- 10 9月, 2019 1 次提交
-
-
由 Linus Torvalds 提交于
[ Upstream commit 950b07c14e8c59444e2359f15fd70ed5112e11a0 ] This reverts commit 558682b5291937a70748d36fd9ba757fb25b99ae. Chris Wilson reports that it breaks his CPU hotplug test scripts. In particular, it breaks offlining and then re-onlining the boot CPU, which we treat specially (and the BIOS does too). The symptoms are that we can offline the CPU, but it then does not come back online again: smpboot: CPU 0 is now offline smpboot: Booting Node 0 Processor 0 APIC 0x0 smpboot: do_boot_cpu failed(-1) to wakeup CPU#0 Thomas says he knows why it's broken (my personal suspicion: our magic handling of the "cpu0_logical_apicid" thing), but for 5.3 the right fix is to just revert it, since we've never touched the LDR bits before, and it's not worth the risk to do anything else at this stage. [ Hotpluging of the boot CPU is special anyway, and should be off by default. See the "BOOTPARAM_HOTPLUG_CPU0" config option and the cpu0_hotplug kernel parameter. In general you should not do it, and it has various known limitations (hibernate and suspend require the boot CPU, for example). But it should work, even if the boot CPU is special and needs careful treatment - Linus ] Link: https://lore.kernel.org/lkml/156785100521.13300.14461504732265570003@skylake-alporthouse-com/Reported-by: NChris Wilson <chris@chris-wilson.co.uk> Acked-by: NThomas Gleixner <tglx@linutronix.de> Cc: Bandan Das <bsd@redhat.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
- 06 9月, 2019 2 次提交
-
-
由 Bandan Das 提交于
commit 558682b5291937a70748d36fd9ba757fb25b99ae upstream. Although APIC initialization will typically clear out the LDR before setting it, the APIC cleanup code should reset the LDR. This was discovered with a 32-bit KVM guest jumping into a kdump kernel. The stale bits in the LDR triggered a bug in the KVM APIC implementation which caused the destination mapping for VCPUs to be corrupted. Note that this isn't intended to paper over the KVM APIC bug. The kernel has to clear the LDR when resetting the APIC registers except when X2APIC is enabled. This lacks a Fixes tag because missing to clear LDR goes way back into pre git history. [ tglx: Made x2apic_enabled a function call as required ] Signed-off-by: NBandan Das <bsd@redhat.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20190826101513.5080-3-bsd@redhat.comSigned-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Bandan Das 提交于
commit bae3a8d3308ee69a7dbdf145911b18dfda8ade0d upstream. Legacy apic init uses bigsmp for smp systems with 8 and more CPUs. The bigsmp APIC implementation uses physical destination mode, but it nevertheless initializes LDR and DFR. The LDR even ends up incorrectly with multiple bit being set. This does not cause a functional problem because LDR and DFR are ignored when physical destination mode is active, but it triggered a problem on a 32-bit KVM guest which jumps into a kdump kernel. The multiple bits set unearthed a bug in the KVM APIC implementation. The code which creates the logical destination map for VCPUs ignores the disabled state of the APIC and ends up overwriting an existing valid entry and as a result, APIC calibration hangs in the guest during kdump initialization. Remove the bogus LDR/DFR initialization. This is not intended to work around the KVM APIC bug. The LDR/DFR ininitalization is wrong on its own. The issue goes back into the pre git history. The fixes tag is the commit in the bitkeeper import which introduced bigsmp support in 2003. git://git.kernel.org/pub/scm/linux/kernel/git/tglx/history.git Fixes: db7b9e9f26b8 ("[PATCH] Clustered APIC setup for >8 CPU systems") Suggested-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NBandan Das <bsd@redhat.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20190826101513.5080-2-bsd@redhat.comSigned-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 29 8月, 2019 1 次提交
-
-
由 Thomas Gleixner 提交于
commit f897e60a12f0b9146357780d317879bce2a877dc upstream. Some newer machines do not advertise legacy timers. The kernel can handle that situation if the TSC and the CPU frequency are enumerated by CPUID or MSRs and the CPU supports TSC deadline timer. If the CPU does not support TSC deadline timer the local APIC timer frequency has to be known as well. Some Ryzens machines do not advertize legacy timers, but there is no reliable way to determine the bus frequency which feeds the local APIC timer when the machine allows overclocking of that frequency. As there is no legacy timer the local APIC timer calibration crashes due to a NULL pointer dereference when accessing the not installed global clock event device. Switch the calibration loop to a non interrupt based one, which polls either TSC (if frequency is known) or jiffies. The latter requires a global clockevent. As the machines which do not have a global clockevent installed have a known TSC frequency this is a non issue. For older machines where TSC frequency is not known, there is no known case where the legacy timers do not exist as that would have been reported long ago. Reported-by: NDaniel Drake <drake@endlessm.com> Reported-by: NJiri Slaby <jslaby@suse.cz> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Tested-by: NDaniel Drake <drake@endlessm.com> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1908091443030.21433@nanos.tec.linutronix.de Link: http://bugzilla.opensuse.org/show_bug.cgi?id=1142926#c12Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 07 8月, 2019 1 次提交
