- 14 1月, 2017 5 次提交
-
-
由 Yuchung Cheng 提交于
Currently RACK would mark loss before the undo operations in TCP loss recovery. This could incorrectly identify real losses as spurious. For example a sender first experiences a delay spike and then eventually some packets were lost due to buffer overrun. In this case, the sender should perform fast recovery b/c not all the packets were lost. But the sender may first trigger a (spurious) RTO and reset cwnd to 1. The following ACKs may used to mark real losses by tcp_rack_mark_lost. Then in tcp_process_loss this ACK could trigger F-RTO undo condition and unmark real losses and revert the cwnd reduction. If there are no more ACKs coming back, eventually the sender would timeout again instead of performing fast recovery. The patch fixes this incorrect process by always performing the undo checks before detecting losses. Fixes: 4f41b1c5 ("tcp: use RACK to detect losses") Signed-off-by: NYuchung Cheng <ycheng@google.com> Signed-off-by: NNeal Cardwell <ncardwell@google.com> Acked-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Yuchung Cheng 提交于
The packets inside a jumbo skb (e.g., TSO) share the same skb timestamp, even though they are sent sequentially on the wire. Since RACK is based on time, it can not detect some packets inside the same skb are lost. However, we can leverage the packet sequence numbers as extended timestamps to detect losses. Therefore, when RACK timestamp is identical to skb's timestamp (i.e., one of the packets of the skb is acked or sacked), we use the sequence numbers of the acked and unacked packets to break ties. We can use the same sequence logic to advance RACK xmit time as well to detect more losses and avoid timeout. Signed-off-by: NYuchung Cheng <ycheng@google.com> Signed-off-by: NNeal Cardwell <ncardwell@google.com> Acked-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Yuchung Cheng 提交于
This patch makes RACK install a reordering timer when it suspects some packets might be lost, but wants to delay the decision a little bit to accomodate reordering. It does not create a new timer but instead repurposes the existing RTO timer, because both are meant to retransmit packets. Specifically it arms a timer ICSK_TIME_REO_TIMEOUT when the RACK timing check fails. The wait time is set to RACK.RTT + RACK.reo_wnd - (NOW - Packet.xmit_time) + fudge This translates to expecting a packet (Packet) should take (RACK.RTT + RACK.reo_wnd + fudge) to deliver after it was sent. When there are multiple packets that need a timer, we use one timer with the maximum timeout. Therefore the timer conservatively uses the maximum window to expire N packets by one timeout, instead of N timeouts to expire N packets sent at different times. The fudge factor is 2 jiffies to ensure when the timer fires, all the suspected packets would exceed the deadline and be marked lost by tcp_rack_detect_loss(). It has to be at least 1 jiffy because the clock may tick between calling icsk_reset_xmit_timer(timeout) and actually hang the timer. The next jiffy is to lower-bound the timeout to 2 jiffies when reo_wnd is < 1ms. When the reordering timer fires (tcp_rack_reo_timeout): If we aren't in Recovery we'll enter fast recovery and force fast retransmit. This is very similar to the early retransmit (RFC5827) except RACK is not constrained to only enter recovery for small outstanding flights. Signed-off-by: NYuchung Cheng <ycheng@google.com> Signed-off-by: NNeal Cardwell <ncardwell@google.com> Acked-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Yuchung Cheng 提交于
Record the most recent RTT in RACK. It is often identical to the "ca_rtt_us" values in tcp_clean_rtx_queue. But when the packet has been retransmitted, RACK choses to believe the ACK is for the (latest) retransmitted packet if the RTT is over minimum RTT. This requires passing the arrival time of the most recent ACK to RACK routines. The timestamp is now recorded in the "ack_time" in tcp_sacktag_state during the ACK processing. This patch does not change the RACK algorithm itself. It only adds the RTT variable to prepare the next main patch. Signed-off-by: NYuchung Cheng <ycheng@google.com> Signed-off-by: NNeal Cardwell <ncardwell@google.com> Acked-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Yuchung Cheng 提交于
