- 04 3月, 2010 1 次提交
-
-
由 Jan Kara 提交于
We forget to release page references we acquire in ext4_da_block_invalidatepages. Luckily, this function gets called only if we are not able to allocate blocks for delay-allocated data so that function should better never be called. Also cleanup handling of index variable. Reported-by: NWu Fengguang <fengguang.wu@intel.com> Signed-off-by: NJan Kara <jack@suse.cz> Signed-off-by: N"Theodore Ts'o" <tytso@mit.edu>
-
- 02 3月, 2010 1 次提交
-
-
由 Dmitry Monakhov 提交于
We always assume what dquot update result in changes in one data block But ext4_quota_write() function may handle cross block boundary writes In fact if this ever happen it will result in incorrect journal credits reservation, and later a BUG_ON. As soon this never happen the boundary cross loop is NOOP. In order to make things straight let's remove this loop and assert cross boundary condition. Signed-off-by: NDmitry Monakhov <dmonakhov@openvz.org> Signed-off-by: N"Theodore Ts'o" <tytso@mit.edu>
-
- 03 3月, 2010 2 次提交
-
-
由 Frank Mayhar 提交于
Convert a bunch of BUG_ONs to emit a ext4_error() message and return EIO. This is a first pass and most notably does _not_ cover mballoc.c, which is a morass of void functions. Signed-off-by: NFrank Mayhar <fmayhar@google.com> Signed-off-by: N"Theodore Ts'o" <tytso@mit.edu>
-
由 Jiaying Zhang 提交于
Signed-off-by: NJiaying Zhang <jiayingz@google.com> Signed-off-by: N"Theodore Ts'o" <tytso@mit.edu>
-
- 05 3月, 2010 1 次提交
-
-
由 Jiaying Zhang 提交于
Allocate uninitialized extent before ext4 buffer write and convert the extent to initialized after io completes. The purpose is to make sure an extent can only be marked initialized after it has been written with new data so we can safely drop the i_mutex lock in ext4 DIO read without exposing stale data. This helps to improve multi-thread DIO read performance on high-speed disks. Skip the nobh and data=journal mount cases to make things simple for now. Signed-off-by: NJiaying Zhang <jiayingz@google.com> Signed-off-by: N"Theodore Ts'o" <tytso@mit.edu>
-
- 03 3月, 2010 1 次提交
-
-
由 Jiaying Zhang 提交于
This commit renames some of the direct I/O's block allocation flags, variables, and functions introduced in Mingming's "Direct IO for holes and fallocate" patches so that they can be used by ext4's buffered write path as well. Also changed the related function comments accordingly to cover both direct write and buffered write cases. Signed-off-by: NJiaying Zhang <jiayingz@google.com> Signed-off-by: N"Theodore Ts'o" <tytso@mit.edu>
-
- 02 3月, 2010 7 次提交
-
-
由 Toshiyuki Okajima 提交于
The callers of ext4_check_dir_entry() usually pass in the "file offset" (ext4_readdir, htree_dirblock_to_tree, search_dirblock, ext4_dx_find_entry, empty_dir), but a few callers (add_dirent_to_buf, ext4_delete_entry) only pass in the buffer offset. To accomodate those last two (which would be hard to fix otherwise), this patch changes ext4_check_dir_entry() to print the physical block number and the relative offset as well as the passed-in offset. Signed-off-by: NToshiyuki Okajima <toshi.okajima@jp.fujitsu.com> Signed-off-by: N"Theodore Ts'o" <tytso@mit.edu>
-
由 Dmitry Monakhov 提交于