-
-
由 Qian Cai 提交于
[ Upstream commit ec6335586953b0df32f83ef696002063090c7aef ] There are many compiler warnings like this, In file included from ./arch/x86/include/asm/smp.h:13, from ./arch/x86/include/asm/mmzone_64.h:11, from ./arch/x86/include/asm/mmzone.h:5, from ./include/linux/mmzone.h:969, from ./include/linux/gfp.h:6, from ./include/linux/mm.h:10, from arch/x86/kernel/apic/io_apic.c:34: arch/x86/kernel/apic/io_apic.c: In function 'check_timer': ./arch/x86/include/asm/apic.h:37:11: warning: comparison of unsigned expression >= 0 is always true [-Wtype-limits] if ((v) <= apic_verbosity) \ ^~ arch/x86/kernel/apic/io_apic.c:2160:2: note: in expansion of macro 'apic_printk' apic_printk(APIC_QUIET, KERN_INFO "..TIMER: vector=0x%02X " ^~~~~~~~~~~ ./arch/x86/include/asm/apic.h:37:11: warning: comparison of unsigned expression >= 0 is always true [-Wtype-limits] if ((v) <= apic_verbosity) \ ^~ arch/x86/kernel/apic/io_apic.c:2207:4: note: in expansion of macro 'apic_printk' apic_printk(APIC_QUIET, KERN_ERR "..MP-BIOS bug: " ^~~~~~~~~~~ APIC_QUIET is 0, so silence them by making apic_verbosity type int. Signed-off-by: NQian Cai <cai@lca.pw> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/1562621805-24789-1-git-send-email-cai@lca.pwSigned-off-by: NSasha Levin <sashal@kernel.org>
-
- 21 7月, 2019 4 次提交
-
-
由 Thomas Gleixner 提交于
commit f8a8fe61fec8006575699559ead88b0b833d5cad upstream Quite some time ago the interrupt entry stubs for unused vectors in the system vector range got removed and directly mapped to the spurious interrupt vector entry point. Sounds reasonable, but it's subtly broken. The spurious interrupt vector entry point pushes vector number 0xFF on the stack which makes the whole logic in __smp_spurious_interrupt() pointless. As a consequence any spurious interrupt which comes from a vector != 0xFF is treated as a real spurious interrupt (vector 0xFF) and not acknowledged. That subsequently stalls all interrupt vectors of equal and lower priority, which brings the system to a grinding halt. This can happen because even on 64-bit the system vector space is not guaranteed to be fully populated. A full compile time handling of the unused vectors is not possible because quite some of them are conditonally populated at runtime. Bring the entry stubs back, which wastes 160 bytes if all stubs are unused, but gains the proper handling back. There is no point to selectively spare some of the stubs which are known at compile time as the required code in the IDT management would be way larger and convoluted. Do not route the spurious entries through common_interrupt and do_IRQ() as the original code did. Route it to smp_spurious_interrupt() which evaluates the vector number and acts accordingly now that the real vector numbers are handed in. Fixup the pr_warn so the actual spurious vector (0xff) is clearly distiguished from the other vectors and also note for the vectored case whether it was pending in the ISR or not. "Spurious APIC interrupt (vector 0xFF) on CPU#0, should never happen." "Spurious interrupt vector 0xed on CPU#1. Acked." "Spurious interrupt vector 0xee on CPU#1. Not pending!." Fixes: 2414e021 ("x86: Avoid building unused IRQ entry stubs") Reported-by: NJan Kiszka <jan.kiszka@siemens.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: Marc Zyngier <marc.zyngier@arm.com> Cc: Jan Beulich <jbeulich@suse.com> Link: https://lkml.kernel.org/r/20190628111440.550568228@linutronix.deSigned-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Thomas Gleixner 提交于
commit b7107a67f0d125459fe41f86e8079afd1a5e0b15 upstream Since the rework of the vector management, warnings about spurious interrupts have been reported. Robert provided some more information and did an initial analysis. The following situation leads to these warnings: CPU 0 CPU 1 IO_APIC interrupt is raised sent to CPU1 Unable to handle immediately (interrupts off, deep idle delay) mask() ... free() shutdown() synchronize_irq() clear_vector() do_IRQ() -> vector is clear Before the rework the vector entries of legacy interrupts were statically assigned and occupied precious vector space while most of them were unused. Due to that the above situation was handled silently because the vector was handled and the core handler of the assigned interrupt descriptor noticed that it is shut down and returned. While this has been usually observed with legacy interrupts, this situation is not limited to them. Any other interrupt source, e.g. MSI, can cause the same issue. After adding proper synchronization for level triggered interrupts, this can only happen for edge triggered interrupts where the IO-APIC obviously cannot provide information about interrupts in flight. While the spurious warning is actually harmless in this case it worries users and driver developers. Handle it gracefully by marking the vector entry as VECTOR_SHUTDOWN instead of VECTOR_UNUSED when the vector is freed up. If that above late handling happens the spurious detector will not complain and switch the entry to VECTOR_UNUSED. Any subsequent spurious interrupt on that line will trigger the spurious warning as before. Fixes: 464d1230 ("x86/vector: Switch IOAPIC to global reservation mode") Reported-by: NRobert Hodaszi <Robert.Hodaszi@digi.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>- Tested-by: NRobert Hodaszi <Robert.Hodaszi@digi.com> Cc: Marc Zyngier <marc.zyngier@arm.com> Link: https://lkml.kernel.org/r/20190628111440.459647741@linutronix.deSigned-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Thomas Gleixner 提交于
