- 09 10月, 2012 40 次提交
-
-
由 David Miller 提交于
Invalidation sequences are handled in various ways on various architectures. One way, which sparc64 uses, is to let the set_*_at() functions accumulate pending flushes into a per-cpu array. Then the flush_tlb_range() et al. calls process the pending TLB flushes. In this regime, the __tlb_remove_*tlb_entry() implementations are essentially NOPs. The canonical PTE zap in mm/memory.c is: ptent = ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm); tlb_remove_tlb_entry(tlb, pte, addr); With a subsequent tlb_flush_mmu() if needed. Mirror this in the THP PMD zapping using: orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd); page = pmd_page(orig_pmd); tlb_remove_pmd_tlb_entry(tlb, pmd, addr); And we properly accomodate TLB flush mechanims like the one described above. Signed-off-by: NDavid S. Miller <davem@davemloft.net> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 David Miller 提交于
The transparent huge page code passes a PMD pointer in as the third argument of update_mmu_cache(), which expects a PTE pointer. This never got noticed because X86 implements update_mmu_cache() as a macro and thus we don't get any type checking, and X86 is the only architecture which supports transparent huge pages currently. Before other architectures can support transparent huge pages properly we need to add a new interface which will take a PMD pointer as the third argument rather than a PTE pointer. [akpm@linux-foundation.org: implement update_mm_cache_pmd() for s390] Signed-off-by: NDavid S. Miller <davem@davemloft.net> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Yasuaki Ishimatsu 提交于
memory-hotplug: suppress "Trying to free nonexistent resource <XXXXXXXXXXXXXXXX-YYYYYYYYYYYYYYYY>" warning When our x86 box calls __remove_pages(), release_mem_region() shows many warnings. And x86 box cannot unregister iomem_resource. "Trying to free nonexistent resource <XXXXXXXXXXXXXXXX-YYYYYYYYYYYYYYYY>" release_mem_region() has been changed to be called in each PAGES_PER_SECTION by commit de7f0cba ("memory hotplug: release memory regions in PAGES_PER_SECTION chunks"). Because powerpc registers iomem_resource in each PAGES_PER_SECTION chunk. But when I hot add memory on x86 box, iomem_resource is register in each _CRS not PAGES_PER_SECTION chunk. So x86 box unregisters iomem_resource. The patch fixes the problem. Signed-off-by: NYasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Jiang Liu <liuj97@gmail.com> Cc: Len Brown <len.brown@intel.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Christoph Lameter <cl@linux.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Cc: Nathan Fontenot <nfont@austin.ibm.com> Cc: Badari Pulavarty <pbadari@us.ibm.com> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andrew Morton 提交于
Acked-by: NDavid Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Kees Cook 提交于
In the paranoid case of sysctl kernel.kptr_restrict=2, mask the kernel virtual addresses in /proc/vmallocinfo too. Signed-off-by: NKees Cook <keescook@chromium.org> Reported-by: NBrad Spengler <spender@grsecurity.net> Acked-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: NDavid Rientjes <rientjes@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 David Rientjes 提交于
NR_MLOCK is only accounted in single page units: there's no logic to handle transparent hugepages. This patch checks the appropriate number of pages to adjust the statistics by so that the correct amount of memory is reflected. Currently: $ grep Mlocked /proc/meminfo Mlocked: 19636 kB #define MAP_SIZE (4 << 30) /* 4GB */ void *ptr = mmap(NULL, MAP_SIZE, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0); mlock(ptr, MAP_SIZE); $ grep Mlocked /proc/meminfo Mlocked: 29844 kB munlock(ptr, MAP_SIZE); $ grep Mlocked /proc/meminfo Mlocked: 19636 kB And with this patch: $ grep Mlock /proc/meminfo Mlocked: 19636 kB mlock(ptr, MAP_SIZE); $ grep Mlock /proc/meminfo Mlocked: 4213664 kB munlock(ptr, MAP_SIZE); $ grep Mlock /proc/meminfo Mlocked: 19636 kB Signed-off-by: NDavid Rientjes <rientjes@google.com> Reported-by: NHugh Dickens <hughd@google.com> Acked-by: NHugh Dickins <hughd@google.com> Reviewed-by: NAndrea Arcangeli <aarcange@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: NMichel Lespinasse <walken@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 David Rientjes 提交于
When a transparent hugepage is mapped and it is included in an mlock() range, follow_page() incorrectly avoids setting the page's mlock bit and moving it to the unevictable lru. This is evident if you try to mlock(), munlock(), and then mlock() a range again. Currently: #define MAP_SIZE (4 << 30) /* 4GB */ void *ptr = mmap(NULL, MAP_SIZE, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0); mlock(ptr, MAP_SIZE); $ grep -E "Unevictable|Inactive\(anon" /proc/meminfo Inactive(anon): 6304 kB Unevictable: 4213924 kB munlock(ptr, MAP_SIZE); Inactive(anon): 4186252 kB Unevictable: 19652 kB mlock(ptr, MAP_SIZE); Inactive(anon): 4198556 kB Unevictable: 21684 kB Notice that less than 2MB was added to the unevictable list; this is because these pages in the range are not transparent hugepages since the 4GB range was allocated with mmap() and has no specific alignment. If posix_memalign() were used instead, unevictable would not have grown at all on the second mlock(). The fix is to call mlock_vma_page() so that the mlock bit is set and the page is added to the unevictable list. With this patch: mlock(ptr, MAP_SIZE); Inactive(anon): 4056 kB Unevictable: 4213940 kB munlock(ptr, MAP_SIZE); Inactive(anon): 4198268 kB Unevictable: 19636 kB mlock(ptr, MAP_SIZE); Inactive(anon): 4008 kB Unevictable: 4213940 kB Signed-off-by: NDavid Rientjes <rientjes@google.com> Acked-by: NHugh Dickins <hughd@google.com> Reviewed-by: NAndrea Arcangeli <aarcange@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michel Lespinasse <walken@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Wen Congyang 提交于
