that placement decisions are time sensitive. At best it means that it is very difficult to state that the buffer holds a decaying average of past faulting behaviour. At worst, it can confuse the load balancer if it sees one node with an artifically high count due to very recent faulting activity and may create a bouncing effect. This patch adds a second array. numa_faults stores the historical data which is used for placement decisions. numa_faults_buffer holds the fault activity during the current scan window. When the scan completes, numa_faults decays and the values from numa_faults_buffer are copied across. Signed-off-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-22-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mel Gorman 提交于
This patch selects a preferred node for a task to run on based on the NUMA hinting faults. This information is later used to migrate tasks towards the node during balancing. Signed-off-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-21-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mel Gorman 提交于
This patch tracks what nodes numa hinting faults were incurred on. This information is later used to schedule a task on the node storing the pages most frequently faulted by the task. Signed-off-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-20-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mel Gorman 提交于
Scan delay logic and resets are currently initialised to start scanning immediately instead of delaying properly. Initialise them properly at fork time and catch when a new mm has been allocated. Signed-off-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-17-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 25 9月, 2013 7 次提交
-
-
由 Peter Zijlstra 提交于
When using per-cpu preempt_count variables we need to save/restore the preempt_count on context switch (into per task storage; for instance the old thread_info::preempt_count variable) because of PREEMPT_ACTIVE. However, this means that on fork() the preempt_count value of the last context switch gets copied and if we had a PREEMPT_ACTIVE switch right before cloning a child task the child task will now too have PREEMPT_ACTIVE set and start its life with an extra PREEMPT_ACTIVE count. Therefore we need to make init_task_preempt_count() unconditional; this resets whatever preempt_count we inherited from our parent process. Doing so for !per-cpu implementations is harmless. For !PREEMPT_COUNT kernels we need to be careful not to start life with an increased preempt_count. Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/n/tip-4k0b7oy1rcdyzochwiixuwi9@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
Rewrite the preempt_count macros in order to extract the 3 basic preempt_count value modifiers: __preempt_count_add() __preempt_count_sub() and the new: __preempt_count_dec_and_test() And since we're at it anyway, replace the unconventional $op_preempt_count names with the more conventional preempt_count_$op. Since these basic operators are equivalent to the previous _notrace() variants, do away with the _notrace() versions. Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/n/tip-ewbpdbupy9xpsjhg960zwbv8@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
We need a few special preempt_count accessors: - task_preempt_count() for when we're interested in the preemption count of another (non-running) task. - init_task_preempt_count() for properly initializing the preemption count. - init_idle_preempt_count() a special case of the above for the idle threads. With these no generic code ever touches thread_info::preempt_count anymore and architectures could choose to remove it. Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/n/tip-jf5swrio8l78j37d06fzmo4r@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
In order to combine the preemption and need_resched test we need to fold the need_resched information into the preempt_count value. Since the NEED_RESCHED flag is set across CPUs this needs to be an atomic operation, however we very much want to avoid making preempt_count atomic, therefore we keep the existing TIF_NEED_RESCHED infrastructure in place but at 3 sites test it and fold its value into preempt_count; namely: - resched_task() when setting TIF_NEED_RESCHED on the current task - scheduler_ipi() when resched_task() sets TIF_NEED_RESCHED on a remote task it follows it up with a reschedule IPI and we can modify the cpu local preempt_count from there. - cpu_idle_loop() for when resched_task() found tsk_is_polling(). We use an inverted bitmask to indicate need_resched so that a 0 means both need_resched and !atomic. Also remove the barrier() in preempt_enable() between preempt_enable_no_resched() and preempt_check_resched() to avoid having to reload the preemption value and allow the compiler to use the flags of the previuos decrement. I couldn't come up with any sane reason for this barrier() to be there as preempt_enable_no_resched() already has a barrier() before doing the decrement. Suggested-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/n/tip-7a7m5qqbn5pmwnd4wko9u6da@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