In case of truncate errors we explicitly remove inode from in-core orphan list via orphan_del(NULL, inode) without modifying the on-disk list. But later on, the same inode may be inserted in the orphan list again which will result the on-disk linked list getting corrupted. If inode i_dtime contains valid value, then skip on-disk list modification. Signed-off-by: NDmitry Monakhov <dmonakhov@openvz.org> Signed-off-by: N"Theodore Ts'o" <tytso@mit.edu>
-
由 Dmitry Monakhov 提交于
Otherwise non-empty orphan list will be triggered on umount. Signed-off-by: NDmitry Monakhov <dmonakhov@openvz.org> Signed-off-by: N"Theodore Ts'o" <tytso@mit.edu>
-
由 Dmitry Monakhov 提交于
Set i_nlink to zero for temporary inode from very beginning. otherwise we may fail to start new journal handle and this inode will be unreferenced but with i_nlink == 1 Since we hold inode reference it can not be pruned. Also add missed journal_start retval check. Signed-off-by: NDmitry Monakhov <dmonakhov@openvz.org> Signed-off-by: N"Theodore Ts'o" <tytso@mit.edu>
-
由 Dmitry Monakhov 提交于
Declare following list of mount options as deprecated: - bsddf, miniddf - grpid, bsdgroups, nogrpid, sysvgroups Declare following list of default mount options as deprecated: - bsdgroups Signed-off-by: NDmitry Monakhov <dmonakhov@openvz.org> Signed-off-by: N"Theodore Ts'o" <tytso@mit.edu>
-
由 Tao Ma 提交于
The ext4 multiblock allocator decides whether to use group or file preallocation based on the file size. When the file size reaches s_mb_stream_request (default is 16 blocks), it changes to use a file-specific preallocation. This is cool, but it has a tiny problem. See a simple script: mkfs.ext4 -b 1024 /dev/sda8 1000000 mount -t ext4 -o nodelalloc /dev/sda8 /mnt/ext4 for((i=0;i<5;i++)) do cat /mnt/4096>>/mnt/ext4/a #4096 is a file with 4096 characters. cat /mnt/4096>>/mnt/ext4/b done debuge4fs -R 'stat a' /dev/sda8|grep BLOCKS -A 1 And you get BLOCKS: (0-14):8705-8719, (15):2356, (16-19):8465-8468 So there are 3 extents, a bit strange for the lonely 15th logical block. As we write to the 16 blocks, we choose file preallocation in ext4_mb_group_or_file, but in ext4_mb_normalize_request, we meet with the 16*1024 range, so no preallocation will be carried. file b then reserves the space after '2356', so when when write 16, we start from another part. This patch just change the check in ext4_mb_group_or_file, so that for the lonely 15 we will still use group preallocation. After the patch, we will get: debuge4fs -R 'stat a' /dev/sda8|grep BLOCKS -A 1 BLOCKS: (0-15):8705-8720, (16-19):8465-8468 Looks more sane. Thanks. Signed-off-by: NTao Ma <tao.ma@oracle.com> Signed-off-by: N"Theodore Ts'o" <tytso@mit.edu>
-
由 Dmitry Monakhov 提交于
The patch is aimed to reorganize and simplify quota code a bit. Quota code is itself complex enough, but we can make it more readable in some places: - Move quota option parsing to separate functions. - Simplify old-quota and journaled-quota mix check. Signed-off-by: NDmitry Monakhov <dmonakhov@openvz.org> Acked-by: NJan Kara <jack@suse.cz> Signed-off-by: N"Theodore Ts'o" <tytso@mit.edu>
-
- 25 2月, 2010 1 次提交
-
-
由 Dmitry Monakhov 提交于
Replace intermediate EXT4_MOUNT_XXX flags manipulation to corresponding macro. Signed-off-by: NDmitry Monakhov <dmonakhov@openvz.org> Acked-by: NJan Kara <jack@suse.cz> Signed-off-by: N"Theodore Ts'o" <tytso@mit.edu>
-
- 24 2月, 2010 1 次提交
-
-
由 Jiaying Zhang 提交于