remove_memory() will be called when hot removing a memory device. But even if offlining memory, we cannot notice it. So the patch updates the memory block's state and sends notification to userspace. Additionally, the memory device may contain more than one memory block. If the memory block has been offlined, __offline_pages() will fail. So we should try to offline one memory block at a time. Thus remove_memory() also check each memory block's state. So there is no need to check the memory block's state before calling remove_memory(). Signed-off-by: NWen Congyang <wency@cn.fujitsu.com> Signed-off-by: NYasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Jiang Liu <liuj97@gmail.com> Cc: Len Brown <len.brown@intel.com> Cc: Christoph Lameter <cl@linux.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Wen Congyang 提交于
remove_memory() is called in two cases: 1. echo offline >/sys/devices/system/memory/memoryXX/state 2. hot remove a memory device In the 1st case, the memory block's state is changed and the notification that memory block's state changed is sent to userland after calling remove_memory(). So user can notice memory block is changed. But in the 2nd case, the memory block's state is not changed and the notification is not also sent to userspcae even if calling remove_memory(). So user cannot notice memory block is changed. For adding the notification at memory hot remove, the patch just prepare as follows: 1st case uses offline_pages() for offlining memory. 2nd case uses remove_memory() for offlining memory and changing memory block's state and notifing the information. The patch does not implement notification to remove_memory(). Signed-off-by: NWen Congyang <wency@cn.fujitsu.com> Signed-off-by: NYasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Jiang Liu <liuj97@gmail.com> Cc: Len Brown <len.brown@intel.com> Cc: Christoph Lameter <cl@linux.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Raghavendra D Prabhu 提交于
Following section mismatch warning is thrown during build; WARNING: vmlinux.o(.text+0x32408f): Section mismatch in reference from the function memblock_type_name() to the variable .meminit.data:memblock The function memblock_type_name() references the variable __meminitdata memblock. This is often because memblock_type_name lacks a __meminitdata annotation or the annotation of memblock is wrong. This is because memblock_type_name makes reference to memblock variable with attribute __meminitdata. Hence, the warning (even if the function is inline). [akpm@linux-foundation.org: remove inline] Signed-off-by: NRaghavendra D Prabhu <rprabhu@wnohang.net> Cc: Tejun Heo <tj@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Minchan Kim 提交于
reclaim_clean_pages_from_list() reclaims clean pages before migration so cc.nr_migratepages should be updated. Currently, there is no problem but it can be wrong if we try to use the value in future. Signed-off-by: NMinchan Kim <minchan@kernel.org> Acked-by: NMel Gorman <mgorman@suse.de> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Minchan Kim 提交于
Presently CMA cannot migrate mlocked pages so it ends up failing to allocate contiguous memory space. This patch makes mlocked pages be migrated out. Of course, it can affect realtime processes but in CMA usecase, contiguous memory allocation failing is far worse than access latency to an mlocked page being variable while CMA is running. If someone wants to make the system realtime, he shouldn't enable CMA because stalls can still happen at random times. [akpm@linux-foundation.org: tweak comment text, per Mel] Signed-off-by: NMinchan Kim <minchan@kernel.org> Acked-by: NMel Gorman <mgorman@suse.de> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Robert P. J. Day 提交于
Signed-off-by: NRobert P. J. Day <rpjday@crashcourse.ca> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Hugh Dickins 提交于
Simply remove UNEVICTABLE_MLOCKFREED and unevictable_pgs_mlockfreed line from /proc/vmstat: Johannes and Mel point out that it was very unlikely to have been used by any tool, and of course we can restore it easily enough if that turns out to be wrong. Signed-off-by: NHugh Dickins <hughd@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michel Lespinasse <walken@google.com> Cc: Ying Han <yinghan@google.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Minchan Kim 提交于