Replace the single preempt_count() 'function' that's an lvalue with two proper functions: preempt_count() - returns the preempt_count value as rvalue preempt_count_set() - Allows setting the preempt-count value Also provide preempt_count_ptr() as a convenience wrapper to implement all modifying operations. Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/n/tip-orxrbycjozopqfhb4dxdkdvb@git.kernel.org [ Fixed build failure. ] Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
We're going to deprecate and remove set_need_resched() for it will do the wrong thing. Make an exception for RCU and allow it to use resched_cpu() which will do the right thing. Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Cc: Paul McKenney <paulmck@linux.vnet.ibm.com> Link: http://lkml.kernel.org/n/tip-2eywnacjl1nllctl1nszqa5w@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Michael S. Tsirkin 提交于
We always know the rq used, let's just pass it around. This seems to cut the size of scheduler core down a tiny bit: Before: [linux]$ size kernel/sched/core.o.orig text data bss dec hex filename 62760 16130 3876 82766 1434e kernel/sched/core.o.orig After: [linux]$ size kernel/sched/core.o.patched text data bss dec hex filename 62566 16130 3876 82572 1428c kernel/sched/core.o.patched Probably speeds it up as well. Signed-off-by: NMichael S. Tsirkin <mst@redhat.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20130922142054.GA11499@redhat.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 20 9月, 2013 2 次提交
-
-
由 Jason Low 提交于
In this patch, we keep track of the max cost we spend doing idle load balancing for each sched domain. If the avg time the CPU remains idle is less then the time we have already spent on idle balancing + the max cost of idle balancing in the sched domain, then we don't continue to attempt the balance. We also keep a per rq variable, max_idle_balance_cost, which keeps track of the max time spent on newidle load balances throughout all its domains so that we can determine the avg_idle's max value. By using the max, we avoid overrunning the average. This further reduces the chance we attempt balancing when the CPU is not idle for longer than the cost to balance. Signed-off-by: NJason Low <jason.low2@hp.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1379096813-3032-3-git-send-email-jason.low2@hp.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Jason Low 提交于
When updating avg_idle, if the delta exceeds some max value, then avg_idle gets set to the max, regardless of what the previous avg was. This can cause avg_idle to often be overestimated. This patch modifies the way we update avg_idle by always updating it with the function call to update_avg() first. Then, if avg_idle exceeds the max, we set it to the max. Signed-off-by: NJason Low <jason.low2@hp.com> Reviewed-by: NRik van Riel <riel@redhat.com> Reviewed-by: NSrikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1379096813-3032-2-git-send-email-jason.low2@hp.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 02 9月, 2013 1 次提交
-
-
由 Peter Zijlstra 提交于
I found that on my WSM box I had a redundant domain: [ 0.949769] CPU0 attaching sched-domain: [ 0.953765] domain 0: span 0,12 level SIBLING [ 0.958335] groups: 0 (cpu_power = 587) 12 (cpu_power = 588) [ 0.964548] domain 1: span 0-5,12-17 level MC [ 0.969206] groups: 0,12 (cpu_power = 1175) 1,13 (cpu_power = 1176) 2,14 (cpu_power = 1176) 3,15 (cpu_power = 1176) 4,16 (cpu_power = 1176) 5,17 (cpu_power = 1176) [ 0.984993] domain 2: span 0-5,12-17 level CPU [ 0.989822] groups: 0-5,12-17 (cpu_power = 7055) [ 0.995049] domain 3: span 0-23 level NUMA [ 0.999620] groups: 0-5,12-17 (cpu_power = 7055) 6-11,18-23 (cpu_power = 7056) Note how domain 2 has only a single group and spans the same CPUs as domain 1. We should not keep such domains and do in fact have code to prune these. It turns out that the 'new' SD_PREFER_SIBLING flag causes this, it makes sd_parent_degenerate() fail on the CPU domain. We can easily fix this by 'ignoring' the SD_PREFER_SIBLING bit and transfering it to whatever domain ends up covering the span. With this patch the domains now look like this: [ 0.950419] CPU0 attaching sched-domain: [ 0.954454] domain 0: span 0,12 level SIBLING [ 0.959039] groups: 0 (cpu_power = 587) 12 (cpu_power = 588) [ 0.965271] domain 1: span 0-5,12-17 level MC [ 0.969936] groups: 0,12 (cpu_power = 1175) 1,13 (cpu_power = 1176) 2,14 (cpu_power = 1176) 3,15 (cpu_power = 1176) 4,16 (cpu_power = 1176) 5,17 (cpu_power = 1176) [ 0.985737] domain 2: span 0-23 level NUMA [ 0.990231] groups: 0-5,12-17 (cpu_power = 7055) 6-11,18-23 (cpu_power = 7056) Reviewed-by: NPaul Turner <pjt@google.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/n/tip-ys201g4jwukj0h8xcamakxq1@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 16 8月, 2013 1 次提交