Create a new helper tcp_rack_detect_loss to prepare the upcoming RACK reordering timer patch. Signed-off-by: NYuchung Cheng <ycheng@google.com> Signed-off-by: NNeal Cardwell <ncardwell@google.com> Acked-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 30 12月, 2016 2 次提交
-
-
由 Haishuang Yan 提交于
Different namespace application might require different maximal number of remembered connection requests. Signed-off-by: NHaishuang Yan <yanhaishuang@cmss.chinamobile.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Haishuang Yan 提交于
Different namespace application might require fast recycling TIME-WAIT sockets independently of the host. Signed-off-by: NHaishuang Yan <yanhaishuang@cmss.chinamobile.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 07 12月, 2016 1 次提交
-
-
由 Marcelo Ricardo Leitner 提交于
There have been some reports lately about TCP connection stalls caused by NIC drivers that aren't setting gso_size on aggregated packets on rx path. This causes TCP to assume that the MSS is actually the size of the aggregated packet, which is invalid. Although the proper fix is to be done at each driver, it's often hard and cumbersome for one to debug, come to such root cause and report/fix it. This patch amends this situation in two ways. First, it adds a warning on when this situation occurs, so it gives a hint to those trying to debug this. It also limit the maximum probed MSS to the adverised MSS, as it should never be any higher than that. The result is that the connection may not have the best performance ever but it shouldn't stall, and the admin will have a hint on what to look for. Tested with virtio by forcing gso_size to 0. v2: updated msg per David's suggestion v3: use skb_iif to find the interface and also log its name, per Eric Dumazet's suggestion. As the skb may be backlogged and the interface gone by then, we need to check if the number still has a meaning. v4: use helper tcp_gro_dev_warn() and avoid pr_warn_once inside __once, per David's suggestion Cc: Jonathan Maxwell <jmaxwell37@gmail.com> Signed-off-by: NMarcelo Ricardo Leitner <marcelo.leitner@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 03 12月, 2016 2 次提交
-
-
由 Florian Westphal 提交于
Eric says: "By looking at tcpdump, and TS val of xmit packets of multiple flows, we can deduct the relative qdisc delays (think of fq pacing). This should work even if we have one flow per remote peer." Having random per flow (or host) offsets doesn't allow that anymore so add a way to turn this off. Suggested-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NFlorian Westphal <fw@strlen.de> Acked-by: NYuchung Cheng <ycheng@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Florian Westphal 提交于
jiffies based timestamps allow for easy inference of number of devices behind NAT translators and also makes tracking of hosts simpler. commit ceaa1fef ("tcp: adding a per-socket timestamp offset") added the main infrastructure that is needed for per-connection ts randomization, in particular writing/reading the on-wire tcp header format takes the offset into account so rest of stack can use normal tcp_time_stamp (jiffies). So only two items are left: - add a tsoffset for request sockets - extend the tcp isn generator to also return another 32bit number in addition to the ISN. Re-use of ISN generator also means timestamps are still monotonically increasing for same connection quadruple, i.e. PAWS will still work. Includes fixes from Eric Dumazet. Signed-off-by: NFlorian Westphal <fw@strlen.de> Acked-by: NEric Dumazet <edumazet@google.com> Acked-by: NYuchung Cheng <ycheng@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 30 11月, 2016 2 次提交
-
-
由 Francis Yan 提交于
