1. 10 2月, 2007 1 次提交
    • T
      devres: device resource management · 9ac7849e
      Tejun Heo 提交于
      Implement device resource management, in short, devres.  A device
      driver can allocate arbirary size of devres data which is associated
      with a release function.  On driver detach, release function is
      invoked on the devres data, then, devres data is freed.
      
      devreses are typed by associated release functions.  Some devreses are
      better represented by single instance of the type while others need
      multiple instances sharing the same release function.  Both usages are
      supported.
      
      devreses can be grouped using devres group such that a device driver
      can easily release acquired resources halfway through initialization
      or selectively release resources (e.g. resources for port 1 out of 4
      ports).
      
      This patch adds devres core including documentation and the following
      managed interfaces.
      
      * alloc/free	: devm_kzalloc(), devm_kzfree()
      * IO region	: devm_request_region(), devm_release_region()
      * IRQ		: devm_request_irq(), devm_free_irq()
      * DMA		: dmam_alloc_coherent(), dmam_free_coherent(),
      		  dmam_declare_coherent_memory(), dmam_pool_create(),
      		  dmam_pool_destroy()
      * PCI		: pcim_enable_device(), pcim_pin_device(), pci_is_managed()
      * iomap		: devm_ioport_map(), devm_ioport_unmap(), devm_ioremap(),
      		  devm_ioremap_nocache(), devm_iounmap(), pcim_iomap_table(),
      		  pcim_iomap(), pcim_iounmap()
      Signed-off-by: NTejun Heo <htejun@gmail.com>
      Signed-off-by: NJeff Garzik <jeff@garzik.org>
      9ac7849e
  2. 01 10月, 2006 1 次提交
  3. 22 6月, 2006 2 次提交
    • R
      [PATCH] Driver model: add ISA bus · a5117ba7
      Rene Herman 提交于
      During the recent "isa drivers using platform devices" discussion it was
      pointed out that (ALSA) ISA drivers ran into the problem of not having
      the option to fail driver load (device registration rather) upon not
      finding their hardware due to a probe() error not being passed up
      through the driver model. In the course of that, I suggested a seperate
      ISA bus might be best; Russell King agreed and suggested this bus could
      use the .match() method for the actual device discovery.
      
      The attached does this. For this old non (generically) discoverable ISA
      hardware only the driver itself can do discovery so as a difference with
      the platform_bus, this isa_bus also distributes match() up to the driver.
      
      As another difference: these devices only exist in the driver model due
      to the driver creating them because it might want to drive them, meaning
      that all device creation has been made internal as well.
      
      The usage model this provides is nice, and has been acked from the ALSA
      side by Takashi Iwai and Jaroslav Kysela. The ALSA driver module_init's
      now (for oldisa-only drivers) become:
      
      static int __init alsa_card_foo_init(void)
      {
      	return isa_register_driver(&snd_foo_isa_driver, SNDRV_CARDS);
      }
      
      static void __exit alsa_card_foo_exit(void)
      {
      	isa_unregister_driver(&snd_foo_isa_driver);
      }
      
      Quite like the other bus models therefore. This removes a lot of
      duplicated init code from the ALSA ISA drivers.
      
      The passed in isa_driver struct is the regular driver struct embedding a
      struct device_driver, the normal probe/remove/shutdown/suspend/resume
      callbacks, and as indicated that .match callback.
      
      The "SNDRV_CARDS" you see being passed in is a "unsigned int ndev"
      parameter, indicating how many devices to create and call our methods with.
      
      The platform_driver callbacks are called with a platform_device param;
      the isa_driver callbacks are being called with a "struct device *dev,
      unsigned int id" pair directly -- with the device creation completely
      internal to the bus it's much cleaner to not leak isa_dev's by passing
      them in at all. The id is the only thing we ever want other then the
      struct device * anyways, and it makes for nicer code in the callbacks as
      well.
      
