1. 24 11月, 2017 1 次提交
    • D
      rxrpc: Provide a different lockdep key for call->user_mutex for kernel calls · 9faaff59
      David Howells 提交于
      Provide a different lockdep key for rxrpc_call::user_mutex when the call is
      made on a kernel socket, such as by the AFS filesystem.
      
      The problem is that lockdep registers a false positive between userspace
      calling the sendmsg syscall on a user socket where call->user_mutex is held
      whilst userspace memory is accessed whereas the AFS filesystem may perform
      operations with mmap_sem held by the caller.
      
      In such a case, the following warning is produced.
      
      ======================================================
      WARNING: possible circular locking dependency detected
      4.14.0-fscache+ #243 Tainted: G            E
      ------------------------------------------------------
      modpost/16701 is trying to acquire lock:
       (&vnode->io_lock){+.+.}, at: [<ffffffffa000fc40>] afs_begin_vnode_operation+0x33/0x77 [kafs]
      
      but task is already holding lock:
       (&mm->mmap_sem){++++}, at: [<ffffffff8104376a>] __do_page_fault+0x1ef/0x486
      
      which lock already depends on the new lock.
      
      the existing dependency chain (in reverse order) is:
      
      -> #3 (&mm->mmap_sem){++++}:
             __might_fault+0x61/0x89
             _copy_from_iter_full+0x40/0x1fa
             rxrpc_send_data+0x8dc/0xff3
             rxrpc_do_sendmsg+0x62f/0x6a1
             rxrpc_sendmsg+0x166/0x1b7
             sock_sendmsg+0x2d/0x39
             ___sys_sendmsg+0x1ad/0x22b
             __sys_sendmsg+0x41/0x62
             do_syscall_64+0x89/0x1be
             return_from_SYSCALL_64+0x0/0x75
      
      -> #2 (&call->user_mutex){+.+.}:
             __mutex_lock+0x86/0x7d2
             rxrpc_new_client_call+0x378/0x80e
             rxrpc_kernel_begin_call+0xf3/0x154
             afs_make_call+0x195/0x454 [kafs]
             afs_vl_get_capabilities+0x193/0x198 [kafs]
             afs_vl_lookup_vldb+0x5f/0x151 [kafs]
             afs_create_volume+0x2e/0x2f4 [kafs]
             afs_mount+0x56a/0x8d7 [kafs]
             mount_fs+0x6a/0x109
             vfs_kern_mount+0x67/0x135
             do_mount+0x90b/0xb57
             SyS_mount+0x72/0x98
             do_syscall_64+0x89/0x1be
             return_from_SYSCALL_64+0x0/0x75
      
      -> #1 (k-sk_lock-AF_RXRPC){+.+.}:
             lock_sock_nested+0x74/0x8a
             rxrpc_kernel_begin_call+0x8a/0x154
             afs_make_call+0x195/0x454 [kafs]
             afs_fs_get_capabilities+0x17a/0x17f [kafs]
             afs_probe_fileserver+0xf7/0x2f0 [kafs]
             afs_select_fileserver+0x83f/0x903 [kafs]
             afs_fetch_status+0x89/0x11d [kafs]
             afs_iget+0x16f/0x4f8 [kafs]
             afs_mount+0x6c6/0x8d7 [kafs]
             mount_fs+0x6a/0x109
             vfs_kern_mount+0x67/0x135
             do_mount+0x90b/0xb57
             SyS_mount+0x72/0x98
             do_syscall_64+0x89/0x1be
             return_from_SYSCALL_64+0x0/0x75
      
      -> #0 (&vnode->io_lock){+.+.}:
             lock_acquire+0x174/0x19f
             __mutex_lock+0x86/0x7d2
             afs_begin_vnode_operation+0x33/0x77 [kafs]
             afs_fetch_data+0x80/0x12a [kafs]
             afs_readpages+0x314/0x405 [kafs]
             __do_page_cache_readahead+0x203/0x2ba
             filemap_fault+0x179/0x54d
             __do_fault+0x17/0x60
             __handle_mm_fault+0x6d7/0x95c
             handle_mm_fault+0x24e/0x2a3
             __do_page_fault+0x301/0x486
             do_page_fault+0x236/0x259
             page_fault+0x22/0x30
             __clear_user+0x3d/0x60
             padzero+0x1c/0x2b
             load_elf_binary+0x785/0xdc7
             search_binary_handler+0x81/0x1ff
             do_execveat_common.isra.14+0x600/0x888
             do_execve+0x1f/0x21
             SyS_execve+0x28/0x2f
             do_syscall_64+0x89/0x1be
             return_from_SYSCALL_64+0x0/0x75
      
      other info that might help us debug this:
      
      Chain exists of:
        &vnode->io_lock --> &call->user_mutex --> &mm->mmap_sem
      
       Possible unsafe locking scenario:
      
             CPU0                    CPU1
             ----                    ----
        lock(&mm->mmap_sem);
                                     lock(&call->user_mutex);
                                     lock(&mm->mmap_sem);
        lock(&vnode->io_lock);
      
       *** DEADLOCK ***
      
      1 lock held by modpost/16701:
       #0:  (&mm->mmap_sem){++++}, at: [<ffffffff8104376a>] __do_page_fault+0x1ef/0x486
      