This patch measures the amount of time when TCP runs out of new data to send to the network due to insufficient send buffer, while TCP is still busy delivering (i.e. write queue is not empty). The goal is to indicate either the send buffer autotuning or user SO_SNDBUF setting has resulted network under-utilization. The measurement starts conservatively by checking various conditions to minimize false claims (i.e. under-estimation is more likely). The measurement stops when the SOCK_NOSPACE flag is cleared. But it does not account the time elapsed till the next application write. Also the measurement only starts if the sender is still busy sending data, s.t. the limit accounted is part of the total busy time. Signed-off-by: NFrancis Yan <francisyyan@gmail.com> Signed-off-by: NYuchung Cheng <ycheng@google.com> Signed-off-by: NSoheil Hassas Yeganeh <soheil@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Francis Yan 提交于
This patch measures TCP busy time, which is defined as the period of time when sender has data (or FIN) to send. The time starts when data is buffered and stops when the write queue is flushed by ACKs or error events. Note the busy time does not include SYN time, unless data is included in SYN (i.e. Fast Open). It does include FIN time even if the FIN carries no payload. Excluding pure FIN is possible but would incur one additional test in the fast path, which may not be worth it. Signed-off-by: NFrancis Yan <francisyyan@gmail.com> Signed-off-by: NYuchung Cheng <ycheng@google.com> Signed-off-by: NSoheil Hassas Yeganeh <soheil@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 22 11月, 2016 1 次提交
-
-
由 Florian Westphal 提交于
The undo_cwnd fallback in the stack doubles cwnd based on ssthresh, which un-does reno halving behaviour. It seems more appropriate to let congctl algorithms pair .ssthresh and .undo_cwnd properly. Add a 'tcp_reno_undo_cwnd' function and wire it up for all congestion algorithms that used to rely on the fallback. Cc: Eric Dumazet <edumazet@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Neal Cardwell <ncardwell@google.com> Signed-off-by: NFlorian Westphal <fw@strlen.de> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 10 11月, 2016 1 次提交
-
-
由 Eric Dumazet 提交于
We had various problems in the past in tcp_get_info() and used specific synchronization to avoid deadlocks. We would like to add more instrumentation points for TCP, and avoiding grabing socket lock in tcp_getinfo() was too costly. Being able to lock the socket allows to provide consistent set of fields. inet_diag_dump_icsk() can make sure ehash locks are not held any more when tcp_get_info() is called. We can remove syncp added in commit d654976c ("tcp: fix a potential deadlock in tcp_get_info()"), but we need to use lock_sock_fast() instead of spin_lock_bh() since TCP input path can now be run from process context. Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NYuchung Cheng <ycheng@google.com> Acked-by: NSoheil Hassas Yeganeh <soheil@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 30 10月, 2016 1 次提交
-
-
由 Eric Dumazet 提交于
Per listen(fd, backlog) rules, there is really no point accepting a SYN, sending a SYNACK, and dropping the following ACK packet if accept queue is full, because application is not draining accept queue fast enough. This behavior is fooling TCP clients that believe they established a flow, while there is nothing at server side. They might then send about 10 MSS (if using IW10) that will be dropped anyway while server is under stress. Signed-off-by: NEric Dumazet <edumazet@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Acked-by: NYuchung Cheng <ycheng@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 26 9月, 2016 1 次提交
-
-
由 KOVACS Krisztian 提交于
The introduction of TCP_NEW_SYN_RECV state, and the addition of request sockets to the ehash table seems to have broken the --transparent option of the socket match for IPv6 (around commit a9407000). Now that the socket lookup finds the TCP_NEW_SYN_RECV socket instead of the listener, the --transparent option tries to match on the no_srccheck flag of the request socket. Unfortunately, that flag was only set for IPv4 sockets in tcp_v4_init_req() by copying the transparent flag of the listener socket. This effectively causes '-m socket --transparent' not match on the ACK packet sent by the client in a TCP handshake. Based on the suggestion from Eric Dumazet, this change moves the code initializing no_srccheck to tcp_conn_request(), rendering the above scenario working again. Fixes: a9407000 ("netfilter: xt_socket: prepare for TCP_NEW_SYN_RECV support") Signed-off-by: NAlex Badics <alex.badics@balabit.com> Signed-off-by: NKOVACS Krisztian <hidden@balabit.com> Signed-off-by: NPablo Neira Ayuso <pablo@netfilter.org>