commit dfe0cf8b51b07e56ded571e3de0a4a9382517231 upstream When an interrupt is shut down in free_irq() there might be an inflight interrupt pending in the IO-APIC remote IRR which is not yet serviced. That means the interrupt has been sent to the target CPUs local APIC, but the target CPU is in a state which delays the servicing. So free_irq() would proceed to free resources and to clear the vector because synchronize_hardirq() does not see an interrupt handler in progress. That can trigger a spurious interrupt warning, which is harmless and just confuses users, but it also can leave the remote IRR in a stale state because once the handler is invoked the interrupt resources might be freed already and therefore acknowledgement is not possible anymore. Implement the irq_get_irqchip_state() callback for the IO-APIC irq chip. The callback is invoked from free_irq() via __synchronize_hardirq(). Check the remote IRR bit of the interrupt and return 'in flight' if it is set and the interrupt is configured in level mode. For edge mode the remote IRR has no meaning. As this is only meaningful for level triggered interrupts this won't cure the potential spurious interrupt warning for edge triggered interrupts, but the edge trigger case does not result in stale hardware state. This has to be addressed at the vector/interrupt entry level seperately. Fixes: 464d1230 ("x86/vector: Switch IOAPIC to global reservation mode") Reported-by: NRobert Hodaszi <Robert.Hodaszi@digi.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: Marc Zyngier <marc.zyngier@arm.com> Link: https://lkml.kernel.org/r/20190628111440.370295517@linutronix.deSigned-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Colin Ian King 提交于
[ Upstream commit ea136a112d89bade596314a1ae49f748902f4727 ] The left shift of unsigned int cpu_khz will overflow for large values of cpu_khz, so cast it to a long long before shifting it to avoid overvlow. For example, this can happen when cpu_khz is 4194305, i.e. ~4.2 GHz. Addresses-Coverity: ("Unintentional integer overflow") Fixes: 8c3ba8d0 ("x86, apic: ack all pending irqs when crashed/on kexec") Signed-off-by: NColin Ian King <colin.king@canonical.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: Borislav Petkov <bp@alien8.de> Cc: "H . Peter Anvin" <hpa@zytor.com> Cc: kernel-janitors@vger.kernel.org Link: https://lkml.kernel.org/r/20190619181446.13635-1-colin.king@canonical.comSigned-off-by: NSasha Levin <sashal@kernel.org>
-
- 06 3月, 2019 1 次提交
-
-
由 Dou Liyang 提交于
[ Upstream commit 76f99ae5b54d48430d1f0c5512a84da0ff9761e0 ] Linux spreads out the non managed interrupt across the possible target CPUs to avoid vector space exhaustion. Managed interrupts are treated differently, as for them the vectors are reserved (with guarantee) when the interrupt descriptors are initialized. When the interrupt is requested a real vector is assigned. The assignment logic uses the first CPU in the affinity mask for assignment. If the interrupt has more than one CPU in the affinity mask, which happens when a multi queue device has less queues than CPUs, then doing the same search as for non managed interrupts makes sense as it puts the interrupt on the least interrupt plagued CPU. For single CPU affine vectors that's obviously a NOOP. Restructre the matrix allocation code so it does the 'best CPU' search, add the sanity check for an empty affinity mask and adapt the call site in the x86 vector management code. [ tglx: Added the empty mask check to the core and improved change log ] Signed-off-by: NDou Liyang <douly.fnst@cn.fujitsu.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: hpa@zytor.com Link: https://lkml.kernel.org/r/20180908175838.14450-2-dou_liyang@163.comSigned-off-by: NSasha Levin <sashal@kernel.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 08 9月, 2018 1 次提交
-
-
由 Thomas Gleixner 提交于
activate_managed() returns EINVAL instead of -EINVAL in case of error. While this is unlikely to happen, the positive return value would cause further malfunction at the call site. Fixes: 2db1f959 ("x86/vector: Handle managed interrupts proper") Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org
-
- 15 8月, 2018 1 次提交
-
-
由 Vlastimil Babka 提交于
The function has an inline "return false;" definition with CONFIG_SMP=n but the "real" definition is also visible leading to "redefinition of ‘apic_id_is_primary_thread’" compiler error. Guard it with #ifdef CONFIG_SMP Signed-off-by: NVlastimil Babka <vbabka@suse.cz> Fixes: 6a4d2657 ("x86/smp: Provide topology_is_primary_thread()") Cc: stable@vger.kernel.org Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 05 8月, 2018 1 次提交
-
-
由 Nicolai Stange 提交于