      stack backtrace:
      CPU: 0 PID: 16701 Comm: modpost Tainted: G            E   4.14.0-fscache+ #243
      Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014
      Call Trace:
       dump_stack+0x67/0x8e
       print_circular_bug+0x341/0x34f
       check_prev_add+0x11f/0x5d4
       ? add_lock_to_list.isra.12+0x8b/0x8b
       ? add_lock_to_list.isra.12+0x8b/0x8b
       ? __lock_acquire+0xf77/0x10b4
       __lock_acquire+0xf77/0x10b4
       lock_acquire+0x174/0x19f
       ? afs_begin_vnode_operation+0x33/0x77 [kafs]
       __mutex_lock+0x86/0x7d2
       ? afs_begin_vnode_operation+0x33/0x77 [kafs]
       ? afs_begin_vnode_operation+0x33/0x77 [kafs]
       ? afs_begin_vnode_operation+0x33/0x77 [kafs]
       afs_begin_vnode_operation+0x33/0x77 [kafs]
       afs_fetch_data+0x80/0x12a [kafs]
       afs_readpages+0x314/0x405 [kafs]
       __do_page_cache_readahead+0x203/0x2ba
       ? filemap_fault+0x179/0x54d
       filemap_fault+0x179/0x54d
       __do_fault+0x17/0x60
       __handle_mm_fault+0x6d7/0x95c
       handle_mm_fault+0x24e/0x2a3
       __do_page_fault+0x301/0x486
       do_page_fault+0x236/0x259
       page_fault+0x22/0x30
      RIP: 0010:__clear_user+0x3d/0x60
      RSP: 0018:ffff880071e93da0 EFLAGS: 00010202
      RAX: 0000000000000000 RBX: 000000000000011c RCX: 000000000000011c
      RDX: 0000000000000000 RSI: 0000000000000008 RDI: 000000000060f720
      RBP: 000000000060f720 R08: 0000000000000001 R09: 0000000000000000
      R10: 0000000000000001 R11: ffff8800b5459b68 R12: ffff8800ce150e00
      R13: 000000000060f720 R14: 00000000006127a8 R15: 0000000000000000
       padzero+0x1c/0x2b
       load_elf_binary+0x785/0xdc7
       search_binary_handler+0x81/0x1ff
       do_execveat_common.isra.14+0x600/0x888
       do_execve+0x1f/0x21
       SyS_execve+0x28/0x2f
       do_syscall_64+0x89/0x1be
       entry_SYSCALL64_slow_path+0x25/0x25
      RIP: 0033:0x7fdb6009ee07
      RSP: 002b:00007fff566d9728 EFLAGS: 00000246 ORIG_RAX: 000000000000003b
      RAX: ffffffffffffffda RBX: 000055ba57280900 RCX: 00007fdb6009ee07
      RDX: 000055ba5727f270 RSI: 000055ba5727cac0 RDI: 000055ba57280900
      RBP: 000055ba57280900 R08: 00007fff566d9700 R09: 0000000000000000
      R10: 000055ba5727cac0 R11: 0000000000000246 R12: 0000000000000000
      R13: 000055ba5727cac0 R14: 000055ba5727f270 R15: 0000000000000000
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      9faaff59
  2. 29 8月, 2017 1 次提交
    • D
      rxrpc: Fix IPv6 support · 7b674e39
      David Howells 提交于
      Fix IPv6 support in AF_RXRPC in the following ways:
      
       (1) When extracting the address from a received IPv4 packet, if the local
           transport socket is open for IPv6 then fill out the sockaddr_rxrpc
           struct for an IPv4-mapped-to-IPv6 AF_INET6 transport address instead
           of an AF_INET one.
      
       (2) When sending CHALLENGE or RESPONSE packets, the transport length needs
           to be set from the sockaddr_rxrpc::transport_len field rather than
           sizeof() on the IPv4 transport address.
      
       (3) When processing an IPv4 ICMP packet received by an IPv6 socket, set up
           the address correctly before searching for the affected peer.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      7b674e39
  3. 19 8月, 2017 1 次提交
    • D
      rxrpc: Fix oops when discarding a preallocated service call · 9a19bad7
      David Howells 提交于
      rxrpc_service_prealloc_one() doesn't set the socket pointer on any new call
      it preallocates, but does add it to the rxrpc net namespace call list.
      This, however, causes rxrpc_put_call() to oops when the call is discarded
      when the socket is closed.  rxrpc_put_call() needs the socket to be able to
      reach the namespace so that it can use a lock held therein.
      
      Fix this by setting a call's socket pointer immediately before discarding
      it.
      
      This can be triggered by unloading the kafs module, resulting in an oops
      like the following:
      
      BUG: unable to handle kernel NULL pointer dereference at 0000000000000030
      IP: rxrpc_put_call+0x1e2/0x32d
      PGD 0
      P4D 0
      Oops: 0000 [#1] SMP
      Modules linked in: kafs(E-)
      CPU: 3 PID: 3037 Comm: rmmod Tainted: G            E   4.12.0-fscache+ #213
      Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014
      task: ffff8803fc92e2c0 task.stack: ffff8803fef74000
      RIP: 0010:rxrpc_put_call+0x1e2/0x32d
      RSP: 0018:ffff8803fef77e08 EFLAGS: 00010282
      RAX: 0000000000000000 RBX: ffff8803fab99ac0 RCX: 000000000000000f
      RDX: ffffffff81c50a40 RSI: 000000000000000c RDI: ffff8803fc92ea88
      RBP: ffff8803fef77e30 R08: ffff8803fc87b941 R09: ffffffff82946d20
      R10: ffff8803fef77d10 R11: 00000000000076fc R12: 0000000000000005
      R13: ffff8803fab99c20 R14: 0000000000000001 R15: ffffffff816c6aee
      FS:  00007f915a059700(0000) GS:ffff88041fb80000(0000) knlGS:0000000000000000
      CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
      CR2: 0000000000000030 CR3: 00000003fef39000 CR4: 00000000001406e0
      Call Trace:
       rxrpc_discard_prealloc+0x325/0x341
       rxrpc_listen+0xf9/0x146
       kernel_listen+0xb/0xd
       afs_close_socket+0x3e/0x173 [kafs]
       afs_exit+0x1f/0x57 [kafs]
       SyS_delete_module+0x10f/0x19a
       do_syscall_64+0x8a/0x149
       entry_SYSCALL64_slow_path+0x25/0x25
      
      Fixes: 2baec2c3 ("rxrpc: Support network namespacing")
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      9a19bad7
  4. 15 6月, 2017 1 次提交
    • D
      rxrpc: Cache the congestion window setting · f7aec129
      David Howells 提交于
      Cache the congestion window setting that was determined during a call's
      transmission phase when it finishes so that it can be used by the next call
      to the same peer, thereby shortcutting the slow-start algorithm.
      
      The value is stored in the rxrpc_peer struct and is accessed without
      locking.  Each call takes the value that happens to be there when it starts
      and just overwrites the value when it finishes.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      f7aec129
  5. 05 6月, 2017 2 次提交
    • D
      rxrpc: Implement service upgrade · 4722974d
      David Howells 提交于
      Implement AuriStor's service upgrade facility.  There are three problems
      that this is meant to deal with:
      
       (1) Various of the standard AFS RPC calls have IPv4 addresses in their
           requests and/or replies - but there's no room for including IPv6
           addresses.
      
       (2) Definition of IPv6-specific RPC operations in the standard operation
           sets has not yet been achieved.
      
       (3) One could envision the creation a new service on the same port that as
           the original service.  The new service could implement improved
           operations - and the client could try this first, falling back to the
           original service if it's not there.
      
           Unfortunately, certain servers ignore packets addressed to a service
           they don't implement and don't respond in any way - not even with an
           ABORT.  This means that the client must then wait for the call timeout
           to occur.
      