-
- 23 9月, 2016 1 次提交
-
-
由 Eric Dumazet 提交于
If DBGUNDO() is enabled (FASTRETRANS_DEBUG > 1), a compile error will happen, since inet6_sk(sk)->daddr became sk->sk_v6_daddr Fixes: efe4208f ("ipv6: make lookups simpler and faster") Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 22 9月, 2016 1 次提交
-
-
由 Yuchung Cheng 提交于
Since the TFO socket is accepted right off SYN-data, the socket owner can call getsockopt(TCP_INFO) to collect ongoing SYN-ACK retransmission or timeout stats (i.e., tcpi_total_retrans, tcpi_retransmits). Currently those stats are only updated upon handshake completes. This patch fixes it. Signed-off-by: NYuchung Cheng <ycheng@google.com> Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NSoheil Hassas Yeganeh <soheil@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 21 9月, 2016 5 次提交
-
-
由 Yuchung Cheng 提交于
This commit introduces an optional new "omnipotent" hook, cong_control(), for congestion control modules. The cong_control() function is called at the end of processing an ACK (i.e., after updating sequence numbers, the SACK scoreboard, and loss detection). At that moment we have precise delivery rate information the congestion control module can use to control the sending behavior (using cwnd, TSO skb size, and pacing rate) in any CA state. This function can also be used by a congestion control that prefers not to use the default cwnd reduction approach (i.e., the PRR algorithm) during CA_Recovery to control the cwnd and sending rate during loss recovery. We take advantage of the fact that recent changes defer the retransmission or transmission of new data (e.g. by F-RTO) in recovery until the new tcp_cong_control() function is run. With this commit, we only run tcp_update_pacing_rate() if the congestion control is not using this new API. New congestion controls which use the new API do not want the TCP stack to run the default pacing rate calculation and overwrite whatever pacing rate they have chosen at initialization time. Signed-off-by: NVan Jacobson <vanj@google.com> Signed-off-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NYuchung Cheng <ycheng@google.com> Signed-off-by: NNandita Dukkipati <nanditad@google.com> Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NSoheil Hassas Yeganeh <soheil@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Yuchung Cheng 提交于
Currently the TCP send buffer expands to twice cwnd, in order to allow limited transmits in the CA_Recovery state. This assumes that cwnd does not increase in the CA_Recovery. For some congestion control algorithms, like the upcoming BBR module, if the losses in recovery do not indicate congestion then we may continue to raise cwnd multiplicatively in recovery. In such cases the current multiplier will falsely limit the sending rate, much as if it were limited by the application. This commit adds an optional congestion control callback to use a different multiplier to expand the TCP send buffer. For congestion control modules that do not specificy this callback, TCP continues to use the previous default of 2. Signed-off-by: NVan Jacobson <vanj@google.com> Signed-off-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NYuchung Cheng <ycheng@google.com> Signed-off-by: NNandita Dukkipati <nanditad@google.com> Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NSoheil Hassas Yeganeh <soheil@google.com> Acked-by: NStephen Hemminger <stephen@networkplumber.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Yuchung Cheng 提交于