During memory-hotplug, I found NR_ISOLATED_[ANON|FILE] are increasing, causing the kernel to hang. When the system doesn't have enough free pages, it enters reclaim but never reclaim any pages due to too_many_isolated()==true and loops forever. The cause is that when we do memory-hotadd after memory-remove, __zone_pcp_update() clears a zone's ZONE_STAT_ITEMS in setup_pageset() although the vm_stat_diff of all CPUs still have values. In addtion, when we offline all pages of the zone, we reset them in zone_pcp_reset without draining so we loss some zone stat item. Reviewed-by: NWen Congyang <wency@cn.fujitsu.com> Signed-off-by: NMinchan Kim <minchan@kernel.org> Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Minchan Kim 提交于
Revert commit 0def08e3 because check_range can't fail in migrate_to_node with considering current usecases. Quote from Johannes : I think it makes sense to revert. Not because of the semantics, but I : just don't see how check_range() could even fail for this callsite: : : 1. we pass mm->mmap->vm_start in there, so we should not fail due to : find_vma() : : 2. we pass MPOL_MF_DISCONTIG_OK, so the discontig checks do not apply : and so can not fail : : 3. we pass MPOL_MF_MOVE | MPOL_MF_MOVE_ALL, the page table loops will : continue until addr == end, so we never fail with -EIO And I added a new VM_BUG_ON for checking migrate_to_node's future usecase which might pass to MPOL_MF_STRICT. Suggested-by: NJohannes Weiner <hannes@cmpxchg.org> Signed-off-by: NMinchan Kim <minchan@kernel.org> Acked-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Vasiliy Kulikov <segooon@gmail.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Haggai Eran 提交于
In order to allow sleeping during invalidate_page mmu notifier calls, we need to avoid calling when holding the PT lock. In addition to its direct calls, invalidate_page can also be called as a substitute for a change_pte call, in case the notifier client hasn't implemented change_pte. This patch drops the invalidate_page call from change_pte, and instead wraps all calls to change_pte with invalidate_range_start and invalidate_range_end calls. Note that change_pte still cannot sleep after this patch, and that clients implementing change_pte should not take action on it in case the number of outstanding invalidate_range_start calls is larger than one, otherwise they might miss a later invalidation. Signed-off-by: NHaggai Eran <haggaie@mellanox.com> Cc: Andrea Arcangeli <andrea@qumranet.com> Cc: Sagi Grimberg <sagig@mellanox.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Or Gerlitz <ogerlitz@mellanox.com> Cc: Haggai Eran <haggaie@mellanox.com> Cc: Shachar Raindel <raindel@mellanox.com> Cc: Liran Liss <liranl@mellanox.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Avi Kivity <avi@redhat.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Sagi Grimberg 提交于
In order to allow sleeping during mmu notifier calls, we need to avoid invoking them under the page table spinlock. This patch solves the problem by calling invalidate_page notification after releasing the lock (but before freeing the page itself), or by wrapping the page invalidation with calls to invalidate_range_begin and invalidate_range_end. To prevent accidental changes to the invalidate_range_end arguments after the call to invalidate_range_begin, the patch introduces a convention of saving the arguments in consistently named locals: unsigned long mmun_start; /* For mmu_notifiers */ unsigned long mmun_end; /* For mmu_notifiers */ ... mmun_start = ... mmun_end = ... mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); ... mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); The patch changes code to use this convention for all calls to mmu_notifier_invalidate_range_start/end, except those where the calls are close enough so that anyone who glances at the code can see the values aren't changing. This patchset is a preliminary step towards on-demand paging design to be added to the RDMA stack. Why do we want on-demand paging for Infiniband? Applications register memory with an RDMA adapter using system calls, and subsequently post IO operations that refer to the corresponding virtual addresses directly to HW. Until now, this was achieved by pinning the memory during the registration calls. The goal of on demand paging is to avoid pinning the pages of registered memory regions (MRs). This will allow users the same flexibility they get when swapping any other part of their processes address spaces. Instead of requiring the entire MR to fit in physical memory, we can allow the MR to be larger, and only fit the current working set in physical memory. Why should anyone care? What problems are users currently experiencing? This can make programming with RDMA much simpler. Today, developers that are working with more data than their RAM can hold need either to deregister and reregister memory regions throughout their process's life, or keep a single memory region and copy the data to it. On demand paging will allow these developers to register a single MR at the beginning of their process's life, and let the operating system manage which pages needs to be fetched at a given time. In the future, we might be able to provide a single memory access key for each process that would provide the entire process's address as one large memory region, and the developers wouldn't need to register memory regions at all. Is there any prospect that any other subsystems will utilise these infrastructural changes? If so, which and how, etc? As for other subsystems, I understand that XPMEM wanted to sleep in MMU notifiers, as Christoph Lameter wrote at