1. 31 10月, 2011 1 次提交
  2. 24 3月, 2011 1 次提交
    • S
      userns: add a user_namespace as creator/owner of uts_namespace · 59607db3
      Serge E. Hallyn 提交于
      The expected course of development for user namespaces targeted
      capabilities is laid out at https://wiki.ubuntu.com/UserNamespace.
      
      Goals:
      
      - Make it safe for an unprivileged user to unshare namespaces.  They
        will be privileged with respect to the new namespace, but this should
        only include resources which the unprivileged user already owns.
      
      - Provide separate limits and accounting for userids in different
        namespaces.
      
      Status:
      
        Currently (as of 2.6.38) you can clone with the CLONE_NEWUSER flag to
        get a new user namespace if you have the CAP_SYS_ADMIN, CAP_SETUID, and
        CAP_SETGID capabilities.  What this gets you is a whole new set of
        userids, meaning that user 500 will have a different 'struct user' in
        your namespace than in other namespaces.  So any accounting information
        stored in struct user will be unique to your namespace.
      
        However, throughout the kernel there are checks which
      
        - simply check for a capability.  Since root in a child namespace
          has all capabilities, this means that a child namespace is not
          constrained.
      
        - simply compare uid1 == uid2.  Since these are the integer uids,
          uid 500 in namespace 1 will be said to be equal to uid 500 in
          namespace 2.
      
        As a result, the lxc implementation at lxc.sf.net does not use user
        namespaces.  This is actually helpful because it leaves us free to
        develop user namespaces in such a way that, for some time, user
        namespaces may be unuseful.
      
      Bugs aside, this patchset is supposed to not at all affect systems which
      are not actively using user namespaces, and only restrict what tasks in
      child user namespace can do.  They begin to limit privilege to a user
      namespace, so that root in a container cannot kill or ptrace tasks in the
      parent user namespace, and can only get world access rights to files.
      Since all files currently belong to the initila user namespace, that means
      that child user namespaces can only get world access rights to *all*
      files.  While this temporarily makes user namespaces bad for system
      containers, it starts to get useful for some sandboxing.
      
      I've run the 'runltplite.sh' with and without this patchset and found no
      difference.
      
      This patch:
      
      copy_process() handles CLONE_NEWUSER before the rest of the namespaces.
      So in the case of clone(CLONE_NEWUSER|CLONE_NEWUTS) the new uts namespace
      will have the new user namespace as its owner.  That is what we want,
      since we want root in that new userns to be able to have privilege over
      it.
      
      Changelog:
      	Feb 15: don't set uts_ns->user_ns if we didn't create
      		a new uts_ns.
      	Feb 23: Move extern init_user_ns declaration from
      		init/version.c to utsname.h.
      Signed-off-by: NSerge E. Hallyn <serge.hallyn@canonical.com>
      Acked-by: N"Eric W. Biederman" <ebiederm@xmission.com>
      Acked-by: NDaniel Lezcano <daniel.lezcano@free.fr>
      Acked-by: NDavid Howells <dhowells@redhat.com>
      Cc: James Morris <jmorris@namei.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      59607db3
  3. 30 12月, 2010 1 次提交
  4. 27 10月, 2010 1 次提交
  5. 10 5月, 2010 1 次提交
  6. 03 4月, 2010 1 次提交
  7. 16 3月, 2010 1 次提交
  8. 21 1月, 2010 1 次提交
  9. 02 11月, 2009 1 次提交
    • T
      uids: Prevent tear down race · b00bc0b2
      Thomas Gleixner 提交于
      Ingo triggered the following warning:
      
      WARNING: at lib/debugobjects.c:255 debug_print_object+0x42/0x50()
      Hardware name: System Product Name
      ODEBUG: init active object type: timer_list
      Modules linked in:
      Pid: 2619, comm: dmesg Tainted: G        W  2.6.32-rc5-tip+ #5298
      Call Trace:
       [<81035443>] warn_slowpath_common+0x6a/0x81
       [<8120e483>] ? debug_print_object+0x42/0x50
       [<81035498>] warn_slowpath_fmt+0x29/0x2c
       [<8120e483>] debug_print_object+0x42/0x50
       [<8120ec2a>] __debug_object_init+0x279/0x2d7
       [<8120ecb3>] debug_object_init+0x13/0x18
       [<810409d2>] init_timer_key+0x17/0x6f
       [<81041526>] free_uid+0x50/0x6c
       [<8104ed2d>] put_cred_rcu+0x61/0x72
       [<81067fac>] rcu_do_batch+0x70/0x121
      
      debugobjects warns about an enqueued timer being initialized. If
      CONFIG_USER_SCHED=y the user management code uses delayed work to
      remove the user from the hash table and tear down the sysfs objects.
      