This patch generates data delivery rate (throughput) samples on a per-ACK basis. These rate samples can be used by congestion control modules, and specifically will be used by TCP BBR in later patches in this series. Key state: tp->delivered: Tracks the total number of data packets (original or not) delivered so far. This is an already-existing field. tp->delivered_mstamp: the last time tp->delivered was updated. Algorithm: A rate sample is calculated as (d1 - d0)/(t1 - t0) on a per-ACK basis: d1: the current tp->delivered after processing the ACK t1: the current time after processing the ACK d0: the prior tp->delivered when the acked skb was transmitted t0: the prior tp->delivered_mstamp when the acked skb was transmitted When an skb is transmitted, we snapshot d0 and t0 in its control block in tcp_rate_skb_sent(). When an ACK arrives, it may SACK and ACK some skbs. For each SACKed or ACKed skb, tcp_rate_skb_delivered() updates the rate_sample struct to reflect the latest (d0, t0). Finally, tcp_rate_gen() generates a rate sample by storing (d1 - d0) in rs->delivered and (t1 - t0) in rs->interval_us. One caveat: if an skb was sent with no packets in flight, then tp->delivered_mstamp may be either invalid (if the connection is starting) or outdated (if the connection was idle). In that case, we'll re-stamp tp->delivered_mstamp. At first glance it seems t0 should always be the time when an skb was transmitted, but actually this could over-estimate the rate due to phase mismatch between transmit and ACK events. To track the delivery rate, we ensure that if packets are in flight then t0 and and t1 are times at which packets were marked delivered. If the initial and final RTTs are different then one may be corrupted by some sort of noise. The noise we see most often is sending gaps caused by delayed, compressed, or stretched acks. This either affects both RTTs equally or artificially reduces the final RTT. We approach this by recording the info we need to compute the initial RTT (duration of the "send phase" of the window) when we recorded the associated inflight. Then, for a filter to avoid bandwidth overestimates, we generalize the per-sample bandwidth computation from: bw = delivered / ack_phase_rtt to the following: bw = delivered / max(send_phase_rtt, ack_phase_rtt) In large-scale experiments, this filtering approach incorporating send_phase_rtt is effective at avoiding bandwidth overestimates due to ACK compression or stretched ACKs. Signed-off-by: NVan Jacobson <vanj@google.com> Signed-off-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NYuchung Cheng <ycheng@google.com> Signed-off-by: NNandita Dukkipati <nanditad@google.com> Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NSoheil Hassas Yeganeh <soheil@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Neal Cardwell 提交于
Count the number of packets that a TCP connection marks lost. Congestion control modules can use this loss rate information for more intelligent decisions about how fast to send. Specifically, this is used in TCP BBR policer detection. BBR uses a high packet loss rate as one signal in its policer detection and policer bandwidth estimation algorithm. The BBR policer detection algorithm cannot simply track retransmits, because a retransmit can be (and often is) an indicator of packets lost long, long ago. This is particularly true in a long CA_Loss period that repairs the initial massive losses when a policer kicks in. Signed-off-by: NVan Jacobson <vanj@google.com> Signed-off-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NYuchung Cheng <ycheng@google.com> Signed-off-by: NNandita Dukkipati <nanditad@google.com> Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NSoheil Hassas Yeganeh <soheil@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Neal Cardwell 提交于
Refactor the TCP min_rtt code to reuse the new win_minmax library in lib/win_minmax.c to simplify the TCP code. This is a pure refactor: the functionality is exactly the same. We just moved the windowed min code to make TCP easier to read and maintain, and to allow other parts of the kernel to use the windowed min/max filter code. Signed-off-by: NVan Jacobson <vanj@google.com> Signed-off-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NYuchung Cheng <ycheng@google.com> Signed-off-by: NNandita Dukkipati <nanditad@google.com> Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NSoheil Hassas Yeganeh <soheil@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 16 9月, 2016 1 次提交
-
-
由 Eric Dumazet 提交于