      With this additional .match() callback ISA drivers have all options. If
      ALSA would want to keep the old non-load behaviour, it could stick all
      of the old .probe in .match, which would only keep them registered after
      everything was found to be present and accounted for. If it wanted the
      behaviour of always loading as it inadvertently did for a bit after the
      changeover to platform devices, it could just not provide a .match() and
      do everything in .probe() as before.
      
      If it, as Takashi Iwai already suggested earlier as a way of following
      the model from saner buses more closely, wants to load when a later bind
      could conceivably succeed, it could use .match() for the prerequisites
      (such as checking the user wants the card enabled and that port/irq/dma
      values have been passed in) and .probe() for everything else. This is
      the nicest model.
      
      To the code...
      
      This exports only two functions; isa_{,un}register_driver().
      
      isa_register_driver() register's the struct device_driver, and then
      loops over the passed in ndev creating devices and registering them.
      This causes the bus match method to be called for them, which is:
      
      int isa_bus_match(struct device *dev, struct device_driver *driver)
      {
                struct isa_driver *isa_driver = to_isa_driver(driver);
      
                if (dev->platform_data == isa_driver) {
                        if (!isa_driver->match ||
                                isa_driver->match(dev, to_isa_dev(dev)->id))
                                return 1;
                        dev->platform_data = NULL;
                }
                return 0;
      }
      
      The first thing this does is check if this device is in fact one of this
      driver's devices by seeing if the device's platform_data pointer is set
      to this driver. Platform devices compare strings, but we don't need to
      do that with everything being internal, so isa_register_driver() abuses
      dev->platform_data as a isa_driver pointer which we can then check here.
      I believe platform_data is available for this, but if rather not, moving
      the isa_driver pointer to the private struct isa_dev is ofcourse fine as
      well.
      
      Then, if the the driver did not provide a .match, it matches. If it did,
      the driver match() method is called to determine a match.
      
      If it did _not_ match, dev->platform_data is reset to indicate this to
      isa_register_driver which can then unregister the device again.
      
      If during all this, there's any error, or no devices matched at all
      everything is backed out again and the error, or -ENODEV, is returned.
      
      isa_unregister_driver() just unregisters the matched devices and the
      driver itself.
      
      More global points/questions...
      
      - I'm introducing include/linux/isa.h. It was available but is ofcourse
      a somewhat generic name. Moving more isa stuff over to it in time is
      ofcourse fine, so can I have it please? :)
      
      - I'm using device_initcall() and added the isa.o (dependent on
      CONFIG_ISA) after the base driver model things in the Makefile. Will
      this do, or I really need to stick it in drivers/base/init.c, inside
      #ifdef CONFIG_ISA? It's working fine.
      
      Lastly -- I also looked, a bit, into integrating with PnP. "Old ISA"
      could be another pnp_protocol, but this does not seem to be a good
      match, largely due to the same reason platform_devices weren't -- the
      devices do not have a life of their own outside the driver, meaning the
      pnp_protocol {get,set}_resources callbacks would need to callback into
      driver -- which again means you first need to _have_ that driver. Even
      if there's clean way around that, you only end up inventing fake but
      valid-form PnP IDs and generally catering to the PnP layer without any
      practical advantages over this very simple isa_bus. The thing I also
      suggested earlier about the user echoing values into /sys to set up the
      hardware from userspace first is... well, cute, but a horrible idea from
      a user standpoint.
      
      Comments ofcourse appreciated. Hope it's okay. As said, the usage model
      is nice at least.
      Signed-off-by: NRene Herman <rene.herman@keyaccess.nl>
      a5117ba7
    • M
      [PATCH] Driver Core: Add /sys/hypervisor when needed · 4039483f
      Michael Holzheu 提交于
      To have a home for all hypervisors, this patch creates /sys/hypervisor.
      A new config option SYS_HYPERVISOR is introduced, which should to be set
      by architecture dependent hypervisors (e.g. s390 or Xen).
      Acked-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
      Signed-off-by: NMichael Holzheu <holzheu@de.ibm.com>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
      4039483f
  4. 04 2月, 2006 1 次提交
    • Z
      [PATCH] Export cpu topology in sysfs · 69dcc991
      Zhang, Yanmin 提交于
      The patch implements cpu topology exportation by sysfs.
      