http://lkml.indiana.edu/hypermail/linux/kernel/0802.1/0460.html and perhaps Andrea knows about other use cases. Scheduling in mmu notifications is required since we need to sync the hardware with the secondary page tables change. A TLB flush of an IO device is inherently slower than a CPU TLB flush, so our design works by sending the invalidation request to the device, and waiting for an interrupt before exiting the mmu notifier handler. Avi said: kvm may be a buyer. kvm::mmu_lock, which serializes guest page faults, also protects long operations such as destroying large ranges. It would be good to convert it into a spinlock, but as it is used inside mmu notifiers, this cannot be done. (there are alternatives, such as keeping the spinlock and using a generation counter to do the teardown in O(1), which is what the "may" is doing up there). [akpm@linux-foundation.orgpossible speed tweak in hugetlb_cow(), cleanups] Signed-off-by: NAndrea Arcangeli <andrea@qumranet.com> Signed-off-by: NSagi Grimberg <sagig@mellanox.com> Signed-off-by: NHaggai Eran <haggaie@mellanox.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Or Gerlitz <ogerlitz@mellanox.com> Cc: Haggai Eran <haggaie@mellanox.com> Cc: Shachar Raindel <raindel@mellanox.com> Cc: Liran Liss <liranl@mellanox.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Avi Kivity <avi@redhat.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
Commit 0c176d52 ("mm: hugetlb: fix pgoff computation when unmapping page from vma") fixed pgoff calculation but it has replaced it by vma_hugecache_offset() which is not approapriate for offsets used for vma_prio_tree_foreach() because that one expects index in page units rather than in huge_page_shift. Johannes said: : The resulting index may not be too big, but it can be too small: assume : hpage size of 2M and the address to unmap to be 0x200000. This is regular : page index 512 and hpage index 1. If you have a VMA that maps the file : only starting at the second huge page, that VMAs vm_pgoff will be 512 but : you ask for offset 1 and miss it even though it does map the page of : interest. hugetlb_cow() will try to unmap, miss the vma, and retry the : cow until the allocation succeeds or the skipped vma(s) go away. Signed-off-by: NMichal Hocko <mhocko@suse.cz> Acked-by: NHillf Danton <dhillf@gmail.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Rientjes <rientjes@google.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 David Rientjes 提交于
RECLAIM_DISTANCE represents the distance between nodes at which it is deemed too costly to allocate from; it's preferred to try to reclaim from a local zone before falling back to allocating on a remote node with such a distance. To do this, zone_reclaim_mode is set if the distance between any two nodes on the system is greather than this distance. This, however, ends up causing the page allocator to reclaim from every zone regardless of its affinity. What we really want is to reclaim only from zones that are closer than RECLAIM_DISTANCE. This patch adds a nodemask to each node that represents the set of nodes that are within this distance. During the zone iteration, if the bit for a zone's node is set for the local node, then reclaim is attempted; otherwise, the zone is skipped. [akpm@linux-foundation.org: fix CONFIG_NUMA=n build] Signed-off-by: NDavid Rientjes <rientjes@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Hugh Dickins 提交于
We should not be seeing non-0 unevictable_pgs_mlockfreed any longer. So remove free_page_mlock() from the page freeing paths: __PG_MLOCKED is already in PAGE_FLAGS_CHECK_AT_FREE, so free_pages_check() will now be checking it, reporting "BUG: Bad page state" if it's ever found set. Comment UNEVICTABLE_MLOCKFREED and unevictable_pgs_mlockfreed always 0. Signed-off-by: NHugh Dickins <hughd@google.com> Acked-by: NMel Gorman <mel@csn.ul.ie> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michel Lespinasse <walken@google.com> Cc: Ying Han <yinghan@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Hugh Dickins 提交于
We had thought that pages could no longer get freed while still marked as mlocked; but Johannes Weiner posted this program to demonstrate that truncating an mlocked private file mapping containing COWed pages is still mishandled: #include <sys/types.h> #include <sys/mman.h> #include <sys/stat.h> #include <stdlib.h> #include <unistd.h> #include <fcntl.h> #include <stdio.h> int main(void) { char *map; int fd; system("grep mlockfreed /proc/vmstat"); fd = open("chigurh", O_CREAT|O_EXCL|O_RDWR); unlink("chigurh"); ftruncate(fd, 4096); map = mmap(NULL, 4096, PROT_WRITE, MAP_PRIVATE, fd, 0); map[0] = 11; mlock(map, sizeof(fd)); ftruncate(fd, 0); close(fd); munlock(map, sizeof(fd)); munmap(map, 4096); system("grep mlockfreed /proc/vmstat"); return 0; } The anon COWed pages are not caught by truncation's clear_page_mlock() of the pagecache pages; but unmap_mapping_range() unmaps them, so we ought to look out for them there in page_remove_rmap(). Indeed, why should truncation or invalidation be doing the clear_page_mlock() when removing from pagecache? mlock is a property of mapping in userspace, not a property of pagecache: an mlocked unmapped page is nonsensical. Reported-by: NJohannes Weiner <hannes@cmpxchg.org> Signed-off-by: NHugh Dickins <hughd@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Rik van Riel <riel@redhat.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ying Han <yinghan@google.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Hugh Dickins 提交于