The next patch in this series will have to make the definition of irq_cpustat_t available to entering_irq(). Inclusion of asm/hardirq.h into asm/apic.h would cause circular header dependencies like asm/smp.h asm/apic.h asm/hardirq.h linux/irq.h linux/topology.h linux/smp.h asm/smp.h or linux/gfp.h linux/mmzone.h asm/mmzone.h asm/mmzone_64.h asm/smp.h asm/apic.h asm/hardirq.h linux/irq.h linux/irqdesc.h linux/kobject.h linux/sysfs.h linux/kernfs.h linux/idr.h linux/gfp.h and others. This causes compilation errors because of the header guards becoming effective in the second inclusion: symbols/macros that had been defined before wouldn't be available to intermediate headers in the #include chain anymore. A possible workaround would be to move the definition of irq_cpustat_t into its own header and include that from both, asm/hardirq.h and asm/apic.h. However, this wouldn't solve the real problem, namely asm/harirq.h unnecessarily pulling in all the linux/irq.h cruft: nothing in asm/hardirq.h itself requires it. Also, note that there are some other archs, like e.g. arm64, which don't have that #include in their asm/hardirq.h. Remove the linux/irq.h #include from x86' asm/hardirq.h. Fix resulting compilation errors by adding appropriate #includes to *.c files as needed. Note that some of these *.c files could be cleaned up a bit wrt. to their set of #includes, but that should better be done from separate patches, if at all. Signed-off-by: NNicolai Stange <nstange@suse.de> Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 31 7月, 2018 2 次提交
-
-
由 Yi Wang 提交于
There is inconsistent indenting in calibrate_APIC_clock() and activate_managed(). Remove the surplus TAB. Signed-off-by: NYi Wang <wang.yi59@zte.com.cn> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Reviewed-by: NJiang Biao <jiang.biao2@zte.com.cn> Acked-by: NSteven Rostedt (VMware) <rostedt@goodmis.org> Cc: hpa@zytor.com Cc: douly.fnst@cn.fujitsu.com Cc: jgross@suse.com Cc: ville.syrjala@linux.intel.com Cc: len.brown@intel.com Cc: gregkh@linuxfoundation.org Cc: zhong.weidong@zte.com.cn Link: https://lkml.kernel.org/r/1532672103-32250-1-git-send-email-wang.yi59@zte.com.cn
-
由 Dou Liyang 提交于
parse_mem_block_size() and mem_block_size are only used during init. Mark them accordingly. Fixes: d7609f42 ("x86/platform/UV: Add kernel parameter to set memory block size") Signed-off-by: NDou Liyang <douly.fnst@cn.fujitsu.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: hpa@zytor.com Cc: Mike Travis <mike.travis@hpe.com> Cc: Andrew Banman <andrew.banman@hpe.com> Link: https://lkml.kernel.org/r/20180730075947.23023-1-douly.fnst@cn.fujitsu.com
-
- 24 7月, 2018 1 次提交
-
-
由 Len Brown 提交于
All SKX with stepping higher than 4 support the TSC_DEADLINE, no matter the microcode version. Without this patch, upcoming SKX steppings will not be able to use their TSC_DEADLINE timer. Signed-off-by: NLen Brown <len.brown@intel.com> Cc: <stable@kernel.org> # v4.14+ Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: 616dd587 ("x86/apic: Update TSC_DEADLINE quirk with additional SKX stepping") Link: http://lkml.kernel.org/r/d0c7129e509660be9ec6b233284b8d42d90659e8.1532207856.git.len.brown@intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 02 7月, 2018 1 次提交
-
-
由 Thomas Gleixner 提交于
Dave Hansen reported, that it's outright dangerous to keep SMT siblings disabled completely so they are stuck in the BIOS and wait for SIPI. The reason is that Machine Check Exceptions are broadcasted to siblings and the soft disabled sibling has CR4.MCE = 0. If a MCE is delivered to a logical core with CR4.MCE = 0, it asserts IERR#, which shuts down or reboots the machine. The MCE chapter in the SDM contains the following blurb: Because the logical processors within a physical package are tightly coupled with respect to shared hardware resources, both logical processors are notified of machine check errors that occur within a given physical processor. If machine-check exceptions are enabled when a fatal error is reported, all the logical processors within a physical package are dispatched to the machine-check exception handler. If machine-check exceptions are disabled, the logical processors enter the shutdown state and assert the IERR# signal. When enabling machine-check exceptions, the MCE flag in control register CR4 should be set for each logical processor. Reverting the commit which ignores siblings at enumeration time solves only half of the problem. The core cpuhotplug logic needs to be adjusted as well. This thoughtful engineered mechanism also turns the boot process on all Intel HT enabled systems into a MCE lottery. MCE is enabled on the boot CPU before the secondary CPUs are brought up. Depending on the number of physical cores the window in which this situation can happen is smaller or larger. On a HSW-EX it's about 750ms: MCE is enabled on the boot CPU: [ 0.244017] mce: CPU supports 22 MCE banks The corresponding sibling #72 boots: [ 1.008005] .... node #0, CPUs: #72 That means if an MCE hits on physical core 0 (logical CPUs 0 and 72) between these two points the machine is going to shutdown. At least it's a known safe state. It's obvious that the early boot can be hit by an MCE as well and then runs into the same situation because MCEs are not yet enabled on the boot CPU. But after enabling them on the boot CPU, it does not make any sense to prevent the kernel from recovering. Adjust the nosmt kernel parameter documentation as well. Reverts: 2207def7 ("x86/apic: Ignore secondary threads if nosmt=force") Reported-by: NDave Hansen <dave.hansen@intel.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Tested-by: NTony Luck <tony.luck@intel.com>