When skb replaces another one in ooo queue, I forgot to also update tp->ooo_last_skb as well, if the replaced skb was the last one in the queue. To fix this, we simply can re-use the code that runs after an insertion, trying to merge skbs at the right of current skb. This not only fixes the bug, but also remove all small skbs that might be a subset of the new one. Example: We receive segments 2001:3001, 4001:5001 Then we receive 2001:8001 : We should replace 2001:3001 with the big skb, but also remove 4001:50001 from the queue to save space. packetdrill test demonstrating the bug 0.000 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3 +0 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0 +0 bind(3, ..., ...) = 0 +0 listen(3, 1) = 0 +0 < S 0:0(0) win 32792 <mss 1000,sackOK,nop,nop,nop,wscale 7> +0 > S. 0:0(0) ack 1 <mss 1460,nop,nop,sackOK,nop,wscale 7> +0.100 < . 1:1(0) ack 1 win 1024 +0 accept(3, ..., ...) = 4 +0.01 < . 1001:2001(1000) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 1001:2001> +0.01 < . 1001:3001(2000) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 1001:2001 1001:3001> Fixes: 9f5afeae ("tcp: use an RB tree for ooo receive queue") Signed-off-by: NEric Dumazet <edumazet@google.com> Reported-by: NYuchung Cheng <ycheng@google.com> Cc: Yaogong Wang <wygivan@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 11 9月, 2016 1 次提交
-
-
由 Eric Dumazet 提交于
Willem noticed that we could avoid an rbtree lookup if the the attempt to coalesce incoming skb to the last skb failed for some reason. Since most ooo additions are at the tail, this is definitely worth adding a test and fast path. Suggested-by: NWillem de Bruijn <willemb@google.com> Signed-off-by: NEric Dumazet <edumazet@google.com> Cc: Yaogong Wang <wygivan@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 09 9月, 2016 1 次提交
-
-
由 Yaogong Wang 提交于
Over the years, TCP BDP has increased by several orders of magnitude, and some people are considering to reach the 2 Gbytes limit. Even with current window scale limit of 14, ~1 Gbytes maps to ~740,000 MSS. In presence of packet losses (or reorders), TCP stores incoming packets into an out of order queue, and number of skbs sitting there waiting for the missing packets to be received can be in the 10^5 range. Most packets are appended to the tail of this queue, and when packets can finally be transferred to receive queue, we scan the queue from its head. However, in presence of heavy losses, we might have to find an arbitrary point in this queue, involving a linear scan for every incoming packet, throwing away cpu caches. This patch converts it to a RB tree, to get bounded latencies. Yaogong wrote a preliminary patch about 2 years ago. Eric did the rebase, added ofo_last_skb cache, polishing and tests. Tested with network dropping between 1 and 10 % packets, with good success (about 30 % increase of throughput in stress tests) Next step would be to also use an RB tree for the write queue at sender side ;) Signed-off-by: NYaogong Wang <wygivan@google.com> Signed-off-by: NEric Dumazet <edumazet@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Acked-By: NIlpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 19 8月, 2016 1 次提交
-
-
由 Eric Dumazet 提交于
Over the years, TCP BDP has increased a lot, and is typically in the order of ~10 Mbytes with help of clever Congestion Control modules. In presence of packet losses, TCP stores incoming packets into an out of order queue, and number of skbs sitting there waiting for the missing packets to be received can match the BDP (~10 Mbytes) In some cases, TCP needs to make room for incoming skbs, and current strategy can simply remove all skbs in the out of order queue as a last resort, incurring a huge penalty, both for receiver and sender. Unfortunately these 'last resort events' are quite frequent, forcing sender to send all packets again, stalling the flow and wasting a lot of resources. This patch cleans only a part of the out of order queue in order to meet the memory constraints. Signed-off-by: NEric Dumazet <edumazet@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Soheil Hassas Yeganeh <soheil@google.com> Cc: C. Stephen Gun <csg@google.com> Cc: Van Jacobson <vanj@google.com> Acked-by: NSoheil Hassas Yeganeh <soheil@google.com> Acked-by: NYuchung Cheng <ycheng@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 16 7月, 2016 1 次提交
-
-
由 Jason Baron 提交于