page_evictable(page, vma) is an irritant: almost all its callers pass NULL for vma. Remove the vma arg and use mlocked_vma_newpage(vma, page) explicitly in the couple of places it's needed. But in those places we don't even need page_evictable() itself! They're dealing with a freshly allocated anonymous page, which has no "mapping" and cannot be mlocked yet. Signed-off-by: NHugh Dickins <hughd@google.com> Acked-by: NMel Gorman <mel@csn.ul.ie> Cc: Rik van Riel <riel@redhat.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Michel Lespinasse <walken@google.com> Cc: Ying Han <yinghan@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Hugh Dickins 提交于
In fuzzing with trinity, lockdep protested "possible irq lock inversion dependency detected" when isolate_lru_page() reenabled interrupts while still holding the supposedly irq-safe tree_lock: invalidate_inode_pages2 invalidate_complete_page2 spin_lock_irq(&mapping->tree_lock) clear_page_mlock isolate_lru_page spin_unlock_irq(&zone->lru_lock) isolate_lru_page() is correct to enable interrupts unconditionally: invalidate_complete_page2() is incorrect to call clear_page_mlock() while holding tree_lock, which is supposed to nest inside lru_lock. Both truncate_complete_page() and invalidate_complete_page() call clear_page_mlock() before taking tree_lock to remove page from radix_tree. I guess invalidate_complete_page2() preferred to test PageDirty (again) under tree_lock before committing to the munlock; but since the page has already been unmapped, its state is already somewhat inconsistent, and no worse if clear_page_mlock() moved up. Reported-by: NSasha Levin <levinsasha928@gmail.com> Deciphered-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NHugh Dickins <hughd@google.com> Acked-by: NMel Gorman <mel@csn.ul.ie> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michel Lespinasse <walken@google.com> Cc: Ying Han <yinghan@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
kmem code uses this function and it is better to not use forward declarations for static inline functions as some (older) compilers don't like it: gcc version 4.3.4 [gcc-4_3-branch revision 152973] (SUSE Linux) mm/memcontrol.c:421: warning: `mem_cgroup_is_root' declared inline after being called mm/memcontrol.c:421: warning: previous declaration of `mem_cgroup_is_root' was here Signed-off-by: NMichal Hocko <mhocko@suse.cz> Cc: Glauber Costa <glommer@parallels.com> Cc: Sachin Kamat <sachin.kamat@linaro.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
TCP kmem accounting is currently guarded by CONFIG_MEMCG_KMEM ifdefs but the code is not used if !CONFIG_INET so we should rather test for both. The same applies to net/sock.h, net/ip.h and net/tcp_memcontrol.h but let's keep those outside of any ifdefs because it is considered safer wrt. future maintainability. Tested with - CONFIG_INET && CONFIG_MEMCG_KMEM - !CONFIG_INET && CONFIG_MEMCG_KMEM - CONFIG_INET && !CONFIG_MEMCG_KMEM - !CONFIG_INET && !CONFIG_MEMCG_KMEM Signed-off-by: NSachin Kamat <sachin.kamat@linaro.org> Signed-off-by: NMichal Hocko <mhocko@suse.cz> Cc: Glauber Costa <glommer@parallels.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Jianguo Wu 提交于
I think zone->present_pages indicates pages that buddy system can management, it should be: zone->present_pages = spanned pages - absent pages - bootmem pages, but is now: zone->present_pages = spanned pages - absent pages - memmap pages. spanned pages: total size, including holes. absent pages: holes. bootmem pages: pages used in system boot, managed by bootmem allocator. memmap pages: pages used by page structs. This may cause zone->present_pages less than it should be. For example, numa node 1 has ZONE_NORMAL and ZONE_MOVABLE, it's memmap and other bootmem will be allocated from ZONE_MOVABLE, so ZONE_NORMAL's present_pages should be spanned pages - absent pages, but now it also minus memmap pages(free_area_init_core), which are actually allocated from ZONE_MOVABLE. When offlining all memory of a zone, this will cause zone->present_pages less than 0, because present_pages is unsigned long type, it is actually a very large integer, it indirectly caused zone->watermark[WMARK_MIN] becomes a large integer(setup_per_zone_wmarks()), than cause totalreserve_pages become a large integer(calculate_totalreserve_pages()), and finally cause memory allocating failure when fork process(__vm_enough_memory()). [root@localhost ~]# dmesg -bash: fork: Cannot allocate memory I think the bug described in http://marc.info/?l=linux-mm&m=134502182714186&w=2 is also caused by wrong zone present pages. This patch intends to fix-up zone->present_pages when memory are freed to buddy system on x86_64 and IA64 platforms. Signed-off-by: NJianguo Wu <wujianguo@huawei.com> Signed-off-by: NJiang Liu <jiang.liu@huawei.com> Reported-by: NPetr Tesarik <ptesarik@suse.cz> Tested-by: NPetr Tesarik <ptesarik@suse.cz> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Rik van Riel 提交于