      What service upgrade does is to see if the connection is marked as being
      'upgradeable' and if so, change the service ID in the server and thus the
      request and reply formats.  Note that the upgrade isn't mandatory - a
      server that supports only the original call set will ignore the upgrade
      request.
      
      In the protocol, the procedure is then as follows:
      
       (1) To request an upgrade, the first DATA packet in a new connection must
           have the userStatus set to 1 (this is normally 0).  The userStatus
           value is normally ignored by the server.
      
       (2) If the server doesn't support upgrading, the reply packets will
           contain the same service ID as for the first request packet.
      
       (3) If the server does support upgrading, all future reply packets on that
           connection will contain the new service ID and the new service ID will
           be applied to *all* further calls on that connection as well.
      
       (4) The RPC op used to probe the upgrade must take the same request data
           as the shadow call in the upgrade set (but may return a different
           reply).  GetCapability RPC ops were added to all standard sets for
           just this purpose.  Ops where the request formats differ cannot be
           used for probing.
      
       (5) The client must wait for completion of the probe before sending any
           further RPC ops to the same destination.  It should then use the
           service ID that recvmsg() reported back in all future calls.
      
       (6) The shadow service must have call definitions for all the operation
           IDs defined by the original service.
      
      
      To support service upgrading, a server should:
      
       (1) Call bind() twice on its AF_RXRPC socket before calling listen().
           Each bind() should supply a different service ID, but the transport
           addresses must be the same.  This allows the server to receive
           requests with either service ID.
      
       (2) Enable automatic upgrading by calling setsockopt(), specifying
           RXRPC_UPGRADEABLE_SERVICE and passing in a two-member array of
           unsigned shorts as the argument:
      
      	unsigned short optval[2];
      
           This specifies a pair of service IDs.  They must be different and must
           match the service IDs bound to the socket.  Member 0 is the service ID
           to upgrade from and member 1 is the service ID to upgrade to.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      4722974d
    • D
      rxrpc: Permit multiple service binding · 28036f44
      David Howells 提交于
      Permit bind() to be called on an AF_RXRPC socket more than once (currently
      maximum twice) to bind multiple listening services to it.  There are some
      restrictions:
      
       (1) All bind() calls involved must have a non-zero service ID.
      
       (2) The service IDs must all be different.
      
       (3) The rest of the address (notably the transport part) must be the same
           in all (a single UDP socket is shared).
      
       (4) This must be done before listen() or sendmsg() is called.
      
      This allows someone to connect to the service socket with different service
      IDs and lays the foundation for service upgrading.
      
      The service ID used by an incoming call can be extracted from the msg_name
      returned by recvmsg().
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      28036f44
  6. 26 5月, 2017 1 次提交
    • D
      rxrpc: Support network namespacing · 2baec2c3
      David Howells 提交于
      Support network namespacing in AF_RXRPC with the following changes:
      
       (1) All the local endpoint, peer and call lists, locks, counters, etc. are
           moved into the per-namespace record.
      
       (2) All the connection tracking is moved into the per-namespace record
           with the exception of the client connection ID tree, which is kept
           global so that connection IDs are kept unique per-machine.
      
       (3) Each namespace gets its own epoch.  This allows each network namespace
           to pretend to be a separate client machine.
      
       (4) The /proc/net/rxrpc_xxx files are now called /proc/net/rxrpc/xxx and
           the contents reflect the namespace.
      
      fs/afs/ should be okay with this patch as it explicitly requires the current
      net namespace to be init_net to permit a mount to proceed at the moment.  It
      will, however, need updating so that cells, IP addresses and DNS records are
      per-namespace also.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      2baec2c3
  7. 06 4月, 2017 1 次提交
  8. 02 3月, 2017 1 次提交
    • D
      rxrpc: Fix deadlock between call creation and sendmsg/recvmsg · 540b1c48
      David Howells 提交于
      All the routines by which rxrpc is accessed from the outside are serialised
      by means of the socket lock (sendmsg, recvmsg, bind,
      rxrpc_kernel_begin_call(), ...) and this presents a problem:
      
       (1) If a number of calls on the same socket are in the process of
           connection to the same peer, a maximum of four concurrent live calls
           are permitted before further calls need to wait for a slot.
      
       (2) If a call is waiting for a slot, it is deep inside sendmsg() or
           rxrpc_kernel_begin_call() and the entry function is holding the socket
           lock.
      
       (3) sendmsg() and recvmsg() or the in-kernel equivalents are prevented
           from servicing the other calls as they need to take the socket lock to
           do so.
      
       (4) The socket is stuck until a call is aborted and makes its slot
           available to the waiter.
      
      Fix this by:
      
       (1) Provide each call with a mutex ('user_mutex') that arbitrates access
           by the users of rxrpc separately for each specific call.
      
       (2) Make rxrpc_sendmsg() and rxrpc_recvmsg() unlock the socket as soon as
           they've got a call and taken its mutex.
      
           Note that I'm returning EWOULDBLOCK from recvmsg() if MSG_DONTWAIT is
           set but someone else has the lock.  Should I instead only return
           EWOULDBLOCK if there's nothing currently to be done on a socket, and
           sleep in this particular instance because there is something to be
           done, but we appear to be blocked by the interrupt handler doing its
           ping?
      
       (3) Make rxrpc_new_client_call() unlock the socket after allocating a new
           call, locking its user mutex and adding it to the socket's call tree.
           The call is returned locked so that sendmsg() can add data to it
           immediately.
      
           From the moment the call is in the socket tree, it is subject to
           access by sendmsg() and recvmsg() - even if it isn't connected yet.
      
       (4) Lock new service calls in the UDP data_ready handler (in
           rxrpc_new_incoming_call()) because they may already be in the socket's
           tree and the data_ready handler makes them live immediately if a user
           ID has already been preassigned.
      
           Note that the new call is locked before any notifications are sent
           that it is live, so doing mutex_trylock() *ought* to always succeed.
           Userspace is prevented from doing sendmsg() on calls that are in a
           too-early state in rxrpc_do_sendmsg().
      
       (5) Make rxrpc_new_incoming_call() return the call with the user mutex
           held so that a ping can be scheduled immediately under it.
      
           Note that it might be worth moving the ping call into
           rxrpc_new_incoming_call() and then we can drop the mutex there.
      
       (6) Make rxrpc_accept_call() take the lock on the call it is accepting and
           release the socket after adding the call to the socket's tree.  This
           is slightly tricky as we've dequeued the call by that point and have
           to requeue it.
      