The per-socket rate limit for 'challenge acks' was introduced in the context of limiting ack loops: commit f2b2c582 ("tcp: mitigate ACK loops for connections as tcp_sock") And I think it can be extended to rate limit all 'challenge acks' on a per-socket basis. Since we have the global tcp_challenge_ack_limit, this patch allows for tcp_challenge_ack_limit to be set to a large value and effectively rely on the per-socket limit, or set tcp_challenge_ack_limit to a lower value and still prevents a single connections from consuming the entire challenge ack quota. It further moves in the direction of eliminating the global limit at some point, as Eric Dumazet has suggested. This a follow-up to: Subject: tcp: make challenge acks less predictable Cc: Eric Dumazet <edumazet@google.com> Cc: David S. Miller <davem@davemloft.net> Cc: Neal Cardwell <ncardwell@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Yue Cao <ycao009@ucr.edu> Signed-off-by: NJason Baron <jbaron@akamai.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 12 7月, 2016 1 次提交
-
-
由 Eric Dumazet 提交于
Yue Cao claims that current host rate limiting of challenge ACKS (RFC 5961) could leak enough information to allow a patient attacker to hijack TCP sessions. He will soon provide details in an academic paper. This patch increases the default limit from 100 to 1000, and adds some randomization so that the attacker can no longer hijack sessions without spending a considerable amount of probes. Based on initial analysis and patch from Linus. Note that we also have per socket rate limiting, so it is tempting to remove the host limit in the future. v2: randomize the count of challenge acks per second, not the period. Fixes: 282f23c6 ("tcp: implement RFC 5961 3.2") Reported-by: NYue Cao <ycao009@ucr.edu> Signed-off-by: NEric Dumazet <edumazet@google.com> Suggested-by: NLinus Torvalds <torvalds@linux-foundation.org> Cc: Yuchung Cheng <ycheng@google.com> Cc: Neal Cardwell <ncardwell@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Acked-by: NYuchung Cheng <ycheng@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 28 6月, 2016 1 次提交
-
-
由 Huw Davies 提交于
If set, these will take precedence over the parent's options during both sending and child creation. If they're not set, the parent's options (if any) will be used. This is to allow the security_inet_conn_request() hook to modify the IPv6 options in just the same way that it already may do for IPv4. Signed-off-by: NHuw Davies <huw@codeweavers.com> Signed-off-by: NPaul Moore <paul@paul-moore.com>
-
- 11 6月, 2016 1 次提交
-
-
由 Lawrence Brakmo 提交于
Add in_flight (bytes in flight when packet was sent) field to tx component of tcp_skb_cb and make it available to congestion modules' pkts_acked() function through the ack_sample function argument. Signed-off-by: NLawrence Brakmo <brakmo@fb.com> Acked-by: NYuchung Cheng <ycheng@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 08 6月, 2016 1 次提交
-
-
由 Pau Espin Pedrol 提交于
RFC 5961 advises to only accept RST packets containing a seq number matching the next expected seq number instead of the whole receive window in order to avoid spoofing attacks. However, this situation is not optimal in the case SACK is in use at the time the RST is sent. I recently run into a scenario in which packet losses were high while uploading data to a server, and userspace was willing to frequently terminate connections by sending a RST. In this case, the ACK sent on the receiver side (rcv_nxt) is frozen waiting for a lost packet retransmission and SACK blocks are used to let the client continue uploading data. At some point later on, the client sends the RST (snd_nxt), which matches the next expected seq number of the right-most SACK block on the receiver side which is going forward receiving data. In this scenario, as RFC 5961 defines, the RST SEQ doesn't match the frozen main ACK at receiver side and thus gets dropped and a challenge ACK is sent, which gets usually lost due to network conditions. The main consequence is that the connection stays alive for a while even if it made sense to accept the RST. This can get really bad if lots of connections like this one are created in few seconds, allocating all the resources of the server easily. For security reasons, not all SACK blocks are checked (there could be a big amount of SACK