fallocate() may potentially instantiate blocks past EOF, depending on the flags used when it is called. e2fsck currently has a test for blocks past i_size, and it sometimes trips up - noticeably on xfstests 013 which runs fsstress. This patch from Jiayang does fix it up - it (along with e2fsprogs updates and other patches recently from Aneesh) has survived many fsstress runs in a row. Signed-off-by: NEric Sandeen <sandeen@redhat.com> Signed-off-by: NJiaying Zhang <jiayingz@google.com> Signed-off-by: N"Theodore Ts'o" <tytso@mit.edu>
-
- 17 2月, 2010 1 次提交
-
-
由 Curt Wohlgemuth 提交于
Calls to ext4_handle_dirty_metadata should only pass in an inode pointer for inode-specific metadata, and not for shared metadata blocks such as inode table blocks, block group descriptors, the superblock, etc. The BUG_ON can get tripped when updating a special device (such as a block device) that is opened (so that i_mapping is set in fs/block_dev.c) and the file system is mounted in no journal mode. Addresses-Google-Bug: #2404870 Signed-off-by: NCurt Wohlgemuth <curtw@google.com> Signed-off-by: N"Theodore Ts'o" <tytso@mit.edu>
-
- 05 3月, 2010 1 次提交
-
-
由 Leonard Michlmayr 提交于
ext4_fiemap() rounds the length of the requested range down to blocksize, which is is not the true number of blocks that cover the requested region. This problem is especially impressive if the user requests only the first byte of a file: not a single extent will be reported. We fix this by calculating the last block of the region and then subtract to find the number of blocks in the extents. Signed-off-by: NLeonard Michlmayr <leonard.michlmayr@gmail.com> Signed-off-by: N"Theodore Ts'o" <tytso@mit.edu>
-
- 16 2月, 2010 2 次提交
-
-
由 Roel Kluin 提交于
Signed-off-by: NRoel Kluin <roel.kluin@gmail.com>
-
由 Eric Sandeen 提交于
Just a pet peeve of mine; we had a mishash of calls with either __func__ or "function_name" and the latter tends to get out of sync. I think it's easier to just hide the __func__ in a macro, and it'll be consistent from then on. Signed-off-by: NEric Sandeen <sandeen@redhat.com> Signed-off-by: N"Theodore Ts'o" <tytso@mit.edu>
-
- 25 1月, 2010 2 次提交
-
-
由 Theodore Ts'o 提交于
Signed-off-by: N"Theodore Ts'o" <tytso@mit.edu>
-
由 Theodore Ts'o 提交于
At several places we modify EXT4_I(inode)->i_state without holding i_mutex (ext4_release_file, ext4_bmap, ext4_journalled_writepage, ext4_do_update_inode, ...). These modifications are racy and we can lose updates to i_state. So convert handling of i_state to use bitops which are atomic. Cc: Jan Kara <jack@suse.cz> Signed-off-by: N"Theodore Ts'o" <tytso@mit.edu>
-
- 01 1月, 2010 1 次提交
-
-
由 Theodore Ts'o 提交于
Add tracepoints for ext4_da_reserve_space(), ext4_da_update_reserve_space(), and ext4_da_release_space(). Signed-off-by: N"Theodore Ts'o" <tytso@mit.edu>
-
- 23 1月, 2010 1 次提交
-
-
由 Theodore Ts'o 提交于
Add checks to ext4_free_branches() to make sure a block number found in an indirect block are valid before trying to free it. If a bad block number is found, stop freeing the indirect block immediately, since the file system is corrupt and we will need to run fsck anyway. This also avoids spamming the logs, and specifically avoids driver-level "attempt to access beyond end of device" errors obscure what is really going on. If you get *really*, *really*, *really* unlucky, without this patch, a supposed indirect block containing garbage might contain a reference to a primary block group descriptor, in which case ext4_free_branches() could end up zero'ing out a block group descriptor block, and if then one of the block bitmaps for a block group