-
- 21 6月, 2018 4 次提交
-
-
由 mike.travis@hpe.com 提交于
Add a kernel parameter that allows setting UV memory block size. This is to provide an adjustment for new forms of PMEM and other DIMM memory that might require alignment restrictions other than scanning the global address table for the required minimum alignment. The value set will be further adjusted by both the GAM range table scan as well as restrictions imposed by set_memory_block_size_order(). Signed-off-by: NMike Travis <mike.travis@hpe.com> Reviewed-by: NAndrew Banman <andrew.banman@hpe.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Dimitri Sivanich <dimitri.sivanich@hpe.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Russ Anderson <russ.anderson@hpe.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: dan.j.williams@intel.com Cc: jgross@suse.com Cc: kirill.shutemov@linux.intel.com Cc: mhocko@suse.com Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/lkml/20180524201711.854849120@stormcage.americas.sgi.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 mike.travis@hpe.com 提交于
Add a call to the new function to "adjust" the current fixed UV memory block size of 2GB so it can be changed to a different physical boundary. This accommodates changes in the Intel BIOS, and therefore UV BIOS, which now can align boundaries different than the previous UV standard of 2GB. It also flags any UV Global Address boundaries from BIOS that cause a change in the mem block size (boundary). The current boundary of 2GB has been used on UV since the first system release in 2009 with Linux 2.6 and has worked fine. But the new NVDIMM persistent memory modules (PMEM), along with the Intel BIOS changes to support these modules caused the memory block size boundary to be set to a lower limit. Intel only guarantees that this minimum boundary at 64MB though the current Linux limit is 128MB. Note that the default remains 2GB if no changes occur. Signed-off-by: NMike Travis <mike.travis@hpe.com> Reviewed-by: NAndrew Banman <andrew.banman@hpe.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Dimitri Sivanich <dimitri.sivanich@hpe.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Russ Anderson <russ.anderson@hpe.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: dan.j.williams@intel.com Cc: jgross@suse.com Cc: kirill.shutemov@linux.intel.com Cc: mhocko@suse.com Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/lkml/20180524201711.732785782@stormcage.americas.sgi.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Thomas Gleixner 提交于
nosmt on the kernel command line merely prevents the onlining of the secondary SMT siblings. nosmt=force makes the APIC detection code ignore the secondary SMT siblings completely, so they even do not show up as possible CPUs. That reduces the amount of memory allocations for per cpu variables and saves other resources from being allocated too large. This is not fully equivalent to disabling SMT in the BIOS because the low level SMT enabling in the BIOS can result in partitioning of resources between the siblings, which is not undone by just ignoring them. Some CPUs can use the full resources when their sibling is not onlined, but this is depending on the CPU family and model and it's not well documented whether this applies to all partitioned resources. That means depending on the workload disabling SMT in the BIOS might result in better performance. Linus analysis of the Intel manual: The intel optimization manual is not very clear on what the partitioning rules are. I find: "In general, the buffers for staging instructions between major pipe stages are partitioned. These buffers include µop queues after the execution trace cache, the queues after the register rename stage, the reorder buffer which stages instructions for retirement, and the load and store buffers. In the case of load and store buffers, partitioning also provided an easier implementation to maintain memory ordering for each logical processor and detect memory ordering violations" but some of that partitioning may be relaxed if the HT thread is "not active": "In Intel microarchitecture code name Sandy Bridge, the micro-op queue is statically partitioned to provide 28 entries for each logical processor, irrespective of software executing in single thread or multiple threads. If one logical processor is not active in Intel microarchitecture code name Ivy Bridge, then a single thread executing on that processor core can use the 56 entries in the micro-op queue" but I do not know what "not active" means, and how dynamic it is. Some of that partitioning may be entirely static and depend on the early BIOS disabling of HT, and even if we park the cores, the resources will just be wasted. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Reviewed-by: NKonrad Rzeszutek Wilk <konrad.wilk@oracle.com> Acked-by: NIngo Molnar <mingo@kernel.org>
-
由 Thomas Gleixner 提交于