      Items (attributes) are similar to /proc/cpuinfo.
      
      1) /sys/devices/system/cpu/cpuX/topology/physical_package_id:
      	represent the physical package id of  cpu X;
      2) /sys/devices/system/cpu/cpuX/topology/core_id:
      	represent the cpu core id to cpu X;
      3) /sys/devices/system/cpu/cpuX/topology/thread_siblings:
      	represent the thread siblings to cpu X in the same core;
      4) /sys/devices/system/cpu/cpuX/topology/core_siblings:
      	represent the thread siblings to cpu X in the same physical package;
      
      To implement it in an architecture-neutral way, a new source file,
      driver/base/topology.c, is to export the 5 attributes.
      
      If one architecture wants to support this feature, it just needs to
      implement 4 defines, typically in file include/asm-XXX/topology.h.
      The 4 defines are:
      #define topology_physical_package_id(cpu)
      #define topology_core_id(cpu)
      #define topology_thread_siblings(cpu)
      #define topology_core_siblings(cpu)
      
      The type of **_id is int.
      The type of siblings is cpumask_t.
      
      To be consistent on all architectures, the 4 attributes should have
      deafult values if their values are unavailable. Below is the rule.
      
      1) physical_package_id: If cpu has no physical package id, -1 is the
      default value.
      
      2) core_id: If cpu doesn't support multi-core, its core id is 0.
      
      3) thread_siblings: Just include itself, if the cpu doesn't support
      HT/multi-thread.
      
      4) core_siblings: Just include itself, if the cpu doesn't support
      multi-core and HT/Multi-thread.
      
      So be careful when declaring the 4 defines in include/asm-XXX/topology.h.
      
      If an attribute isn't defined on an architecture, it won't be exported.
      
      Thank Nathan, Greg, Andi, Paul and Venki.
      
      The patch provides defines for i386/x86_64/ia64.
      Signed-off-by: NZhang, Yanmin <yanmin.zhang@intel.com>
      Cc: Ingo Molnar <mingo@elte.hu>
      Cc: Nick Piggin <nickpiggin@yahoo.com.au>
      Cc: Greg KH <greg@kroah.com>
      Signed-off-by: NAndrew Morton <akpm@osdl.org>
      Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
      69dcc991
  5. 30 10月, 2005 1 次提交
  6. 21 6月, 2005 2 次提交
  7. 18 5月, 2005 1 次提交
    • D
      [PATCH] Driver Core: remove driver model detach_state · 0b405a0f
      David Brownell 提交于
      The driver model has a "detach_state" mechanism that:
      
       - Has never been used by any in-kernel drive;
       - Is superfluous, since driver remove() methods can do the same thing;
       - Became buggy when the suspend() parameter changed semantics and type;
       - Could self-deadlock when called from certain suspend contexts;
       - Is effectively wasted documentation, object code, and headspace.
      
      This removes that "detach_state" mechanism; net code shrink, as well
      as a per-device saving in the driver model and sysfs.
      Signed-off-by: NDavid Brownell <dbrownell@users.sourceforge.net>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
      0b405a0f
  8. 17 4月, 2005 1 次提交
    • L
      Linux-2.6.12-rc2 · 1da177e4
      Linus Torvalds 提交于
      Initial git repository build. I'm not bothering with the full history,
      even though we have it. We can create a separate "historical" git
      archive of that later if we want to, and in the meantime it's about
      3.2GB when imported into git - space that would just make the early
      git days unnecessarily complicated, when we don't have a lot of good
      infrastructure for it.
      
      Let it rip!
      1da177e4