described by that bg descriptor block is not in memory, and is read in by ext4_read_block_bitmap(). This function calls ext4_valid_block_bitmap(), which assumes that bg_inode_table() was validated at mount time and hasn't been modified since. Since this assumption is no longer valid, it's possible for the value (ext4_inode_table(sb, desc) - group_first_block) to go negative, which will cause ext4_find_next_zero_bit() to trigger a kernel GPF. Addresses-Google-Bug: #2220436 Signed-off-by: N"Theodore Ts'o" <tytso@mit.edu>
-
- 16 2月, 2010 1 次提交
-
-
由 Eric Sandeen 提交于
We have 2 mount options, "barrier" and "auto_da_alloc" which may or may not take a 1/0 argument. This causes the ext4 superblock mount code to subtract uninitialized pointers and pass the result to kmalloc, which results in very noisy failures. Per Ted's suggestion, initialize the args struct so that we know whether match_token() found an argument for the option, and skip match_int() if not. Also, return error (0) from parse_options if we thought we found an argument, but match_int() Fails. Reported-by: NMichael S. Tsirkin <mst@redhat.com> Signed-off-by: NEric Sandeen <sandeen@redhat.com> Signed-off-by: N"Theodore Ts'o" <tytso@mit.edu>
-
- 05 2月, 2010 1 次提交
-
-
由 Eric Sandeen 提交于
The "offset" member in ext4_io_end holds bytes, not blocks, so ext4_lblk_t is wrong - and too small (u32). This caused the async i/o writes to sparse files beyond 4GB to fail when they wrapped around to 0. Also fix up the type of arguments to ext4_convert_unwritten_extents(), it gets ssize_t from ext4_end_aio_dio_nolock() and ext4_ext_direct_IO(). Reported-by: NGiel de Nijs <giel@vectorwise.com> Signed-off-by: NEric Sandeen <sandeen@redhat.com>
-
- 15 1月, 2010 1 次提交
-
-
由 Aneesh Kumar K.V 提交于
We should update reserve space if it is delalloc buffer and that is indicated by EXT4_GET_BLOCKS_DELALLOC_RESERVE flag. So use EXT4_GET_BLOCKS_DELALLOC_RESERVE in place of EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
-
- 25 1月, 2010 1 次提交
-
-
由 Aneesh Kumar K.V 提交于
When we fallocate a region of the file which we had recently written, and which is still in the page cache marked as delayed allocated blocks we need to make sure we don't do the quota update on writepage path. This is because the needed quota updated would have already be done by fallocate. Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
-
- 23 1月, 2010 1 次提交
-
-
由 Aneesh Kumar K.V 提交于
We need to release the journal before we do a write_inode. Otherwise we could deadlock. Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
-
- 01 1月, 2010 2 次提交
-
-
由 Theodore Ts'o 提交于
In the past, ext4_calc_metadata_amount(), and its sub-functions ext4_ext_calc_metadata_amount() and ext4_indirect_calc_metadata_amount() badly over-estimated the number of metadata blocks that might be required for delayed allocation blocks. This didn't matter as much when functions which managed the reserved metadata blocks were more aggressive about dropping reserved metadata blocks as delayed allocation blocks were written, but unfortunately they were too aggressive. This was fixed in commit 0637c6f4, but as a result the over-estimation by ext4_calc_metadata_amount() would lead to reserving 2-3 times the number of pending delayed allocation blocks as potentially required metadata blocks. So if there are 1 megabytes of blocks which have been not yet been allocation, up