1. 04 7月, 2014 4 次提交
  2. 20 6月, 2014 1 次提交
  3. 05 6月, 2014 1 次提交
    • A
      intel-iommu: integrate DMA CMA · 36746436
      Akinobu Mita 提交于
      This adds support for the DMA Contiguous Memory Allocator for
      intel-iommu.  This change enables dma_alloc_coherent() to allocate big
      contiguous memory.
      
      It is achieved in the same way as nommu_dma_ops currently does, i.e.
      trying to allocate memory by dma_alloc_from_contiguous() and
      alloc_pages() is used as a fallback.
      Signed-off-by: NAkinobu Mita <akinobu.mita@gmail.com>
      Cc: Marek Szyprowski <m.szyprowski@samsung.com>
      Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
      Cc: David Woodhouse <dwmw2@infradead.org>
      Cc: Don Dutile <ddutile@redhat.com>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: "H. Peter Anvin" <hpa@zytor.com>
      Cc: Andi Kleen <andi@firstfloor.org>
      Cc: Yinghai Lu <yinghai@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      36746436
  4. 15 4月, 2014 1 次提交
  5. 13 4月, 2014 1 次提交
  6. 28 3月, 2014 1 次提交
  7. 24 3月, 2014 28 次提交
  8. 20 3月, 2014 3 次提交
    • D
      iommu/vt-d: Be less pessimistic about domain coherency where possible · d0501960
      David Woodhouse 提交于
      In commit 2e12bc29 ("intel-iommu: Default to non-coherent for domains
      unattached to iommus") we decided to err on the side of caution and
      always assume that it's possible that a device will be attached which is
      behind a non-coherent IOMMU.
      
      In some cases, however, that just *cannot* happen. If there *are* no
      IOMMUs in the system which are non-coherent, then we don't need to do
      it. And flushing the dcache is a *significant* performance hit.
      Signed-off-by: NDavid Woodhouse <David.Woodhouse@intel.com>
      d0501960
    • D
    • D
      iommu/vt-d: Clean up and fix page table clear/free behaviour · ea8ea460
      David Woodhouse 提交于
      There is a race condition between the existing clear/free code and the
      hardware. The IOMMU is actually permitted to cache the intermediate
      levels of the page tables, and doesn't need to walk the table from the
      very top of the PGD each time. So the existing back-to-back calls to
      dma_pte_clear_range() and dma_pte_free_pagetable() can lead to a
      use-after-free where the IOMMU reads from a freed page table.
      
      When freeing page tables we actually need to do the IOTLB flush, with
      the 'invalidation hint' bit clear to indicate that it's not just a
      leaf-node flush, after unlinking each page table page from the next level
      up but before actually freeing it.
      
      So in the rewritten domain_unmap() we just return a list of pages (using
      pg->freelist to make a list of them), and then the caller is expected to
      do the appropriate IOTLB flush (or tear down the domain completely,
      whatever), before finally calling dma_free_pagelist() to free the pages.
      
      As an added bonus, we no longer need to flush the CPU's data cache for
      pages which are about to be *removed* from the page table hierarchy anyway,
      in the non-cache-coherent case. This drastically improves the performance
      of large unmaps.
      
      As a side-effect of all these changes, this also fixes the fact that
      intel_iommu_unmap() was neglecting to free the page tables for the range
      in question after clearing them.
      Signed-off-by: NDavid Woodhouse <David.Woodhouse@intel.com>
      ea8ea460