           Note that requeuing emits a trace event.
      
       (7) Make rxrpc_kernel_send_data() and rxrpc_kernel_recv_data() take the
           new mutex immediately and don't bother with the socket mutex at all.
      
      This patch has the nice bonus that calls on the same socket are now to some
      extent parallelisable.
      
      Note that we might want to move rxrpc_service_prealloc() calls out from the
      socket lock and give it its own lock, so that we don't hang progress in
      other calls because we're waiting for the allocator.
      
      We probably also want to avoid calling rxrpc_notify_socket() from within
      the socket lock (rxrpc_accept_call()).
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Tested-by: NMarc Dionne <marc.c.dionne@auristor.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      540b1c48
  9. 09 1月, 2017 1 次提交
  10. 06 10月, 2016 2 次提交
    • D
      rxrpc: Fix warning by splitting rxrpc_send_call_packet() · 26cb02aa
      David Howells 提交于
      Split rxrpc_send_data_packet() to separate ACK generation (which is more
      complicated) from ABORT generation.  This simplifies the code a bit and
      fixes the following warning:
      
      In file included from ../net/rxrpc/output.c:20:0:
      net/rxrpc/output.c: In function 'rxrpc_send_call_packet':
      net/rxrpc/ar-internal.h:1187:27: error: 'top' may be used uninitialized in this function [-Werror=maybe-uninitialized]
      net/rxrpc/output.c:103:24: note: 'top' was declared here
      net/rxrpc/output.c:225:25: error: 'hard_ack' may be used uninitialized in this function [-Werror=maybe-uninitialized]
      Reported-by: NArnd Bergmann <arnd@arndb.de>
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      26cb02aa
    • D
      rxrpc: Fix oops on incoming call to serviceless endpoint · 7212a57e
      David Howells 提交于
      If an call comes in to a local endpoint that isn't listening for any
      incoming calls at the moment, an oops will happen.  We need to check that
      the local endpoint's service pointer isn't NULL before we dereference it.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      7212a57e
  11. 30 9月, 2016 1 次提交
    • D
      rxrpc: Reduce the rxrpc_local::services list to a pointer · 1e9e5c95
      David Howells 提交于
      Reduce the rxrpc_local::services list to just a pointer as we don't permit
      multiple service endpoints to bind to a single transport endpoints (this is
      excluded by rxrpc_lookup_local()).
      
      The reason we don't allow this is that if you send a request to an AFS
      filesystem service, it will try to talk back to your cache manager on the
      port you sent from (this is how file change notifications are handled).  To
      prevent someone from stealing your CM callbacks, we don't let AF_RXRPC
      sockets share a UDP socket if at least one of them has a service bound.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      1e9e5c95
  12. 17 9月, 2016 3 次提交
  13. 14 9月, 2016 3 次提交
    • D
      rxrpc: Fix prealloc refcounting · 3432a757
      David Howells 提交于
      The preallocated call buffer holds a ref on the calls within that buffer.
      The ref was being released in the wrong place - it worked okay for incoming
      calls to the AFS cache manager service, but doesn't work right for incoming
      calls to a userspace service.
      
      Instead of releasing an extra ref service calls in rxrpc_release_call(),
      the ref needs to be released during the acceptance/rejectance process.  To
      this end:
      
       (1) The prealloc ref is now normally released during
           rxrpc_new_incoming_call().
      
       (2) For preallocated kernel API calls, the kernel API's ref needs to be
           released when the call is discarded on socket close.
      
       (3) We shouldn't take a second ref in rxrpc_accept_call().
      
       (4) rxrpc_recvmsg_new_call() needs to get a ref of its own when it adds
           the call to the to_be_accepted socket queue.
      
      In doing (4) above, we would prefer not to put the call's refcount down to
      0 as that entails doing cleanup in softirq context, but it's unlikely as
      there are several refs held elsewhere, at least one of which must be put by
      someone in process context calling rxrpc_release_call().  However, it's not
      a problem if we do have to do that.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      3432a757
    • D
      rxrpc: Adjust the call ref tracepoint to show kernel API refs · cbd00891
      David Howells 提交于
      Adjust the call ref tracepoint to show references held on a call by the
      kernel API separately as much as possible and add an additional trace to at
      the allocation point from the preallocation buffer for an incoming call.
      
      Note that this doesn't show the allocation of a client call for the kernel
      separately at the moment.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      cbd00891
    • D
      rxrpc: Add missing unlock in rxrpc_call_accept() · b25de360
      David Howells 提交于
      Add a missing unlock in rxrpc_call_accept() in the path taken if there's no
      call to wake up.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      b25de360
  14. 08 9月, 2016 3 次提交
    • D
      rxrpc: Rewrite the data and ack handling code · 248f219c
      David Howells 提交于
      Rewrite the data and ack handling code such that:
      
       (1) Parsing of received ACK and ABORT packets and the distribution and the
           filing of DATA packets happens entirely within the data_ready context
           called from the UDP socket.  This allows us to process and discard ACK
           and ABORT packets much more quickly (they're no longer stashed on a
           queue for a background thread to process).
      
       (2) We avoid calling skb_clone(), pskb_pull() and pskb_trim().  We instead
           keep track of the offset and length of the content of each packet in
           the sk_buff metadata.  This means we don't do any allocation in the
           receive path.
      
       (3) Jumbo DATA packet parsing is now done in data_ready context.  Rather
           than cloning the packet once for each subpacket and pulling/trimming
           it, we file the packet multiple times with an annotation for each
           indicating which subpacket is there.  From that we can directly
           calculate the offset and length.
      
       (4) A call's receive queue can be accessed without taking locks (memory
           barriers do have to be used, though).
      
       (5) Incoming calls are set up from preallocated resources and immediately
           made live.  They can than have packets queued upon them and ACKs
           generated.  If insufficient resources exist, DATA packet #1 is given a
           BUSY reply and other DATA packets are discarded).
      
       (6) sk_buffs no longer take a ref on their parent call.
      
      To make this work, the following changes are made:
      
       (1) Each call's receive buffer is now a circular buffer of sk_buff
           pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
           between the call and the socket.  This permits each sk_buff to be in
           the buffer multiple times.  The receive buffer is reused for the
           transmit buffer.
      
       (2) A circular buffer of annotations (rxtx_annotations) is kept parallel
           to the data buffer.  Transmission phase annotations indicate whether a
           buffered packet has been ACK'd or not and whether it needs
           retransmission.
      