      free_uid is called from RCU and initializes/schedules delayed work if
      the usage count of the user_struct is 0. The init/schedule happens
      outside of the uidhash_lock protected region which allows a concurrent
      caller of find_user() to reference the about to be destroyed
      user_struct w/o preventing the work from being scheduled. If the next
      free_uid call happens before the work timer expired then the active
      timer is initialized and the work scheduled again.
      
      The race was introduced in commit 5cb350ba (sched: group scheduling,
      sysfs tunables) and made more prominent by commit 3959214f (sched:
      delayed cleanup of user_struct)
      
      Move the init/schedule_delayed_work inside of the uidhash_lock
      protected region to prevent the race.
      Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
      Acked-by: NDhaval Giani <dhaval@linux.vnet.ibm.com>
      Cc: Paul E. McKenney <paulmck@us.ibm.com>
      Cc: Kay Sievers <kay.sievers@vrfy.org>
      Cc: stable@kernel.org
      b00bc0b2
  10. 16 6月, 2009 1 次提交
    • K
      sched: delayed cleanup of user_struct · 3959214f
      Kay Sievers 提交于
      During bootup performance tracing we see repeated occurrences of
      /sys/kernel/uid/* events for the same uid, leading to a,
      in this case, rather pointless userspace processing for the
      same uid over and over.
      
      This is usually caused by tools which change their uid to "nobody",
      to run without privileges to read data supplied by untrusted users.
      
      This change delays the execution of the (already existing) scheduled
      work, to cleanup the uid after one second, so the allocated and announced
      uid can possibly be re-used by another process.
      
      This is the current behavior, where almost every invocation of a
      binary, which changes the uid, creates two events:
        $ read START < /sys/kernel/uevent_seqnum; \
        for i in `seq 100`; do su --shell=/bin/true bin; done; \
        read END < /sys/kernel/uevent_seqnum; \
        echo $(($END - $START))
        178
      
      With the delayed cleanup, we get only two events, and userspace finishes
      a bit faster too:
        $ read START < /sys/kernel/uevent_seqnum; \
        for i in `seq 100`; do su --shell=/bin/true bin; done; \
        read END < /sys/kernel/uevent_seqnum; \
        echo $(($END - $START))
        1
      Acked-by: NDhaval Giani <dhaval@linux.vnet.ibm.com>
      Signed-off-by: NKay Sievers <kay.sievers@vrfy.org>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
      3959214f
  11. 11 3月, 2009 1 次提交
  12. 27 2月, 2009 2 次提交
  13. 14 2月, 2009 1 次提交
  14. 09 12月, 2008 1 次提交
  15. 08 12月, 2008 1 次提交
  16. 02 12月, 2008 1 次提交
  17. 25 11月, 2008 2 次提交
    • S
      User namespaces: use the current_user_ns() macro · 6ded6ab9
      Serge Hallyn 提交于
      Fix up the last current_user()->user_ns instance to use
      current_user_ns().
      Signed-off-by: NSerge E. Hallyn <serue@us.ibm.com>
      6ded6ab9
    • S
      User namespaces: set of cleanups (v2) · 18b6e041
      Serge Hallyn 提交于
      The user_ns is moved from nsproxy to user_struct, so that a struct
      cred by itself is sufficient to determine access (which it otherwise
      would not be).  Corresponding ecryptfs fixes (by David Howells) are
      here as well.
      
      Fix refcounting.  The following rules now apply:
              1. The task pins the user struct.
              2. The user struct pins its user namespace.
              3. The user namespace pins the struct user which created it.
      
      User namespaces are cloned during copy_creds().  Unsharing a new user_ns
      is no longer possible.  (We could re-add that, but it'll cause code
      duplication and doesn't seem useful if PAM doesn't need to clone user
      namespaces).
      