If the CPU is supporting SMT then the primary thread can be found by checking the lower APIC ID bits for zero. smp_num_siblings is used to build the mask for the APIC ID bits which need to be taken into account. This uses the MPTABLE or ACPI/MADT supplied APIC ID, which can be different than the initial APIC ID in CPUID. But according to AMD the lower bits have to be consistent. Intel gave a tentative confirmation as well. Preparatory patch to support disabling SMT at boot/runtime. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Reviewed-by: NKonrad Rzeszutek Wilk <konrad.wilk@oracle.com> Acked-by: NIngo Molnar <mingo@kernel.org>
-
- 06 6月, 2018 4 次提交
-
-
由 Thomas Gleixner 提交于
Extend the debugability of the vector management by adding the state bits to the debugfs output. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Tested-by: NSong Liu <songliubraving@fb.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Song Liu <liu.song.a23@gmail.com> Cc: Dmitry Safonov <0x7f454c46@gmail.com> Cc: Mike Travis <mike.travis@hpe.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Tariq Toukan <tariqt@mellanox.com> Link: https://lkml.kernel.org/r/20180604162224.908136099@linutronix.de
-
由 Thomas Gleixner 提交于
To address the EBUSY fail of interrupt affinity settings in case that the previous setting has not been cleaned up yet, use the new apic_ack_irq() function instead of directly invoking ack_APIC_irq(). Preparatory change for the real fix Fixes: dccfe314 ("x86/vector: Simplify vector move cleanup") Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Tested-by: NSong Liu <songliubraving@fb.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Song Liu <liu.song.a23@gmail.com> Cc: Dmitry Safonov <0x7f454c46@gmail.com> Cc: stable@vger.kernel.org Cc: Mike Travis <mike.travis@hpe.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Tariq Toukan <tariqt@mellanox.com> Link: https://lkml.kernel.org/r/20180604162224.639011135@linutronix.de
-
由 Thomas Gleixner 提交于
apic_ack_edge() is explicitely for handling interrupt affinity cleanup when interrupt remapping is not available or disable. Remapped interrupts and also some of the platform specific special interrupts, e.g. UV, invoke ack_APIC_irq() directly. To address the issue of failing an affinity update with -EBUSY the delayed affinity mechanism can be reused, but ack_APIC_irq() does not handle that. Adding this to ack_APIC_irq() is not possible, because that function is also used for exceptions and directly handled interrupts like IPIs. Create a new function, which just contains the conditional invocation of irq_move_irq() and the final ack_APIC_irq(). Reuse the new function in apic_ack_edge(). Preparatory change for the real fix. Fixes: dccfe314 ("x86/vector: Simplify vector move cleanup") Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Tested-by: NSong Liu <songliubraving@fb.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Song Liu <liu.song.a23@gmail.com> Cc: Dmitry Safonov <0x7f454c46@gmail.com> Cc: stable@vger.kernel.org Cc: Mike Travis <mike.travis@hpe.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Tariq Toukan <tariqt@mellanox.com> Link: https://lkml.kernel.org/r/20180604162224.471925894@linutronix.de
-
由 Thomas Gleixner 提交于
Several people observed the WARN_ON() in irq_matrix_free() which triggers when the caller tries to free an vector which is not in the allocation range. Song provided the trace information which allowed to decode the root cause. The rework of the vector allocation mechanism failed to preserve a sanity check, which prevents setting a new target vector/CPU when the previous affinity change has not fully completed. As a result a half finished affinity change can be overwritten, which can cause the leak of a irq descriptor pointer on the previous target CPU and double enqueue of the hlist head into the cleanup lists of two or more CPUs. After one CPU cleaned up its vector the next CPU will invoke the cleanup handler with vector 0, which triggers the out of range warning in the matrix allocator. Prevent this by checking the apic_data of the interrupt whether the move_in_progress flag is false and the hlist node is not hashed. Return -EBUSY if not. This prevents the damage and restores the behaviour before the vector allocation rework, but due to other changes in that area it also widens the chance that user space can observe -EBUSY. In theory this should be fine, but actually not all user space tools handle -EBUSY correctly. Addressing that is not part of this fix, but will be addressed in follow up patches. Fixes: 69cde000 ("x86/vector: Use matrix allocator for vector assignment") Reported-by: NDmitry Safonov <0x7f454c46@gmail.com> Reported-by: NTariq Toukan <tariqt@mellanox.com> Reported-by: NSong Liu <liu.song.a23@gmail.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Tested-by: NSong Liu <songliubraving@fb.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: stable@vger.kernel.org Cc: Mike Travis <mike.travis@hpe.com> Cc: Borislav Petkov <bp@alien8.de> Link: https://lkml.kernel.org/r/20180604162224.303870257@linutronix.de
-
- 19 5月, 2018 1 次提交
-
-
由 Dou Liyang 提交于