to 3 megabytes of space would get reserved out of the user's quota and from the file system free space pool until all of the inode's data blocks have been allocated. This commit addresses this problem by much more accurately estimating the number of metadata blocks that will be required. It will still somewhat over-estimate the number of blocks needed, since it must make a worst case estimate not knowing which physical blocks will be needed, but it is much more accurate than before. Signed-off-by: N"Theodore Ts'o" <tytso@mit.edu>
-
由 Theodore Ts'o 提交于
Commit 0637c6f4 had a typo which caused the reserved metadata blocks to not be released correctly. Fix this. Signed-off-by: N"Theodore Ts'o" <tytso@mit.edu>
-
- 31 12月, 2009 1 次提交
-
-
由 Theodore Ts'o 提交于
As reported in Kernel Bugzilla #14936, commit d21cd8f1 triggered a BUG in the function ext4_da_update_reserve_space() found in fs/ext4/inode.c. The root cause of this BUG() was caused by the fact that ext4_calc_metadata_amount() can severely over-estimate how many metadata blocks will be needed, especially when using direct block-mapped files. In addition, it can also badly *under* estimate how much space is needed, since ext4_calc_metadata_amount() assumes that the blocks are contiguous, and this is not always true. If the application is writing blocks to a sparse file, the number of metadata blocks necessary can be severly underestimated by the functions ext4_da_reserve_space(), ext4_da_update_reserve_space() and ext4_da_release_space(). This was the cause of the dq_claim_space reports found on kerneloops.org. Unfortunately, doing this right means that we need to massively over-estimate the amount of free space needed. So in some cases we may need to force the inode to be written to disk asynchronously in to avoid spurious quota failures. http://bugzilla.kernel.org/show_bug.cgi?id=14936Signed-off-by: N"Theodore Ts'o" <tytso@mit.edu>
-
- 30 12月, 2009 1 次提交
-
-
由 Aneesh Kumar K.V 提交于
This fixes a bug (found by Curt Wohlgemuth) in which new blocks returned from an extent created with ext4_ext_zeroout() can have dirty metadata still associated with them. Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NCurt Wohlgemuth <curtw@google.com> Signed-off-by: N"Theodore Ts'o" <tytso@mit.edu>
-
- 26 12月, 2009 1 次提交
-
-
由 Richard Kennedy 提交于
When ext4_da_writepages increases the nr_to_write in writeback_control then it must always re-base the return value. Originally there was a (misguided) attempt prevent wbc.nr_to_write from going negative. In fact, it's necessary to allow nr_to_write to be negative so that wb_writeback() can correctly calculate how many pages were actually written. Signed-off-by: NRichard Kennedy <richard@rsk.demon.co.uk> Signed-off-by: N"Theodore Ts'o" <tytso@mit.edu>
-
- 23 12月, 2009 7 次提交
-
-
由 Eric Sandeen 提交于
Creating many small files in rapid succession on a small filesystem can lead to spurious ENOSPC; on a 104MB filesystem: for i in `seq 1 22500`; do echo -n > $SCRATCH_MNT/$i echo XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX > $SCRATCH_MNT/$i done leads to ENOSPC even though after a sync, 40% of the fs is free again. This is because we reserve worst-case metadata for delalloc writes, and when data is allocated that worst-case reservation is not usually needed. When freespace is low, kicking off an async writeback will start converting that worst-case space usage into something more realistic, almost always freeing up space to continue. This resolves the testcase for me, and survives all 4 generic ENOSPC tests in xfstests. We'll still need a hard synchronous sync to squeeze out the last bit, but this fixes things up to a large degree. Signed-off-by: NEric Sandeen <sandeen@redhat.com> Signed-off-by: N"Theodore Ts'o" <tytso@mit.edu>