Now that lumpy reclaim has been removed, compaction is the only way left to free up contiguous memory areas. It is time to just enable CONFIG_COMPACTION by default. Signed-off-by: NRik van Riel <riel@redhat.com> Cc: Mel Gorman <mel@csn.ul.ie> Acked-by: NRafael Aquini <aquini@redhat.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NMinchan Kim <minchan@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Catalin Marinas 提交于
The update_mmu_cache() takes a pointer (to pte_t by default) as the last argument but the huge_memory.c passes a pmd_t value. The patch changes the argument to the pmd_t * pointer. Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com> Signed-off-by: NSteve Capper <steve.capper@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com> Cc: Arnd Bergmann <arnd@arndb.de> Reviewed-by: NKirill A. Shutemov <kirill@shutemov.name> Cc: Michal Hocko <mhocko@suse.cz> Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com> Reviewed-by: NAndrea Arcangeli <aarcange@redhat.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Ralf Baechle <ralf@linux-mips.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Xiao Guangrong 提交于
If NUMA is enabled, the indicator is not reset if the previous page request failed, ausing us to trigger the BUG_ON() in khugepaged_alloc_page(). Signed-off-by: NXiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Hugh Dickins <hughd@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michel Lespinasse <walken@google.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Minchan Kim 提交于
The changelog for commit 6a6dccba ("mm: cma: don't replace lowmem pages with highmem") mentioned that lowmem pages can be replaced by highmem pages during CMA migration. 6a6dccba fixed that issue. Quote from that changelog: : The filesystem layer expects pages in the block device's mapping to not : be in highmem (the mapping's gfp mask is set in bdget()), but CMA can : currently replace lowmem pages with highmem pages, leading to crashes in : filesystem code such as the one below: : : Unable to handle kernel NULL pointer dereference at virtual address 00000400 : pgd = c0c98000 : [00000400] *pgd=00c91831, *pte=00000000, *ppte=00000000 : Internal error: Oops: 817 [#1] PREEMPT SMP ARM : CPU: 0 Not tainted (3.5.0-rc5+ #80) : PC is at __memzero+0x24/0x80 : ... : Process fsstress (pid: 323, stack limit = 0xc0cbc2f0) : Backtrace: : [<c010e3f0>] (ext4_getblk+0x0/0x180) from [<c010e58c>] (ext4_bread+0x1c/0x98) : [<c010e570>] (ext4_bread+0x0/0x98) from [<c0117944>] (ext4_mkdir+0x160/0x3bc) : r4:c15337f0 : [<c01177e4>] (ext4_mkdir+0x0/0x3bc) from [<c00c29e0>] (vfs_mkdir+0x8c/0x98) : [<c00c2954>] (vfs_mkdir+0x0/0x98) from [<c00c2a60>] (sys_mkdirat+0x74/0xac) : r6:00000000 r5:c152eb40 r4:000001ff r3:c14b43f0 : [<c00c29ec>] (sys_mkdirat+0x0/0xac) from [<c00c2ab8>] (sys_mkdir+0x20/0x24) : r6:beccdcf0 r5:00074000 r4:beccdbbc : [<c00c2a98>] (sys_mkdir+0x0/0x24) from [<c000e3c0>] (ret_fast_syscall+0x0/0x30) Memory-hotplug has same problem as CMA has so the same fix can be applied to memory-hotplug as well. Fix it by reusing. Signed-off-by: NMinchan Kim <minchan@kernel.org> Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: NYasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Acked-by: NMichal Nazarewicz <mina86@mina86.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Acked-by: NDavid Rientjes <rientjes@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Minchan Kim 提交于
__alloc_contig_migrate_alloc() can be used by memory-hotplug so refactor it out (move + rename as a common name) into page_isolation.c. [akpm@linux-foundation.org: checkpatch fixes] Signed-off-by: NMinchan Kim <minchan@kernel.org> Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: NYasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Acked-by: NMichal Nazarewicz <mina86@mina86.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Acked-by: NDavid Rientjes <rientjes@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Sachin Kamat 提交于
Signed-off-by: NSachin Kamat <sachin.kamat@linaro.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
Compaction caches if a pageblock was scanned and no pages were isolated so that the pageblocks can be skipped in the future to reduce scanning. This information is not cleared by the page allocator based on activity due to the impact it would have to the page allocator fast paths. Hence there is a requirement that something clear the cache or pageblocks will be skipped forever. Currently the cache is cleared if there were a number of recent allocation failures and it has not been cleared within the last 5 seconds. Time-based decisions like this are terrible as they have no relationship to VM activity and is basically a big hammer. Unfortunately, accurate heuristics would add cost to some hot paths so this patch implements a rough heuristic. There are two cases where the cache is cleared. 1. If a !kswapd process completes a compaction cycle (migrate and free scanner meet), the zone is marked compact_blockskip_flush. When kswapd goes to sleep, it will clear the cache. This is expected to be the common case where the cache is cleared. It does not really matter if kswapd happens to be asleep or going to sleep when the flag is set as it will be woken on the next allocation request. 2. If there have been multiple failures recently and compaction just finished being deferred then a process will clear the cache and start a full scan. This situation happens if there are multiple high-order allocation requests under heavy memory pressure. The clearing of the PG_migrate_skip bits and other scans is inherently racy but the race is harmless. For allocations that can fail such as THP, they will simply fail. For requests that cannot fail, they will retry the allocation. Tests indicated that scanning rates were roughly similar to when the time-based heuristic was used and the allocation success rates were similar. Signed-off-by: NMel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Richard Davies <richard@arachsys.com> Cc: Shaohua Li <shli@kernel.org> Cc: Avi Kivity <avi@redhat.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