      When a user namespace is created, its first user (uid 0) gets empty
      keyrings and a clean group_info.
      
      This incorporates a previous patch by David Howells.  Here
      is his original patch description:
      
      >I suggest adding the attached incremental patch.  It makes the following
      >changes:
      >
      > (1) Provides a current_user_ns() macro to wrap accesses to current's user
      >     namespace.
      >
      > (2) Fixes eCryptFS.
      >
      > (3) Renames create_new_userns() to create_user_ns() to be more consistent
      >     with the other associated functions and because the 'new' in the name is
      >     superfluous.
      >
      > (4) Moves the argument and permission checks made for CLONE_NEWUSER to the
      >     beginning of do_fork() so that they're done prior to making any attempts
      >     at allocation.
      >
      > (5) Calls create_user_ns() after prepare_creds(), and gives it the new creds
      >     to fill in rather than have it return the new root user.  I don't imagine
      >     the new root user being used for anything other than filling in a cred
      >     struct.
      >
      >     This also permits me to get rid of a get_uid() and a free_uid(), as the
      >     reference the creds were holding on the old user_struct can just be
      >     transferred to the new namespace's creator pointer.
      >
      > (6) Makes create_user_ns() reset the UIDs and GIDs of the creds under
      >     preparation rather than doing it in copy_creds().
      >
      >David
      
      >Signed-off-by: David Howells <dhowells@redhat.com>
      
      Changelog:
      	Oct 20: integrate dhowells comments
      		1. leave thread_keyring alone
      		2. use current_user_ns() in set_user()
      Signed-off-by: NSerge Hallyn <serue@us.ibm.com>
      18b6e041
  18. 14 11月, 2008 2 次提交
    • D
      CRED: Inaugurate COW credentials · d84f4f99
      David Howells 提交于
      Inaugurate copy-on-write credentials management.  This uses RCU to manage the
      credentials pointer in the task_struct with respect to accesses by other tasks.
      A process may only modify its own credentials, and so does not need locking to
      access or modify its own credentials.
      
      A mutex (cred_replace_mutex) is added to the task_struct to control the effect
      of PTRACE_ATTACHED on credential calculations, particularly with respect to
      execve().
      
      With this patch, the contents of an active credentials struct may not be
      changed directly; rather a new set of credentials must be prepared, modified
      and committed using something like the following sequence of events:
      
      	struct cred *new = prepare_creds();
      	int ret = blah(new);
      	if (ret < 0) {
      		abort_creds(new);
      		return ret;
      	}
      	return commit_creds(new);
      
      There are some exceptions to this rule: the keyrings pointed to by the active
      credentials may be instantiated - keyrings violate the COW rule as managing
      COW keyrings is tricky, given that it is possible for a task to directly alter
      the keys in a keyring in use by another task.
      
      To help enforce this, various pointers to sets of credentials, such as those in
      the task_struct, are declared const.  The purpose of this is compile-time
      discouragement of altering credentials through those pointers.  Once a set of
      credentials has been made public through one of these pointers, it may not be
      modified, except under special circumstances:
      
        (1) Its reference count may incremented and decremented.
      
        (2) The keyrings to which it points may be modified, but not replaced.
      
      The only safe way to modify anything else is to create a replacement and commit
      using the functions described in Documentation/credentials.txt (which will be
      added by a later patch).
      
      This patch and the preceding patches have been tested with the LTP SELinux
      testsuite.
      
      This patch makes several logical sets of alteration:
      
       (1) execve().
      
           This now prepares and commits credentials in various places in the
           security code rather than altering the current creds directly.
      
       (2) Temporary credential overrides.
      
           do_coredump() and sys_faccessat() now prepare their own credentials and
           temporarily override the ones currently on the acting thread, whilst
           preventing interference from other threads by holding cred_replace_mutex
           on the thread being dumped.
      
           This will be replaced in a future patch by something that hands down the
           credentials directly to the functions being called, rather than altering
           the task's objective credentials.
      
       (3) LSM interface.
      
           A number of functions have been changed, added or removed:
      
           (*) security_capset_check(), ->capset_check()
           (*) security_capset_set(), ->capset_set()
      
           	 Removed in favour of security_capset().
      