           Receive phase annotations indicate whether a slot holds a whole packet
           or a jumbo subpacket and, if the latter, which subpacket.  They also
           note whether the packet has been decrypted in place.
      
       (3) DATA packet window tracking is much simplified.  Each phase has just
           two numbers representing the window (rx_hard_ack/rx_top and
           tx_hard_ack/tx_top).
      
           The hard_ack number is the sequence number before base of the window,
           representing the last packet the other side says it has consumed.
           hard_ack starts from 0 and the first packet is sequence number 1.
      
           The top number is the sequence number of the highest-numbered packet
           residing in the buffer.  Packets between hard_ack+1 and top are
           soft-ACK'd to indicate they've been received, but not yet consumed.
      
           Four macros, before(), before_eq(), after() and after_eq() are added
           to compare sequence numbers within the window.  This allows for the
           top of the window to wrap when the hard-ack sequence number gets close
           to the limit.
      
           Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
           to indicate when rx_top and tx_top point at the packets with the
           LAST_PACKET bit set, indicating the end of the phase.
      
       (4) Calls are queued on the socket 'receive queue' rather than packets.
           This means that we don't need have to invent dummy packets to queue to
           indicate abnormal/terminal states and we don't have to keep metadata
           packets (such as ABORTs) around
      
       (5) The offset and length of a (sub)packet's content are now passed to
           the verify_packet security op.  This is currently expected to decrypt
           the packet in place and validate it.
      
           However, there's now nowhere to store the revised offset and length of
           the actual data within the decrypted blob (there may be a header and
           padding to skip) because an sk_buff may represent multiple packets, so
           a locate_data security op is added to retrieve these details from the
           sk_buff content when needed.
      
       (6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
           individually secured and needs to be individually decrypted.  The code
           to do this is broken out into rxrpc_recvmsg_data() and shared with the
           kernel API.  It now iterates over the call's receive buffer rather
           than walking the socket receive queue.
      
      Additional changes:
      
       (1) The timers are condensed to a single timer that is set for the soonest
           of three timeouts (delayed ACK generation, DATA retransmission and
           call lifespan).
      
       (2) Transmission of ACK and ABORT packets is effected immediately from
           process-context socket ops/kernel API calls that cause them instead of
           them being punted off to a background work item.  The data_ready
           handler still has to defer to the background, though.
      
       (3) A shutdown op is added to the AF_RXRPC socket so that the AFS
           filesystem can shut down the socket and flush its own work items
           before closing the socket to deal with any in-progress service calls.
      
      Future additional changes that will need to be considered:
      
       (1) Make sure that a call doesn't hog the front of the queue by receiving
           data from the network as fast as userspace is consuming it to the
           exclusion of other calls.
      
       (2) Transmit delayed ACKs from within recvmsg() when we've consumed
           sufficiently more packets to avoid the background work item needing to
           run.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      248f219c
    • D
      rxrpc: Preallocate peers, conns and calls for incoming service requests · 00e90712
      David Howells 提交于
      Make it possible for the data_ready handler called from the UDP transport
      socket to completely instantiate an rxrpc_call structure and make it
      immediately live by preallocating all the memory it might need.  The idea
      is to cut out the background thread usage as much as possible.
      
      [Note that the preallocated structs are not actually used in this patch -
       that will be done in a future patch.]
      
      If insufficient resources are available in the preallocation buffers, it
      will be possible to discard the DATA packet in the data_ready handler or
      schedule a BUSY packet without the need to schedule an attempt at
      allocation in a background thread.
      
      To this end:
      
       (1) Preallocate rxrpc_peer, rxrpc_connection and rxrpc_call structs to a
           maximum number each of the listen backlog size.  The backlog size is
           limited to a maxmimum of 32.  Only this many of each can be in the
           preallocation buffer.
      
       (2) For userspace sockets, the preallocation is charged initially by
           listen() and will be recharged by accepting or rejecting pending
           new incoming calls.
      
       (3) For kernel services {,re,dis}charging of the preallocation buffers is
           handled manually.  Two notifier callbacks have to be provided before
           kernel_listen() is invoked:
      
           (a) An indication that a new call has been instantiated.  This can be
           	 used to trigger background recharging.
      
           (b) An indication that a call is being discarded.  This is used when
           	 the socket is being released.
      
           A function, rxrpc_kernel_charge_accept() is called by the kernel
           service to preallocate a single call.  It should be passed the user ID
           to be used for that call and a callback to associate the rxrpc call
           with the kernel service's side of the ID.
      
       (4) Discard the preallocation when the socket is closed.
      
       (5) Temporarily bump the refcount on the call allocated in
           rxrpc_incoming_call() so that rxrpc_release_call() can ditch the
           preallocation ref on service calls unconditionally.  This will no
           longer be necessary once the preallocation is used.
      
      Note that this does not yet control the number of active service calls on a
      client - that will come in a later patch.
      
      A future development would be to provide a setsockopt() call that allows a
      userspace server to manually charge the preallocation buffer.  This would
      allow user call IDs to be provided in advance and the awkward manual accept
      stage to be bypassed.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      00e90712
    • D
      rxrpc: Convert rxrpc_local::services to an hlist · de8d6c74
      David Howells 提交于
      Convert the rxrpc_local::services list to an hlist so that it can be
      accessed under RCU conditions more readily.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      de8d6c74
  15. 07 9月, 2016 2 次提交
    • D
      rxrpc: Calls shouldn't hold socket refs · 8d94aa38
      David Howells 提交于
      rxrpc calls shouldn't hold refs on the sock struct.  This was done so that
      the socket wouldn't go away whilst the call was in progress, such that the
      call could reach the socket's queues.
      
      However, we can mark the socket as requiring an RCU release and rely on the
      RCU read lock.
      
      To make this work, we do:
      
       (1) rxrpc_release_call() removes the call's call user ID.  This is now
           only called from socket operations and not from the call processor:
      
      	rxrpc_accept_call() / rxrpc_kernel_accept_call()
      	rxrpc_reject_call() / rxrpc_kernel_reject_call()
      	rxrpc_kernel_end_call()
      	rxrpc_release_calls_on_socket()
      	rxrpc_recvmsg()
      
           Though it is also called in the cleanup path of
           rxrpc_accept_incoming_call() before we assign a user ID.
      
       (2) Pass the socket pointer into rxrpc_release_call() rather than getting
           it from the call so that we can get rid of uninitialised calls.
      
       (3) Fix call processor queueing to pass a ref to the work queue and to
           release that ref at the end of the processor function (or to pass it
           back to the work queue if we have to requeue).
      