-
由 Julia Lawall 提交于
b_entry_name and buffer are initially NULL, are initialized within a loop to the result of calling kmalloc, and are freed at the bottom of this loop. The loop contains gotos to cleanup, which also frees b_entry_name and buffer. Some of these gotos are before the reinitializations of b_entry_name and buffer. To maintain the invariant that b_entry_name and buffer are NULL at the top of the loop, and thus acceptable arguments to kfree, these variables are now set to NULL after the kfrees. This seems to be the simplest solution. A more complicated solution would be to introduce more labels in the error handling code at the end of the function. A simplified version of the semantic match that finds this problem is as follows: (http://coccinelle.lip6.fr/) // <smpl> @r@ identifier E; expression E1; iterator I; statement S; @@ *kfree(E); ... when != E = E1 when != I(E,...) S when != &E *kfree(E); // </smpl> Signed-off-by: NJulia Lawall <julia@diku.dk> Signed-off-by: N"Theodore Ts'o" <tytso@mit.edu>
-
由 Andrew Morton 提交于
sparc64 allmodconfig: fs/ext4/super.c: In function `lifetime_write_kbytes_show': fs/ext4/super.c:2174: warning: long long unsigned int format, long unsigned int arg (arg 4) fs/ext4/super.c:2174: warning: long long unsigned int format, long unsigned int arg (arg 4) Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: N"Theodore Ts'o" <tytso@mit.edu>
-
由 Dmitry Monakhov 提交于
Unlock i_block_reservation_lock before vfs_dq_reserve_block(). This patch fixes http://bugzilla.kernel.org/show_bug.cgi?id=14739 CC: Theodore Ts'o <tytso@mit.edu> Signed-off-by: NDmitry Monakhov <dmonakhov@openvz.org> Signed-off-by: NJan Kara <jack@suse.cz>
-
由 Dmitry Monakhov 提交于
We have to delay vfs_dq_claim_space() until allocation context destruction. Currently we have following call-trace: ext4_mb_new_blocks() /* task is already holding ac->alloc_semp */ ->ext4_mb_mark_diskspace_used ->vfs_dq_claim_space() /* acquire dqptr_sem here. Possible deadlock */ ->ext4_mb_release_context() /* drop ac->alloc_semp here */ Let's move quota claiming to ext4_da_update_reserve_space() ======================================================= [ INFO: possible circular locking dependency detected ] 2.6.32-rc7 #18 ------------------------------------------------------- write-truncate-/3465 is trying to acquire lock: (&s->s_dquot.dqptr_sem){++++..}, at: [<c025e73b>] dquot_claim_space+0x3b/0x1b0 but task is already holding lock: (&meta_group_info[i]->alloc_sem){++++..}, at: [<c02ce962>] ext4_mb_load_buddy+0xb2/0x370 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #3 (&meta_group_info[i]->alloc_sem){++++..}: [<c017d04b>] __lock_acquire+0xd7b/0x1260 [<c017d5ea>] lock_acquire+0xba/0xd0 [<c0527191>] down_read+0x51/0x90 [<c02ce962>] ext4_mb_load_buddy+0xb2/0x370 [<c02d0c1c>] ext4_mb_free_blocks+0x46c/0x870 [<c029c9d3>] ext4_free_blocks+0x73/0x130 [<c02c8cfc>] ext4_ext_truncate+0x76c/0x8d0 [<c02a8087>] ext4_truncate+0x187/0x5e0 [<c01e0f7b>] vmtruncate+0x6b/0x70 [<c022ec02>] inode_setattr+0x62/0x190 [<c02a2d7a>] ext4_setattr+0x25a/0x370 [<c022ee81>] notify_change+0x151/0x340 [<c021349d>] do_truncate+0x6d/0xa0 [<c0221034>] may_open+0x1d4/0x200 [<c022412b>] do_filp_open+0x1eb/0x910 [<c021244d>] do_sys_open+0x6d/0x140 [<c021258e>] sys_open+0x2e/0x40 [<c0103100>] sysenter_do_call+0x12/0x32 -> #2 (&ei->i_data_sem){++++..