           (*) security_capset(), ->capset()
      
           	 New.  This is passed a pointer to the new creds, a pointer to the old
           	 creds and the proposed capability sets.  It should fill in the new
           	 creds or return an error.  All pointers, barring the pointer to the
           	 new creds, are now const.
      
           (*) security_bprm_apply_creds(), ->bprm_apply_creds()
      
           	 Changed; now returns a value, which will cause the process to be
           	 killed if it's an error.
      
           (*) security_task_alloc(), ->task_alloc_security()
      
           	 Removed in favour of security_prepare_creds().
      
           (*) security_cred_free(), ->cred_free()
      
           	 New.  Free security data attached to cred->security.
      
           (*) security_prepare_creds(), ->cred_prepare()
      
           	 New. Duplicate any security data attached to cred->security.
      
           (*) security_commit_creds(), ->cred_commit()
      
           	 New. Apply any security effects for the upcoming installation of new
           	 security by commit_creds().
      
           (*) security_task_post_setuid(), ->task_post_setuid()
      
           	 Removed in favour of security_task_fix_setuid().
      
           (*) security_task_fix_setuid(), ->task_fix_setuid()
      
           	 Fix up the proposed new credentials for setuid().  This is used by
           	 cap_set_fix_setuid() to implicitly adjust capabilities in line with
           	 setuid() changes.  Changes are made to the new credentials, rather
           	 than the task itself as in security_task_post_setuid().
      
           (*) security_task_reparent_to_init(), ->task_reparent_to_init()
      
           	 Removed.  Instead the task being reparented to init is referred
           	 directly to init's credentials.
      
      	 NOTE!  This results in the loss of some state: SELinux's osid no
      	 longer records the sid of the thread that forked it.
      
           (*) security_key_alloc(), ->key_alloc()
           (*) security_key_permission(), ->key_permission()
      
           	 Changed.  These now take cred pointers rather than task pointers to
           	 refer to the security context.
      
       (4) sys_capset().
      
           This has been simplified and uses less locking.  The LSM functions it
           calls have been merged.
      
       (5) reparent_to_kthreadd().
      
           This gives the current thread the same credentials as init by simply using
           commit_thread() to point that way.
      
       (6) __sigqueue_alloc() and switch_uid()
      
           __sigqueue_alloc() can't stop the target task from changing its creds
           beneath it, so this function gets a reference to the currently applicable
           user_struct which it then passes into the sigqueue struct it returns if
           successful.
      
           switch_uid() is now called from commit_creds(), and possibly should be
           folded into that.  commit_creds() should take care of protecting
           __sigqueue_alloc().
      
       (7) [sg]et[ug]id() and co and [sg]et_current_groups.
      
           The set functions now all use prepare_creds(), commit_creds() and
           abort_creds() to build and check a new set of credentials before applying
           it.
      
           security_task_set[ug]id() is called inside the prepared section.  This
           guarantees that nothing else will affect the creds until we've finished.
      
           The calling of set_dumpable() has been moved into commit_creds().
      
           Much of the functionality of set_user() has been moved into
           commit_creds().
      
           The get functions all simply access the data directly.
      
       (8) security_task_prctl() and cap_task_prctl().
      
           security_task_prctl() has been modified to return -ENOSYS if it doesn't
           want to handle a function, or otherwise return the return value directly
           rather than through an argument.
      
           Additionally, cap_task_prctl() now prepares a new set of credentials, even
           if it doesn't end up using it.
      
       (9) Keyrings.
      
           A number of changes have been made to the keyrings code:
      
           (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have
           	 all been dropped and built in to the credentials functions directly.
           	 They may want separating out again later.
      
           (b) key_alloc() and search_process_keyrings() now take a cred pointer
           	 rather than a task pointer to specify the security context.
      
           (c) copy_creds() gives a new thread within the same thread group a new
           	 thread keyring if its parent had one, otherwise it discards the thread
           	 keyring.
      
           (d) The authorisation key now points directly to the credentials to extend
           	 the search into rather pointing to the task that carries them.
      
           (e) Installing thread, process or session keyrings causes a new set of
           	 credentials to be created, even though it's not strictly necessary for
           	 process or session keyrings (they're shared).
      