-
-
由 Xiaotian Feng 提交于
If doms_new is NULL, partition_sched_domains() will reset ndoms_cur to 0, and free old sched domains with free_sched_domains(doms_cur, ndoms_cur). As ndoms_cur is 0, the cpumask will not be freed. Signed-off-by: NXiaotian Feng <xtfeng@gmail.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: linux-kernel@vger.kernel.org Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1375790802-11857-1-git-send-email-xtfeng@gmail.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 13 8月, 2013 2 次提交
-
-
由 Oleg Nesterov 提交于
This is only theoretical, but after try_to_wake_up(p) was changed to check p->state under p->pi_lock the code like __set_current_state(TASK_INTERRUPTIBLE); schedule(); can miss a signal. This is the special case of wait-for-condition, it relies on try_to_wake_up/schedule interaction and thus it does not need mb() between __set_current_state() and if(signal_pending). However, this __set_current_state() can move into the critical section protected by rq->lock, now that try_to_wake_up() takes another lock we need to ensure that it can't be reordered with "if (signal_pending(current))" check inside that section. The patch is actually one-liner, it simply adds smp_wmb() before spin_lock_irq(rq->lock). This is what try_to_wake_up() already does by the same reason. We turn this wmb() into the new helper, smp_mb__before_spinlock(), for better documentation and to allow the architectures to change the default implementation. While at it, kill smp_mb__after_lock(), it has no callers. Perhaps we can also add smp_mb__before/after_spinunlock() for prepare_to_wait(). Signed-off-by: NOleg Nesterov <oleg@redhat.com> Acked-by: NPeter Zijlstra <peterz@infradead.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Frederic Weisbecker 提交于
preempt_schedule() and preempt_schedule_context() open code their preemptability checks. Use the standard API instead for consolidation. Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Alex Shi <alex.shi@intel.com> Cc: Paul Turner <pjt@google.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Vincent Guittot <vincent.guittot@linaro.org>
-
- 09 8月, 2013 2 次提交
-
-
由 Tejun Heo 提交于
cgroup is in the process of converting to css (cgroup_subsys_state) from cgroup as the principal subsystem interface handle. This is mostly to prepare for the unified hierarchy support where css's will be created and destroyed dynamically but also helps cleaning up subsystem implementations as css is usually what they are interested in anyway. cgroup_taskset which is used by the subsystem attach methods is the last cgroup subsystem API which isn't using css as the handle. Update cgroup_taskset_cur_cgroup() to cgroup_taskset_cur_css() and cgroup_taskset_for_each() to take @skip_css instead of @skip_cgrp. The conversions are pretty mechanical. One exception is cpuset::cgroup_cs(), which lost its last user and got removed. This patch shouldn't introduce any functional changes. Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NLi Zefan <lizefan@huawei.com> Acked-by: NDaniel Wagner <daniel.wagner@bmw-carit.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Matt Helsley <matthltc@us.ibm.com> Cc: Steven Rostedt <rostedt@goodmis.org>
-
由 Tejun Heo 提交于
cgroup is currently in the process of transitioning to using struct cgroup_subsys_state * as the primary handle instead of struct cgroup. Please see the previous commit which converts the subsystem methods for rationale. This patch converts all cftype file operations to take @css instead of @cgroup. cftypes for the cgroup core files don't have their subsytem pointer set. These will automatically use the dummy_css added by the previous patch and can be converted the same way. Most subsystem conversions are straight forwards but there are some interesting ones. * freezer: update_if_frozen() is also converted to take @css instead of @cgroup for consistency. This will make the code look simpler too once iterators are converted to use css. * memory/vmpressure: mem_cgroup_from_css() needs to be exported to vmpressure while mem_cgroup_from_cont() can be made static. Updated accordingly. * cpu: cgroup_tg() doesn't have any user left. Removed. * cpuacct: cgroup_ca() doesn't have any user left. Removed. * hugetlb: hugetlb_cgroup_form_cgroup() doesn't have any user left. Removed. * net_cls: cgrp_cls_state() doesn't have any user left. Removed. Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NLi Zefan <lizefan@huawei.com> Acked-by: NMichal Hocko <mhocko@suse.cz> Acked-by: NVivek Goyal <vgoyal@redhat.com> Acked-by: NAristeu Rozanski <aris@redhat.com> Acked-by: NDaniel Wagner <daniel.wagner@bmw-carit.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Matt Helsley <matthltc@us.ibm.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Steven Rostedt <rostedt@goodmis.org>
-