This is almost entirely based on Rik's previous patches and discussions with him about how this might be implemented. Order > 0 compaction stops when enough free pages of the correct page order have been coalesced. When doing subsequent higher order allocations, it is possible for compaction to be invoked many times. However, the compaction code always starts out looking for things to compact at the start of the zone, and for free pages to compact things to at the end of the zone. This can cause quadratic behaviour, with isolate_freepages starting at the end of the zone each time, even though previous invocations of the compaction code already filled up all free memory on that end of the zone. This can cause isolate_freepages to take enormous amounts of CPU with certain workloads on larger memory systems. This patch caches where the migration and free scanner should start from on subsequent compaction invocations using the pageblock-skip information. When compaction starts it begins from the cached restart points and will update the cached restart points until a page is isolated or a pageblock is skipped that would have been scanned by synchronous compaction. Signed-off-by: NMel Gorman <mgorman@suse.de> Acked-by: NRik van Riel <riel@redhat.com> Cc: Richard Davies <richard@arachsys.com> Cc: Shaohua Li <shli@kernel.org> Cc: Avi Kivity <avi@redhat.com> Acked-by: NRafael Aquini <aquini@redhat.com> Cc: Fengguang Wu <fengguang.wu@intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
When compaction was implemented it was known that scanning could potentially be excessive. The ideal was that a counter be maintained for each pageblock but maintaining this information would incur a severe penalty due to a shared writable cache line. It has reached the point where the scanning costs are a serious problem, particularly on long-lived systems where a large process starts and allocates a large number of THPs at the same time. Instead of using a shared counter, this patch adds another bit to the pageblock flags called PG_migrate_skip. If a pageblock is scanned by either migrate or free scanner and 0 pages were isolated, the pageblock is marked to be skipped in the future. When scanning, this bit is checked before any scanning takes place and the block skipped if set. The main difficulty with a patch like this is "when to ignore the cached information?" If it's ignored too often, the scanning rates will still be excessive. If the information is too stale then allocations will fail that might have otherwise succeeded. In this patch o CMA always ignores the information o If the migrate and free scanner meet then the cached information will be discarded if it's at least 5 seconds since the last time the cache was discarded o If there are a large number of allocation failures, discard the cache. The time-based heuristic is very clumsy but there are few choices for a better event. Depending solely on multiple allocation failures still allows excessive scanning when THP allocations are failing in quick succession due to memory pressure. Waiting until memory pressure is relieved would cause compaction to continually fail instead of using reclaim/compaction to try allocate the page. The time-based mechanism is clumsy but a better option is not obvious. Signed-off-by: NMel Gorman <mgorman@suse.de> Acked-by: NRik van Riel <riel@redhat.com> Cc: Richard Davies <richard@arachsys.com> Cc: Shaohua Li <shli@kernel.org> Cc: Avi Kivity <avi@redhat.com> Acked-by: NRafael Aquini <aquini@redhat.com> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com> Cc: Kyungmin Park <kyungmin.park@samsung.com> Cc: Mark Brown <broonie@opensource.wolfsonmicro.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
This reverts commit 7db8889a ("mm: have order > 0 compaction start off where it left") and commit de74f1cc ("mm: have order > 0 compaction start near a pageblock with free pages"). These patches were a good idea and tests confirmed that they massively reduced the amount of scanning but the implementation is complex and tricky to understand. A later patch will cache what pageblocks should be skipped and reimplements the concept of compact_cached_free_pfn on top for both migration and free scanners. Signed-off-by: NMel Gorman <mgorman@suse.de> Acked-by: NRik van Riel <riel@redhat.com> Cc: Richard Davies <richard@arachsys.com> Cc: Shaohua Li <shli@kernel.org> Cc: Avi Kivity <avi@redhat.com> Acked-by: NRafael Aquini <aquini@redhat.com> Acked-by: NMinchan Kim <minchan@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