       (4) Skip out of the call processor function asap if the call is complete
           and don't requeue it if the call is complete.
      
       (5) Clean up the call immediately that the refcount reaches 0 rather than
           trying to defer it.  Actual deallocation is deferred to RCU, however.
      
       (6) Don't hold socket refs for allocated calls.
      
       (7) Use the RCU read lock when queueing a message on a socket and treat
           the call's socket pointer according to RCU rules and check it for
           NULL.
      
           We also need to use the RCU read lock when viewing a call through
           procfs.
      
       (8) Transmit the final ACK/ABORT to a client call in rxrpc_release_call()
           if this hasn't been done yet so that we can then disconnect the call.
           Once the call is disconnected, it won't have any access to the
           connection struct and the UDP socket for the call work processor to be
           able to send the ACK.  Terminal retransmission will be handled by the
           connection processor.
      
       (9) Release all calls immediately on the closing of a socket rather than
           trying to defer this.  Incomplete calls will be aborted.
      
      The call refcount model is much simplified.  Refs are held on the call by:
      
       (1) A socket's user ID tree.
      
       (2) A socket's incoming call secureq and acceptq.
      
       (3) A kernel service that has a call in progress.
      
       (4) A queued call work processor.  We have to take care to put any call
           that we failed to queue.
      
       (5) sk_buffs on a socket's receive queue.  A future patch will get rid of
           this.
      
      Whilst we're at it, we can do:
      
       (1) Get rid of the RXRPC_CALL_EV_RELEASE event.  Release is now done
           entirely from the socket routines and never from the call's processor.
      
       (2) Get rid of the RXRPC_CALL_DEAD state.  Calls now end in the
           RXRPC_CALL_COMPLETE state.
      
       (3) Get rid of the rxrpc_call::destroyer work item.  Calls are now torn
           down when their refcount reaches 0 and then handed over to RCU for
           final cleanup.
      
       (4) Get rid of the rxrpc_call::deadspan timer.  Calls are cleaned up
           immediately they're finished with and don't hang around.
           Post-completion retransmission is handled by the connection processor
           once the call is disconnected.
      
       (5) Get rid of the dead call expiry setting as there's no longer a timer
           to set.
      
       (6) rxrpc_destroy_all_calls() can just check that the call list is empty.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      8d94aa38
    • D
      rxrpc: Improve the call tracking tracepoint · fff72429
      David Howells 提交于
      Improve the call tracking tracepoint by showing more differentiation
      between some of the put and get events, including:
      
        (1) Getting and putting refs for the socket call user ID tree.
      
        (2) Getting and putting refs for queueing and failing to queue the call
            processor work item.
      
      Note that these aren't necessarily used in this patch, but will be taken
      advantage of in future patches.
      
      An enum is added for the event subtype numbers rather than coding them
      directly as decimal numbers and a table of 3-letter strings is provided
      rather than a sequence of ?: operators.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      fff72429
  16. 02 9月, 2016 1 次提交
    • D
      rxrpc: Don't expose skbs to in-kernel users [ver #2] · d001648e
      David Howells 提交于
      Don't expose skbs to in-kernel users, such as the AFS filesystem, but
      instead provide a notification hook the indicates that a call needs
      attention and another that indicates that there's a new call to be
      collected.
      
      This makes the following possibilities more achievable:
      
       (1) Call refcounting can be made simpler if skbs don't hold refs to calls.
      
       (2) skbs referring to non-data events will be able to be freed much sooner
           rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
           will be able to consult the call state.
      
       (3) We can shortcut the receive phase when a call is remotely aborted
           because we don't have to go through all the packets to get to the one
           cancelling the operation.
      
       (4) It makes it easier to do encryption/decryption directly between AFS's
           buffers and sk_buffs.
      
       (5) Encryption/decryption can more easily be done in the AFS's thread
           contexts - usually that of the userspace process that issued a syscall
           - rather than in one of rxrpc's background threads on a workqueue.
      
       (6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
      
      To make this work, the following interface function has been added:
      
           int rxrpc_kernel_recv_data(
      		struct socket *sock, struct rxrpc_call *call,
      		void *buffer, size_t bufsize, size_t *_offset,
      		bool want_more, u32 *_abort_code);
      
      This is the recvmsg equivalent.  It allows the caller to find out about the
      state of a specific call and to transfer received data into a buffer
      piecemeal.
      
      afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
      logic between them.  They don't wait synchronously yet because the socket
      lock needs to be dealt with.
      
      Five interface functions have been removed:
      
      	rxrpc_kernel_is_data_last()
          	rxrpc_kernel_get_abort_code()
          	rxrpc_kernel_get_error_number()
          	rxrpc_kernel_free_skb()
          	rxrpc_kernel_data_consumed()
      
      As a temporary hack, sk_buffs going to an in-kernel call are queued on the
      rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
      in-kernel user.  To process the queue internally, a temporary function,
      temp_deliver_data() has been added.  This will be replaced with common code
      between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
      future patch.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      d001648e
  17. 30 8月, 2016 2 次提交
  18. 23 8月, 2016 1 次提交
  19. 06 8月, 2016 1 次提交
    • D
      rxrpc: Fix races between skb free, ACK generation and replying · 372ee163
      David Howells 提交于
      Inside the kafs filesystem it is possible to occasionally have a call
      processed and terminated before we've had a chance to check whether we need
      to clean up the rx queue for that call because afs_send_simple_reply() ends
      the call when it is done, but this is done in a workqueue item that might
      happen to run to completion before afs_deliver_to_call() completes.
      
      Further, it is possible for rxrpc_kernel_send_data() to be called to send a
      reply before the last request-phase data skb is released.  The rxrpc skb
      destructor is where the ACK processing is done and the call state is
      advanced upon release of the last skb.  ACK generation is also deferred to
      a work item because it's possible that the skb destructor is not called in
      a context where kernel_sendmsg() can be invoked.
      
      To this end, the following changes are made:
      
       (1) kernel_rxrpc_data_consumed() is added.  This should be called whenever
           an skb is emptied so as to crank the ACK and call states.  This does
           not release the skb, however.  kernel_rxrpc_free_skb() must now be
           called to achieve that.  These together replace
           rxrpc_kernel_data_delivered().
      
       (2) kernel_rxrpc_data_consumed() is wrapped by afs_data_consumed().
      
           This makes afs_deliver_to_call() easier to work as the skb can simply
           be discarded unconditionally here without trying to work out what the
           return value of the ->deliver() function means.
      