}: [<c017d04b>] __lock_acquire+0xd7b/0x1260 [<c017d5ea>] lock_acquire+0xba/0xd0 [<c0527191>] down_read+0x51/0x90 [<c02a5787>] ext4_get_blocks+0x47/0x450 [<c02a74c1>] ext4_getblk+0x61/0x1d0 [<c02a7a7f>] ext4_bread+0x1f/0xa0 [<c02bcddc>] ext4_quota_write+0x12c/0x310 [<c0262d23>] qtree_write_dquot+0x93/0x120 [<c0261708>] v2_write_dquot+0x28/0x30 [<c025d3fb>] dquot_commit+0xab/0xf0 [<c02be977>] ext4_write_dquot+0x77/0x90 [<c02be9bf>] ext4_mark_dquot_dirty+0x2f/0x50 [<c025e321>] dquot_alloc_inode+0x101/0x180 [<c029fec2>] ext4_new_inode+0x602/0xf00 [<c02ad789>] ext4_create+0x89/0x150 [<c0221ff2>] vfs_create+0xa2/0xc0 [<c02246e7>] do_filp_open+0x7a7/0x910 [<c021244d>] do_sys_open+0x6d/0x140 [<c021258e>] sys_open+0x2e/0x40 [<c0103100>] sysenter_do_call+0x12/0x32 -> #1 (&sb->s_type->i_mutex_key#7/4){+.+...}: [<c017d04b>] __lock_acquire+0xd7b/0x1260 [<c017d5ea>] lock_acquire+0xba/0xd0 [<c0526505>] mutex_lock_nested+0x65/0x2d0 [<c0260c9d>] vfs_load_quota_inode+0x4bd/0x5a0 [<c02610af>] vfs_quota_on_path+0x5f/0x70 [<c02bc812>] ext4_quota_on+0x112/0x190 [<c026345a>] sys_quotactl+0x44a/0x8a0 [<c0103100>] sysenter_do_call+0x12/0x32 -> #0 (&s->s_dquot.dqptr_sem){++++..}: [<c017d361>] __lock_acquire+0x1091/0x1260 [<c017d5ea>] lock_acquire+0xba/0xd0 [<c0527191>] down_read+0x51/0x90 [<c025e73b>] dquot_claim_space+0x3b/0x1b0 [<c02cb95f>] ext4_mb_mark_diskspace_used+0x36f/0x380 [<c02d210a>] ext4_mb_new_blocks+0x34a/0x530 [<c02c83fb>] ext4_ext_get_blocks+0x122b/0x13c0 [<c02a5966>] ext4_get_blocks+0x226/0x450 [<c02a5ff3>] mpage_da_map_blocks+0xc3/0xaa0 [<c02a6ed6>] ext4_da_writepages+0x506/0x790 [<c01de272>] do_writepages+0x22/0x50 [<c01d766d>] __filemap_fdatawrite_range+0x6d/0x80 [<c01d7b9b>] filemap_flush+0x2b/0x30 [<c02a40ac>] ext4_alloc_da_blocks+0x5c/0x60 [<c029e595>] ext4_release_file+0x75/0xb0 [<c0216b59>] __fput+0xf9/0x210 [<c0216c97>] fput+0x27/0x30 [<c02122dc>] filp_close+0x4c/0x80 [<c014510e>] put_files_struct+0x6e/0xd0 [<c01451b7>] exit_files+0x47/0x60 [<c0146a24>] do_exit+0x144/0x710 [<c0147028>] do_group_exit+0x38/0xa0 [<c0159abc>] get_signal_to_deliver+0x2ac/0x410 [<c0102849>] do_notify_resume+0xb9/0x890 [<c01032d2>] work_notifysig+0x13/0x21 other info that might help us debug this: 3 locks held by write-truncate-/3465: #0: (jbd2_handle){+.+...}, at: [<c02e1f8f>] start_this_handle+0x38f/0x5c0 #1: (&ei->i_data_sem){++++..}, at: [<c02a57f6>] ext4_get_blocks+0xb6/0x450 #2: (&meta_group_info[i]->alloc_sem){++++..}, at: [<c02ce962>] ext4_mb_load_buddy+0xb2/0x370 stack backtrace: Pid: 3465, comm: write-truncate- Not tainted 2.6.32-rc7 #18 Call Trace: [<c0524cb3>] ? printk+0x1d/0x22 [<c017ac9a>] print_circular_bug+0xca/0xd0 [<c017d361>] __lock_acquire+0x1091/0x1260 [<c016bca2>] ? sched_clock_local+0xd2/0x170 [<c0178fd0>] ? trace_hardirqs_off_caller+0x20/0xd0 [<c017d5ea>] lock_acquire+0xba/0xd0 [<c025e73b>] ? dquot_claim_space+0x3b/0x1b0 [<c0527191>] down_read+0x51/0x90 [<c025e73b>] ? dquot_claim_space+0x3b/0x1b0 [<c025e73b>] dquot_claim_space+0x3b/0x1b0 [<c02cb95f>] ext4_mb_mark_diskspace_used+0x36f/0x380 [<c02d210a>] ext4_mb_new_blocks+0x34a/0x530 [<c02c601d>] ? ext4_ext_find_extent+0x25d/0x280 [<c02c83fb>] ext4_ext_get_blocks+0x122b/0x13c0 [<c016bca2>] ? sched_clock_local+0xd2/0x170 [<c016be60>] ? sched_clock_cpu+0x120/0x160 [<c016beef>] ? cpu_clock+0x4f/0x60 [<c0178fd0>] ? trace_hardirqs_off_caller+0x20/0xd0 [<c052712c>] ? down_write+0x8c/0xa0 [<c02a5966>] ext4_get_blocks+0x226/0x450 [<c016be60>] ? sched_clock_cpu+0x120/0x160 [<c016beef>] ? cpu_clock+0x4f/0x60 [<c017908b>] ? trace_hardirqs_off+0xb/0x10 [<c02a5ff3>] mpage_da_map_blocks+0xc3/0xaa0 [<c01d69cc>] ? find_get_pages_tag+0x16c/0x180 [<c01d6860>] ? find_get_pages_tag+0x0/0x180 [<c02a73bd>] ? __mpage_da_writepage+0x16d/0x1a0 [<c01dfc4e>] ? pagevec_lookup_tag+0x2e/0x40 [<c01ddf1b>] ? write_cache_pages+0xdb/0x3d0 [<c02a7250>] ? __mpage_da_writepage+0x0/0x1a0 [<c02a6ed6>] ext4_da_writepages+0x506/0x790 [<c016beef>] ? cpu_clock+0x4f/0x60 [<c016bca2>] ? sched_clock_local+0xd2/0x170 [<c016be60>] ? sched_clock_cpu+0x120/0x160 [<c016be60>] ? sched_clock_cpu+0x120/0x160 [<c02a69d0>] ? ext4_da_writepages+0x0/0x790 [<c01de272>] do_writepages+0x22/0x50 [<c01d766d>] __filemap_fdatawrite_range+0x6d/0x80 [<c01d7b9b>] filemap_flush+0x2b/0x30 [<c02a40ac>] ext4_alloc_da_blocks+0x5c/0x60 [<c029e595>] ext4_release_file+0x75/0xb0 [<c0216b59>] __fput+0xf9/0x210 [<c0216c97>] fput+0x27/0x30 [<c02122dc>] filp_close+0x4c/0x80 [<c014510e>] put_files_struct+0x6e/0xd0 [<c01451b7>] exit_files+0x47/0x60 [<c0146a24>] do_exit+0x144/0x710 [<c017b163>] ? lock_release_holdtime+0x33/0x210 [<c0528137>] ? _spin_unlock_irq+0x27/0x30 [<c0147028>] do_group_exit+0x38/0xa0 [<c017babb>] ? trace_hardirqs_on+0xb/0x10 [<c0159abc>] get_signal_to_deliver+0x2ac/0x410 [<c0102849>] do_notify_resume+0xb9/0x890 [<c0178fd0>] ? trace_hardirqs_off_caller+0x20/0xd0 [<c017b163>] ? lock_release_holdtime+0x33/0x210 [<c0165b50>] ? autoremove_wake_function+0x0/0x50 [<c017ba54>] ? trace_hardirqs_on_caller+0x134/0x190 [<c017babb>] ? trace_hardirqs_on+0xb/0x10 [<c0300ba4>] ? security_file_permission+0x14/0x20 [<c0215761>] ? vfs_write+0x131/0x190 [<c0214f50>] ? do_sync_write+0x0/0x120 [<c0103115>] ? sysenter_do_call+0x27/0x32 [<c01032d2>] work_notifysig+0x13/0x21 CC: Theodore Ts'o <tytso@mit.edu> Signed-off-by: NDmitry Monakhov <dmonakhov@openvz.org> Signed-off-by: NJan Kara <jack@suse.cz>
-
由 Dmitry Monakhov 提交于
This patch also fixes write vs chown race condition. Acked-by: N"Theodore Ts'o" <tytso@mit.edu> Signed-off-by: NDmitry Monakhov <dmonakhov@openvz.org> Signed-off-by: NJan Kara <jack@suse.cz>
-
由 Theodore Ts'o 提交于
This is a bit complicated because we are trying to optimize when we send barriers to the fs data disk. We could just throw in an extra barrier to the data disk whenever we send a barrier to the journal disk, but that's not always strictly necessary. We only need to send a barrier during a commit when there are data blocks which are must be written out due to an inode written in ordered mode, or if fsync() depends on the commit to force data blocks to disk. Finally, before we drop transactions from the beginning of the journal during a checkpoint operation, we need to guarantee that any blocks that were flushed out to the data disk are firmly on the rust platter before we drop the transaction from the journal. Thanks to Oleg Drokin for pointing out this flaw in ext3/ext4. Signed-off-by: N"Theodore Ts'o" <tytso@mit.edu>
-