assign_vector_locked() calls allocate_vector() to get a real vector for an IRQ. If the current target CPU is online and in the new requested affinity mask, allocate_vector() will return 0 and nothing should be done. But, assign_vector_locked() calls apic_update_irq_cfg() even in that case which is pointless. allocate_vector() is not called from anything else, so the functions can be merged and in case of no change the apic_update_irq_cfg() can be avoided. [ tglx: Massaged changelog ] Signed-off-by: NDou Liyang <douly.fnst@cn.fujitsu.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: hpa@zytor.com Link: https://lkml.kernel.org/r/20180511080956.6316-1-douly.fnst@cn.fujitsu.com
-
- 18 5月, 2018 1 次提交
-
-
由 Thomas Gleixner 提交于
Rick bisected a regression on large systems which use the x2apic cluster mode for interrupt delivery to the commit wich reworked the cluster management. The problem is caused by a missing initialization of the clusterid field in the shared cluster data structures. So all structures end up with cluster ID 0 which only allows sharing between all CPUs which belong to cluster 0. All other CPUs with a cluster ID > 0 cannot share the data structure because they cannot find existing data with their cluster ID. This causes malfunction with IPIs because IPIs are sent to the wrong cluster and the caller waits for ever that the target CPU handles the IPI. Add the missing initialization when a upcoming CPU is the first in a cluster so that the later booting CPUs can find the data and share it for proper operation. Fixes: 023a6117 ("x86/apic/x2apic: Simplify cluster management") Reported-by: NRick Warner <rick@microway.com> Bisected-by: NRick Warner <rick@microway.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Tested-by: NRick Warner <rick@microway.com> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1805171418210.1947@nanos.tec.linutronix.de
-
- 10 4月, 2018 1 次提交
-
-
由 Li RongQing 提交于
The APIC ID as parsed from ACPI MADT is validity checked with the apic->apic_id_valid() callback, which depends on the selected APIC type. For non X2APIC types APIC IDs >= 0xFF are invalid, but values > 0x7FFFFFFF are detected as valid. This happens because the 'apicid' argument of the apic_id_valid() callback is type 'int'. So the resulting comparison apicid < 0xFF evaluates to true for all unsigned int values > 0x7FFFFFFF which are handed to default_apic_id_valid(). As a consequence, invalid APIC IDs in !X2APIC mode are considered valid and accounted as possible CPUs. Change the apicid argument type of the apic_id_valid() callback to u32 so the evaluation is unsigned and returns the correct result. [ tglx: Massaged changelog ] Signed-off-by: NLi RongQing <lirongqing@baidu.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org Cc: jgross@suse.com Cc: Dou Liyang <douly.fnst@cn.fujitsu.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: hpa@zytor.com Link: https://lkml.kernel.org/r/1523322966-10296-1-git-send-email-lirongqing@baidu.com
-
- 01 3月, 2018 3 次提交
-
-
由 Dou Liyang 提交于
The logical_smp_processor_id() inline which is only called in setup_local_APIC() on x86_32 systems has no real value. Drop it and directly use GET_APIC_LOGICAL_ID() at the call site and use a more suitable variable name for readability Signed-off-by: NDou Liyang <douly.fnst@cn.fujitsu.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: andy.shevchenko@gmail.com Cc: bhe@redhat.com Cc: ebiederm@xmission.com Link: https://lkml.kernel.org/r/20180301055930.2396-4-douly.fnst@cn.fujitsu.com
-
由 Dou Liyang 提交于
The pending interrupt check code is old, update the following: - Use for_each_set_bit() instead of open coding it - Replace printk() with pr_err() - Get rid of printk line breaks - Make curly braces balanced Suggested-by: NAndy Shevchenko <andy.shevchenko@gmail.com> Signed-off-by: NDou Liyang <douly.fnst@cn.fujitsu.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Reviewed-by: NAndy Shevchenko <andy.shevchenko@gmail.com> Cc: bhe@redhat.com Cc: ebiederm@xmission.com Link: https://lkml.kernel.org/r/20180301055930.2396-3-douly.fnst@cn.fujitsu.com
-
由 Dou Liyang 提交于
The pending interrupt check code is mixed with the local APIC setup code, that looks messy. Extract the related code, move it into a new function named apic_pending_intr_clear(). Signed-off-by: NDou Liyang <douly.fnst@cn.fujitsu.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Reviewed-by: NAndy Shevchenko <andy.shevchenko@gmail.com> Cc: bhe@redhat.com Cc: ebiederm@xmission.com Link: https://lkml.kernel.org/r/20180301055930.2396-2-douly.fnst@cn.fujitsu.com
-
- 23 2月, 2018 1 次提交
-
-
由 Thomas Gleixner 提交于
When a irq vector is replaced, then the previous vector is normally released when the first interrupt happens on the new vector. If the target CPU of the previous vector is already offline when the new vector is installed, then the previous vector is silently discarded, which leads to accounting issues causing suspend failures and other problems. Adjust the logic so that the previous vector is freed in the underlying matrix allocator to ensure that the accounting stays correct. Fixes: 69cde000 ("x86/vector: Use matrix allocator for vector assignment") Reported-by: NYuriy Vostrikov <delamonpansie@gmail.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Tested-by: NYuriy Vostrikov <delamonpansie@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20180222112316.930791749@linutronix.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 20 2月, 2018 1 次提交
-
-
由 Jan Beulich 提交于