           The ->deliver() functions can, via afs_data_complete(),
           afs_transfer_reply() and afs_extract_data() mark that an skb has been
           consumed (thereby cranking the state) without the need to
           conditionally free the skb to make sure the state is correct on an
           incoming call for when the call processor tries to send the reply.
      
       (3) rxrpc_recvmsg() now has to call kernel_rxrpc_data_consumed() when it
           has finished with a packet and MSG_PEEK isn't set.
      
       (4) rxrpc_packet_destructor() no longer calls rxrpc_hard_ACK_data().
      
           Because of this, we no longer need to clear the destructor and put the
           call before we free the skb in cases where we don't want the ACK/call
           state to be cranked.
      
       (5) The ->deliver() call-type callbacks are made to return -EAGAIN rather
           than 0 if they expect more data (afs_extract_data() returns -EAGAIN to
           the delivery function already), and the caller is now responsible for
           producing an abort if that was the last packet.
      
       (6) There are many bits of unmarshalling code where:
      
       		ret = afs_extract_data(call, skb, last, ...);
      		switch (ret) {
      		case 0:		break;
      		case -EAGAIN:	return 0;
      		default:	return ret;
      		}
      
           is to be found.  As -EAGAIN can now be passed back to the caller, we
           now just return if ret < 0:
      
       		ret = afs_extract_data(call, skb, last, ...);
      		if (ret < 0)
      			return ret;
      
       (7) Checks for trailing data and empty final data packets has been
           consolidated as afs_data_complete().  So:
      
      		if (skb->len > 0)
      			return -EBADMSG;
      		if (!last)
      			return 0;
      
           becomes:
      
      		ret = afs_data_complete(call, skb, last);
      		if (ret < 0)
      			return ret;
      
       (8) afs_transfer_reply() now checks the amount of data it has against the
           amount of data desired and the amount of data in the skb and returns
           an error to induce an abort if we don't get exactly what we want.
      
      Without these changes, the following oops can occasionally be observed,
      particularly if some printks are inserted into the delivery path:
      
      general protection fault: 0000 [#1] SMP
      Modules linked in: kafs(E) af_rxrpc(E) [last unloaded: af_rxrpc]
      CPU: 0 PID: 1305 Comm: kworker/u8:3 Tainted: G            E   4.7.0-fsdevel+ #1303
      Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014
      Workqueue: kafsd afs_async_workfn [kafs]
      task: ffff88040be041c0 ti: ffff88040c070000 task.ti: ffff88040c070000
      RIP: 0010:[<ffffffff8108fd3c>]  [<ffffffff8108fd3c>] __lock_acquire+0xcf/0x15a1
      RSP: 0018:ffff88040c073bc0  EFLAGS: 00010002
      RAX: 6b6b6b6b6b6b6b6b RBX: 0000000000000000 RCX: ffff88040d29a710
      RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff88040d29a710
      RBP: ffff88040c073c70 R08: 0000000000000001 R09: 0000000000000001
      R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000
      R13: 0000000000000000 R14: ffff88040be041c0 R15: ffffffff814c928f
      FS:  0000000000000000(0000) GS:ffff88041fa00000(0000) knlGS:0000000000000000
      CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
      CR2: 00007fa4595f4750 CR3: 0000000001c14000 CR4: 00000000001406f0
      Stack:
       0000000000000006 000000000be04930 0000000000000000 ffff880400000000
       ffff880400000000 ffffffff8108f847 ffff88040be041c0 ffffffff81050446
       ffff8803fc08a920 ffff8803fc08a958 ffff88040be041c0 ffff88040c073c38
      Call Trace:
       [<ffffffff8108f847>] ? mark_held_locks+0x5e/0x74
       [<ffffffff81050446>] ? __local_bh_enable_ip+0x9b/0xa1
       [<ffffffff8108f9ca>] ? trace_hardirqs_on_caller+0x16d/0x189
       [<ffffffff810915f4>] lock_acquire+0x122/0x1b6
       [<ffffffff810915f4>] ? lock_acquire+0x122/0x1b6
       [<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
       [<ffffffff81609dbf>] _raw_spin_lock_irqsave+0x35/0x49
       [<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
       [<ffffffff814c928f>] skb_dequeue+0x18/0x61
       [<ffffffffa009aa92>] afs_deliver_to_call+0x344/0x39d [kafs]
       [<ffffffffa009ab37>] afs_process_async_call+0x4c/0xd5 [kafs]
       [<ffffffffa0099e9c>] afs_async_workfn+0xe/0x10 [kafs]
       [<ffffffff81063a3a>] process_one_work+0x29d/0x57c
       [<ffffffff81064ac2>] worker_thread+0x24a/0x385
       [<ffffffff81064878>] ? rescuer_thread+0x2d0/0x2d0
       [<ffffffff810696f5>] kthread+0xf3/0xfb
       [<ffffffff8160a6ff>] ret_from_fork+0x1f/0x40
       [<ffffffff81069602>] ? kthread_create_on_node+0x1cf/0x1cf
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      372ee163
  20. 06 7月, 2016 3 次提交
    • D
      rxrpc: Move peer lookup from call-accept to new-incoming-conn · d991b4a3
      David Howells 提交于
      Move the lookup of a peer from a call that's being accepted into the
      function that creates a new incoming connection.  This will allow us to
      avoid incrementing the peer's usage count in some cases in future.
      
      Note that I haven't bother to integrate rxrpc_get_addr_from_skb() with
      rxrpc_extract_addr_from_skb() as I'm going to delete the former in the very
      near future.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      d991b4a3
    • D
      rxrpc: Move usage count getting into rxrpc_queue_conn() · 2c4579e4
      David Howells 提交于
      Rather than calling rxrpc_get_connection() manually before calling
      rxrpc_queue_conn(), do it inside the queue wrapper.
      
      This allows us to do some important fixes:
      
       (1) If the usage count is 0, do nothing.  This prevents connections from
           being reanimated once they're dead.
      
       (2) If rxrpc_queue_work() fails because the work item is already queued,
           retract the usage count increment which would otherwise be lost.
      
       (3) Don't take a ref on the connection in the work function.  By passing
           the ref through the work item, this is unnecessary.  Doing it in the
           work function is too late anyway.  Previously, connection-directed
           packets held a ref on the connection, but that's not really the best
           idea.
      
      And another useful changes:
      
       (*) Don't need to take a refcount on the connection in the data_ready
           handler unless we invoke the connection's work item.  We're using RCU
           there so that's otherwise redundant.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      2c4579e4
    • D
      rxrpc: Turn connection #defines into enums and put outside struct def · bba304db
      David Howells 提交于
      Turn the connection event and state #define lists into enums and move
      outside of the struct definition.
      