Compaction's free scanner acquires the zone->lock when checking for PageBuddy pages and isolating them. It does this even if there are no PageBuddy pages in the range. This patch defers acquiring the zone lock for as long as possible. In the event there are no free pages in the pageblock then the lock will not be acquired at all which reduces contention on zone->lock. Signed-off-by: NMel Gorman <mgorman@suse.de> Acked-by: NRik van Riel <riel@redhat.com> Cc: Richard Davies <richard@arachsys.com> Cc: Shaohua Li <shli@kernel.org> Cc: Avi Kivity <avi@redhat.com> Acked-by: NRafael Aquini <aquini@redhat.com> Acked-by: NMinchan Kim <minchan@kernel.org> Tested-by: NPeter Ujfalusi <peter.ujfalusi@ti.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
Richard Davies and Shaohua Li have both reported lock contention problems in compaction on the zone and LRU locks as well as significant amounts of time being spent in compaction. This series aims to reduce lock contention and scanning rates to reduce that CPU usage. Richard reported at https://lkml.org/lkml/2012/9/21/91 that this series made a big different to a problem he reported in August: http://marc.info/?l=kvm&m=134511507015614&w=2 Patch 1 defers acquiring the zone->lru_lock as long as possible. Patch 2 defers acquiring the zone->lock as lock as possible. Patch 3 reverts Rik's "skip-free" patches as the core concept gets reimplemented later and the remaining patches are easier to understand if this is reverted first. Patch 4 adds a pageblock-skip bit to the pageblock flags to cache what pageblocks should be skipped by the migrate and free scanners. This drastically reduces the amount of scanning compaction has to do. Patch 5 reimplements something similar to Rik's idea except it uses the pageblock-skip information to decide where the scanners should restart from and does not need to wrap around. I tested this on 3.6-rc6 + linux-next/akpm. Kernels tested were akpm-20120920 3.6-rc6 + linux-next/akpm as of Septeber 20th, 2012 lesslock Patches 1-6 revert Patches 1-7 cachefail Patches 1-8 skipuseless Patches 1-9 Stress high-order allocation tests looked ok. Success rates are more or less the same with the full series applied but there is an expectation that there is less opportunity to race with other allocation requests if there is less scanning. The time to complete the tests did not vary that much and are uninteresting as were the vmstat statistics so I will not present them here. Using ftrace I recorded how much scanning was done by compaction and got this 3.6.0-rc6 3.6.0-rc6 3.6.0-rc6 3.6.0-rc6 3.6.0-rc6 akpm-20120920 lockless revert-v2r2 cachefail skipuseless Total free scanned 360753976 515414028 565479007 17103281 18916589 Total free isolated 2852429 3597369 4048601 670493 727840 Total free efficiency 0.0079% 0.0070% 0.0072% 0.0392% 0.0385% Total migrate scanned 247728664 822729112 1004645830 17946827 14118903 Total migrate isolated 2555324 3245937 3437501 616359 658616 Total migrate efficiency 0.0103% 0.0039% 0.0034% 0.0343% 0.0466% The efficiency is worthless because of the nature of the test and the number of failures. The really interesting point as far as this patch series is concerned is the number of pages scanned. Note that reverting Rik's patches massively increases the number of pages scanned indicating that those patches really did make a difference to CPU usage. However, caching what pageblocks should be skipped has a much higher impact. With patches 1-8 applied, free page and migrate page scanning are both reduced by 95% in comparison to the akpm kernel. If the basic concept of Rik's patches are implemened on top then scanning then the free scanner barely changed but migrate scanning was further reduced. That said, tests on 3.6-rc5 indicated that the last patch had greater impact than what was measured here so it is a bit variable. One way or the other, this series has a large impact on the amount of scanning compaction does when there is a storm of THP allocations. This patch: Compaction's migrate scanner acquires the zone->lru_lock when scanning a range of pages looking for LRU pages to acquire. It does this even if there are no LRU pages in the range. If multiple processes are compacting then this can cause severe locking contention. To make matters worse commit b2eef8c0 ("mm: compaction: minimise the time IRQs are disabled while isolating pages for migration") releases the lru_lock every SWAP_CLUSTER_MAX pages that are scanned. This patch makes two changes to how the migrate scanner acquires the LRU lock. First, it only releases the LRU lock every SWAP_CLUSTER_MAX pages if the lock is contended. This reduces the number of times it unnecessarily disables and re-enables IRQs. The second is that it defers acquiring the LRU lock for as long as possible. If there are no LRU pages or the only LRU pages are transhuge then the LRU lock will not be acquired at all which reduces contention on zone->lru_lock. [minchan@kernel.org: augment comment] [akpm@linux-foundation.org: tweak comment text] Signed-off-by: NMel Gorman <mgorman@suse.de> Acked-by: NRik van Riel <riel@redhat.com> Cc: Richard Davies <richard@arachsys.com> Cc: Shaohua Li <shli@kernel.org> Cc: Avi Kivity <avi@redhat.com> Acked-by: NRafael Aquini <aquini@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
Parameters were added without documentation, tut tut. Signed-off-by: NMel Gorman <mgorman@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-