      (10) Usermode helper.
      
           The usermode helper code now carries a cred struct pointer in its
           subprocess_info struct instead of a new session keyring pointer.  This set
           of credentials is derived from init_cred and installed on the new process
           after it has been cloned.
      
           call_usermodehelper_setup() allocates the new credentials and
           call_usermodehelper_freeinfo() discards them if they haven't been used.  A
           special cred function (prepare_usermodeinfo_creds()) is provided
           specifically for call_usermodehelper_setup() to call.
      
           call_usermodehelper_setkeys() adjusts the credentials to sport the
           supplied keyring as the new session keyring.
      
      (11) SELinux.
      
           SELinux has a number of changes, in addition to those to support the LSM
           interface changes mentioned above:
      
           (a) selinux_setprocattr() no longer does its check for whether the
           	 current ptracer can access processes with the new SID inside the lock
           	 that covers getting the ptracer's SID.  Whilst this lock ensures that
           	 the check is done with the ptracer pinned, the result is only valid
           	 until the lock is released, so there's no point doing it inside the
           	 lock.
      
      (12) is_single_threaded().
      
           This function has been extracted from selinux_setprocattr() and put into
           a file of its own in the lib/ directory as join_session_keyring() now
           wants to use it too.
      
           The code in SELinux just checked to see whether a task shared mm_structs
           with other tasks (CLONE_VM), but that isn't good enough.  We really want
           to know if they're part of the same thread group (CLONE_THREAD).
      
      (13) nfsd.
      
           The NFS server daemon now has to use the COW credentials to set the
           credentials it is going to use.  It really needs to pass the credentials
           down to the functions it calls, but it can't do that until other patches
           in this series have been applied.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Acked-by: NJames Morris <jmorris@namei.org>
      Signed-off-by: NJames Morris <jmorris@namei.org>
      d84f4f99
    • D
      CRED: Separate task security context from task_struct · b6dff3ec
      David Howells 提交于
      Separate the task security context from task_struct.  At this point, the
      security data is temporarily embedded in the task_struct with two pointers
      pointing to it.
      
      Note that the Alpha arch is altered as it refers to (E)UID and (E)GID in
      entry.S via asm-offsets.
      
      With comment fixes Signed-off-by: Marc Dionne <marc.c.dionne@gmail.com>
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Acked-by: NJames Morris <jmorris@namei.org>
      Acked-by: NSerge Hallyn <serue@us.ibm.com>
      Signed-off-by: NJames Morris <jmorris@namei.org>
      b6dff3ec
  19. 19 8月, 2008 1 次提交
  20. 30 4月, 2008 1 次提交
  21. 29 4月, 2008 1 次提交
    • D
      keys: don't generate user and user session keyrings unless they're accessed · 69664cf1
      David Howells 提交于
      Don't generate the per-UID user and user session keyrings unless they're
      explicitly accessed.  This solves a problem during a login process whereby
      set*uid() is called before the SELinux PAM module, resulting in the per-UID
      keyrings having the wrong security labels.
      
      This also cures the problem of multiple per-UID keyrings sometimes appearing
      due to PAM modules (including pam_keyinit) setuiding and causing user_structs
      to come into and go out of existence whilst the session keyring pins the user
      keyring.  This is achieved by first searching for extant per-UID keyrings
      before inventing new ones.
      
      The serial bound argument is also dropped from find_keyring_by_name() as it's
      not currently made use of (setting it to 0 disables the feature).
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Cc: <kwc@citi.umich.edu>
      Cc: <arunsr@cse.iitk.ac.in>
      Cc: <dwalsh@redhat.com>
      Cc: Stephen Smalley <sds@tycho.nsa.gov>
      Cc: James Morris <jmorris@namei.org>
      Cc: Chris Wright <chrisw@sous-sol.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      69664cf1
  22. 20 4月, 2008 3 次提交
  23. 13 2月, 2008 2 次提交
  24. 09 2月, 2008 1 次提交
  25. 26 1月, 2008 1 次提交
  26. 25 1月, 2008 4 次提交
  27. 27 11月, 2007 1 次提交
  28. 25 10月, 2007 1 次提交
  29. 17 10月, 2007 3 次提交