      Whilst we're at it, change _SERVER to _SERVICE in those identifiers and add
      EV_ into the event name to distinguish them from flags and states.
      
      Also add a symbol indicating the number of states and use that in the state
      text array.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      bba304db
  21. 22 6月, 2016 4 次提交
  22. 15 6月, 2016 2 次提交
    • D
      rxrpc: Rework local endpoint management · 4f95dd78
      David Howells 提交于
      Rework the local RxRPC endpoint management.
      
      Local endpoint objects are maintained in a flat list as before.  This
      should be okay as there shouldn't be more than one per open AF_RXRPC socket
      (there can be fewer as local endpoints can be shared if their local service
      ID is 0 and they share the same local transport parameters).
      
      Changes:
      
       (1) Local endpoints may now only be shared if they have local service ID 0
           (ie. they're not being used for listening).
      
           This prevents a scenario where process A is listening of the Cache
           Manager port and process B contacts a fileserver - which may then
           attempt to send CM requests back to B.  But if A and B are sharing a
           local endpoint, A will get the CM requests meant for B.
      
       (2) We use a mutex to handle lookups and don't provide RCU-only lookups
           since we only expect to access the list when opening a socket or
           destroying an endpoint.
      
           The local endpoint object is pointed to by the transport socket's
           sk_user_data for the life of the transport socket - allowing us to
           refer to it directly from the sk_data_ready and sk_error_report
           callbacks.
      
       (3) atomic_inc_not_zero() now exists and can be used to only share a local
           endpoint if the last reference hasn't yet gone.
      
       (4) We can remove rxrpc_local_lock - a spinlock that had to be taken with
           BH processing disabled given that we assume sk_user_data won't change
           under us.
      
       (5) The transport socket is shut down before we clear the sk_user_data
           pointer so that we can be sure that the transport socket's callbacks
           won't be invoked once the RCU destruction is scheduled.
      
       (6) Local endpoints have a work item that handles both destruction and
           event processing.  The means that destruction doesn't then need to
           wait for event processing.  The event queues can then be cleared after
           the transport socket is shut down.
      
       (7) Local endpoints are no longer available for resurrection beyond the
           life of the sockets that had them open.  As soon as their last ref
           goes, they are scheduled for destruction and may not have their usage
           count moved from 0.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      4f95dd78
    • D
      rxrpc: Rework peer object handling to use hash table and RCU · be6e6707
      David Howells 提交于
      Rework peer object handling to use a hash table instead of a flat list and
      to use RCU.  Peer objects are no longer destroyed by passing them to a
      workqueue to process, but rather are just passed to the RCU garbage
      collector as kfree'able objects.
      
      The hash function uses the local endpoint plus all the components of the
      remote address, except for the RxRPC service ID.  Peers thus represent a
      UDP port on the remote machine as contacted by a UDP port on this machine.
      
      The RCU read lock is used to handle non-creating lookups so that they can
      be called from bottom half context in the sk_error_report handler without
      having to lock the hash table against modification.
      rxrpc_lookup_peer_rcu() *does* take a reference on the peer object as in
      the future, this will be passed to a work item for error distribution in
      the error_report path and this function will cease being used in the
      data_ready path.
      
      Creating lookups are done under spinlock rather than mutex as they might be
      set up due to an external stimulus if the local endpoint is a server.
      
      Captured network error messages (ICMP) are handled with respect to this
      struct and MTU size and RTT are cached here.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      be6e6707
  23. 13 6月, 2016 1 次提交
    • D
      rxrpc: Rename files matching ar-*.c to git rid of the "ar-" prefix · 8c3e34a4
      David Howells 提交于
      Rename files matching net/rxrpc/ar-*.c to get rid of the "ar-" prefix.
      This will aid splitting those files by making easier to come up with new
      names.
      
      Note that the not all files are simply renamed from ar-X.c to X.c.  The
      following exceptions are made:
      
       (*) ar-call.c -> call_object.c
           ar-ack.c -> call_event.c
      
           call_object.c is going to contain the core of the call object
           handling.  Call event handling is all going to be in call_event.c.
      
       (*) ar-accept.c -> call_accept.c
      
           Incoming call handling is going to be here.
      
       (*) ar-connection.c -> conn_object.c
           ar-connevent.c -> conn_event.c
      
           The former file is going to have the basic connection object handling,
           but there will likely be some differentiation between client
           connections and service connections in additional files later.  The
           latter file will have all the connection-level event handling.
      
       (*) ar-local.c -> local_object.c
      
           This will have the local endpoint object handling code.  The local
           endpoint event handling code will later be split out into
           local_event.c.
      
       (*) ar-peer.c -> peer_object.c
      
           This will have the peer endpoint object handling code.  Peer event
           handling code will be placed in peer_event.c (for the moment, there is
           none).
      
       (*) ar-error.c -> peer_event.c
      
           This will become the peer event handling code, though for the moment
           it's actually driven from the local endpoint's perspective.
      
      Note that I haven't renamed ar-transport.c to transport_object.c as the
      intention is to delete it when the rxrpc_transport struct is excised.
      
      The only file that actually has its contents changed is net/rxrpc/Makefile.
      
      net/rxrpc/ar-internal.h will need its section marker comments updating, but
      I'll do that in a separate patch to make it easier for git to follow the
      history across the rename.  I may also want to rename ar-internal.h at some
      point - but that would mean updating all the #includes and I'd rather do
      that in a separate step.
      
      Signed-off-by: David Howells <dhowells@redhat.com.
      8c3e34a4
  24. 04 6月, 2016 1 次提交
    • J
      rxrpc: Use pr_<level> and pr_fmt, reduce object size a few KB · 9b6d5398
      Joe Perches 提交于
      Use the more common kernel logging style and reduce object size.
      
      The logging message prefix changes from a mixture of
      "RxRPC:" and "RXRPC:" to "af_rxrpc: ".
      
      $ size net/rxrpc/built-in.o*
         text	   data	    bss	    dec	    hex	filename
        64172	   1972	   8304	  74448	  122d0	net/rxrpc/built-in.o.new
        67512	   1972	   8304	  77788	  12fdc	net/rxrpc/built-in.o.old
      
      Miscellanea:
      
      o Consolidate the ASSERT macros to use a single pr_err call with
        decimal and hexadecimal output and a stringified #OP argument
      Signed-off-by: NJoe Perches <joe@perches.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      9b6d5398