1. 24 11月, 2005 1 次提交
    • J
      [PATCH] kprobes: Fix return probes on sys_execve · 8bf1101b
      Jim Keniston 提交于
      Fix a bug in kprobes that can cause an Oops or even a crash when a return
      probe is installed on one of the following functions: sys_execve,
      do_execve, load_*_binary, flush_old_exec, or flush_thread.  The fix is to
      remove the call to kprobe_flush_task() in flush_thread().  This fix has
      been tested on all architectures for which the return-probes feature has
      been implemented (i386, x86_64, ppc64, ia64).  Please apply.
      
      BACKGROUND
      
      Up to now, we have called kprobe_flush_task() under two situations: when a
      task exits, and when it execs.  Flushing kretprobe_instances on exit is
      correct because (a) do_exit() doesn't return, and (b) one or more
      return-probed functions may be active when a task calls do_exit().  Neither
      is the case for sys_execve() and its callees.
      
      Initially, the mistaken call to kprobe_flush_task() on exec was harmless
      because we put the "real" return address of each active probed function
      back in the stack, just to be safe, when we recycled its
      kretprobe_instance.  When support for ppc64 and ia64 was added, this safety
      measure couldn't be employed, and was eventually dropped even for i386 and
      x86_64.  sys_execve() and its callees were informally blacklisted for
      return probes until this fix was developed.
      Acked-by: NPrasanna S Panchamukhi <prasanna@in.ibm.com>
      Signed-off-by: NJim Keniston <jkenisto@us.ibm.com>
      Signed-off-by: NAndrew Morton <akpm@osdl.org>
      Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
      8bf1101b
  2. 15 11月, 2005 22 次提交
  3. 14 11月, 2005 1 次提交
  4. 09 11月, 2005 2 次提交
    • N
      [PATCH] sched: resched and cpu_idle rework · 64c7c8f8
      Nick Piggin 提交于
      Make some changes to the NEED_RESCHED and POLLING_NRFLAG to reduce
      confusion, and make their semantics rigid.  Improves efficiency of
      resched_task and some cpu_idle routines.
      
      * In resched_task:
      - TIF_NEED_RESCHED is only cleared with the task's runqueue lock held,
        and as we hold it during resched_task, then there is no need for an
        atomic test and set there. The only other time this should be set is
        when the task's quantum expires, in the timer interrupt - this is
        protected against because the rq lock is irq-safe.
      
      - If TIF_NEED_RESCHED is set, then we don't need to do anything. It
        won't get unset until the task get's schedule()d off.
      
      - If we are running on the same CPU as the task we resched, then set
        TIF_NEED_RESCHED and no further action is required.
      
      - If we are running on another CPU, and TIF_POLLING_NRFLAG is *not* set
        after TIF_NEED_RESCHED has been set, then we need to send an IPI.
      
      Using these rules, we are able to remove the test and set operation in
      resched_task, and make clear the previously vague semantics of
      POLLING_NRFLAG.
      
      * In idle routines:
      - Enter cpu_idle with preempt disabled. When the need_resched() condition
        becomes true, explicitly call schedule(). This makes things a bit clearer
        (IMO), but haven't updated all architectures yet.
      
      - Many do a test and clear of TIF_NEED_RESCHED for some reason. According
        to the resched_task rules, this isn't needed (and actually breaks the
        assumption that TIF_NEED_RESCHED is only cleared with the runqueue lock
        held). So remove that. Generally one less locked memory op when switching
        to the idle thread.
      
      - Many idle routines clear TIF_POLLING_NRFLAG, and only set it in the inner
        most polling idle loops. The above resched_task semantics allow it to be
        set until before the last time need_resched() is checked before going into
        a halt requiring interrupt wakeup.
      
        Many idle routines simply never enter such a halt, and so POLLING_NRFLAG
        can be always left set, completely eliminating resched IPIs when rescheduling
        the idle task.
      
        POLLING_NRFLAG width can be increased, to reduce the chance of resched IPIs.
      Signed-off-by: NNick Piggin <npiggin@suse.de>
      Cc: Ingo Molnar <mingo@elte.hu>
      Cc: Con Kolivas <kernel@kolivas.org>
      Signed-off-by: NAndrew Morton <akpm@osdl.org>
      Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
      64c7c8f8
    • N
      [PATCH] sched: disable preempt in idle tasks · 5bfb5d69
      Nick Piggin 提交于
      Run idle threads with preempt disabled.
      
      Also corrected a bugs in arm26's cpu_idle (make it actually call schedule()).
      How did it ever work before?
      
      Might fix the CPU hotplugging hang which Nigel Cunningham noted.
      
      We think the bug hits if the idle thread is preempted after checking
      need_resched() and before going to sleep, then the CPU offlined.
      
      After calling stop_machine_run, the CPU eventually returns from preemption and
      into the idle thread and goes to sleep.  The CPU will continue executing
      previous idle and have no chance to call play_dead.
      
      By disabling preemption until we are ready to explicitly schedule, this bug is
      fixed and the idle threads generally become more robust.
      
      From: alexs <ashepard@u.washington.edu>
      
        PPC build fix
      
      From: Yoichi Yuasa <yuasa@hh.iij4u.or.jp>
      
        MIPS build fix
      Signed-off-by: NNick Piggin <npiggin@suse.de>
      Signed-off-by: NYoichi Yuasa <yuasa@hh.iij4u.or.jp>
      Signed-off-by: NAndrew Morton <akpm@osdl.org>
      Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
      5bfb5d69
  5. 07 11月, 2005 6 次提交
  6. 31 10月, 2005 8 次提交