Constants wider than 32 bits should be tagged with ULL. Signed-off-by: NJan Beulich <jbeulich@suse.com> Acked-by: NThomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/5A8AF23F02000078001A91E5@prv-mh.provo.novell.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 17 2月, 2018 5 次提交
-
-
由 Baoquan He 提交于
Currently the kdump kernel becomes very slow if 'noapic' is specified. Normal kernel doesn't have this bug. Kernel parameter 'noapic' is used to disable IO-APIC in system for testing or special purpose. Here the root cause is that in kdump kernel LAPIC is disabled since commit: 522e6646 ("x86/apic: Disable I/O APIC before shutdown of the local APIC") In this case we need set up through-local-APIC on boot CPU in setup_local_APIC(). In normal kernel the legacy irq mode is enabled by the BIOS. If it is virtual wire mode, the local-APIC has been enabled and set as through-local-APIC. Though we fixed the regression introduced by commit 522e6646, to further improve robustness set up the through-local-APIC mode explicitly, do not rely on the default boot IRQ mode. Signed-off-by: NBaoquan He <bhe@redhat.com> Reviewed-by: NEric W. Biederman <ebiederm@xmission.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: douly.fnst@cn.fujitsu.com Cc: joro@8bytes.org Cc: prarit@redhat.com Cc: uobergfe@redhat.com Link: http://lkml.kernel.org/r/20180214054656.3780-7-bhe@redhat.com [ Rewrote the changelog. ] Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Baoquan He 提交于
The names of x86_io_apic_ops and its two member variables are misleading: The ->read() member is to read IO_APIC reg, while ->disable() which is called by native_disable_io_apic()/irq_remapping_disable_io_apic() is actually used to restore boot IRQ mode, not to disable the IO-APIC. So rename x86_io_apic_ops to 'x86_apic_ops' since it doesn't only handle the IO-APIC, but also the local APIC. Also rename its member variables and the related callbacks. Signed-off-by: NBaoquan He <bhe@redhat.com> Reviewed-by: NEric W. Biederman <ebiederm@xmission.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: douly.fnst@cn.fujitsu.com Cc: joro@8bytes.org Cc: prarit@redhat.com Cc: uobergfe@redhat.com Link: http://lkml.kernel.org/r/20180214054656.3780-6-bhe@redhat.com [ Rewrote the changelog. ] Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Baoquan He 提交于
No one uses it anymore. Signed-off-by: NBaoquan He <bhe@redhat.com> Reviewed-by: NEric W. Biederman <ebiederm@xmission.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: douly.fnst@cn.fujitsu.com Cc: joro@8bytes.org Cc: prarit@redhat.com Cc: uobergfe@redhat.com Link: http://lkml.kernel.org/r/20180214054656.3780-5-bhe@redhat.com [ Rewrote the changelog. ] Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Baoquan He 提交于
Split following patches disable_IO_APIC() will be broken up into clear_IO_APIC() and restore_boot_irq_mode(). These two functions will be called separately where they are needed to fix a regression introduced by: 522e6646 ("x86/apic: Disable I/O APIC before shutdown of the local APIC"). While the CONFIG_KEXEC_JUMP=y code doesn't call lapic_shutdown() before jump like kexec/kdump, so it's not impacted by commit 522e6646. Hence here change clear_IO_APIC() as public, and replace disable_IO_APIC() with clear_IO_APIC() and restore_boot_irq_mode() to keep CONFIG_KEXEC_JUMP=y code unchanged in essence. No functional change. Signed-off-by: NBaoquan He <bhe@redhat.com> Reviewed-by: NEric W. Biederman <ebiederm@xmission.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: douly.fnst@cn.fujitsu.com Cc: joro@8bytes.org Cc: prarit@redhat.com Cc: uobergfe@redhat.com Link: http://lkml.kernel.org/r/20180214054656.3780-3-bhe@redhat.com [ Rewrote the changelog. ] Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Baoquan He 提交于
This is a preparation patch. Split out the code which restores boot irq mode from disable_IO_APIC() into the new restore_boot_irq_mode() function. No functional changes. Signed-off-by: NBaoquan He <bhe@redhat.com> Reviewed-by: NEric W. Biederman <ebiederm@xmission.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: douly.fnst@cn.fujitsu.com Cc: joro@8bytes.org Cc: prarit@redhat.com Cc: uobergfe@redhat.com Link: http://lkml.kernel.org/r/20180214054656.3780-2-bhe@redhat.com [ Build fix for !CONFIG_IO_APIC and rewrote the changelog. ] Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
- 16 2月, 2018 1 次提交
-
-
由 Dou Liyang 提交于
This function isn't used outside of apic.c, so let's mark it static. Signed-off-by: NDou Liyang <douly.fnst@cn.fujitsu.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: bhe@redhat.com Cc: ebiederm@xmission.com Link: http://lkml.kernel.org/r/20180214062554.21020-1-douly.fnst@cn.fujitsu.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 15 2月, 2018 1 次提交
-
-
由 Jia Zhang 提交于
x86_mask is a confusing name which is hard to associate with the processor's stepping. Additionally, correct an indent issue in lib/cpu.c. Signed-off-by: NJia Zhang <qianyue.zj@alibaba-inc.com> [ Updated it to more recent kernels. ] Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: bp@alien8.de Cc: tony.luck@intel.com Link: http://lkml.kernel.org/r/1514771530-70829-1-git-send-email-qianyue.zj@alibaba-inc.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-