blocks => acceptable SEQ numbers). Furthermore, it wouldn't make sense to check for RST in blocks other than the right-most received one because the sender is not expected to be sending new data after the RST. For simplicity, only up to the 4 most recently updated SACK blocks (selective_acks[4] field) are compared to find the right-most block, as usually those are the ones with bigger probability to contain it. This patch was tested in a 3.18 kernel and probed to improve the situation in the scenario described above. Signed-off-by: NPau Espin Pedrol <pau.espin@tessares.net> Acked-by: NEric Dumazet <edumazet@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Tested-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 12 5月, 2016 1 次提交
-
-
由 Lawrence Brakmo 提交于
Replace 2 arguments (cnt and rtt) in the congestion control modules' pkts_acked() function with a struct. This will allow adding more information without having to modify existing congestion control modules (tcp_nv in particular needs bytes in flight when packet was sent). As proposed by Neal Cardwell in his comments to the tcp_nv patch. Signed-off-by: NLawrence Brakmo <brakmo@fb.com> Acked-by: NYuchung Cheng <ycheng@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 05 5月, 2016 1 次提交
-
-
由 Eric Dumazet 提交于
tcp_snd_una_update() and tcp_rcv_nxt_update() call u64_stats_update_begin() either from process context or BH handler. This triggers a lockdep splat on 32bit & SMP builds. We could add u64_stats_update_begin_bh() variant but this would slow down 32bit builds with useless local_disable_bh() and local_enable_bh() pairs, since we own the socket lock at this point. I add sock_owned_by_me() helper to have proper lockdep support even on 64bit builds, and new u64_stats_update_begin_raw() and u64_stats_update_end_raw methods. Fixes: c10d9310 ("tcp: do not assume TCP code is non preemptible") Reported-by: NFabio Estevam <festevam@gmail.com> Diagnosed-by: NFrancois Romieu <romieu@fr.zoreil.com> Signed-off-by: NEric Dumazet <edumazet@google.com> Tested-by: NFabio Estevam <fabio.estevam@nxp.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 03 5月, 2016 2 次提交
-
-
由 Eric Dumazet 提交于
AFAIK, nothing in current TCP stack absolutely wants BH being disabled once socket is owned by a thread running in process context. As mentioned in my prior patch ("tcp: give prequeue mode some care"), processing a batch of packets might take time, better not block BH at all. Signed-off-by: NEric Dumazet <edumazet@google.com> Acked-by: NSoheil Hassas Yeganeh <soheil@google.com> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Eric Dumazet 提交于
We want to to make TCP stack preemptible, as draining prequeue and backlog queues can take lot of time. Many SNMP updates were assuming that BH (and preemption) was disabled. Need to convert some __NET_INC_STATS() calls to NET_INC_STATS() and some __TCP_INC_STATS() to TCP_INC_STATS() Before using this_cpu_ptr(net->ipv4.tcp_sk) in tcp_v4_send_reset() and tcp_v4_send_ack(), we add an explicit preempt disabled section. Signed-off-by: NEric Dumazet <edumazet@google.com> Acked-by: NSoheil Hassas Yeganeh <soheil@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 29 4月, 2016 2 次提交
-
-
由 Martin KaFai Lau 提交于
This patch: 1. Prevent next_skb from coalescing to the prev_skb if TCP_SKB_CB(prev_skb)->eor is set 2. Update the TCP_SKB_CB(prev_skb)->eor if coalescing is allowed Packetdrill script for testing: ~~~~~~ +0 `sysctl -q -w net.ipv4.tcp_min_tso_segs=10` +0 `sysctl -q -w net.ipv4.tcp_no_metrics_save=1` +0 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3 +0 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0 +0 bind(3, ..., ...) = 0 +0 listen(3, 1) = 0 0.100 < S 0:0(0) win 32792 <mss 1460,sackOK,nop,nop,nop,wscale 7> 0.100 > S. 0:0(0) ack 1 <mss 1460,nop,nop,sackOK,nop,wscale 7> 0.200 < . 1:1(0) ack 1 win 257 0.200 accept(3, ..., ...) = 4 +0 setsockopt(4, SOL_TCP, TCP_NODELAY, [1], 4) = 0 0.200 sendto(4, ..., 730, MSG_EOR, ..., ...) = 730 0.200 sendto(4, ..., 730, MSG_EOR, ..., ...) = 730 0.200 write(4, ..., 11680) = 11680 0.200 > P. 1:731(730) ack 1 0.200 > P. 731:1461(730) ack 1 0.200 > . 1461:8761(7300) ack 1 0.200 > P. 8761:13141(4380) ack 1 0.300 < . 1:1(0) ack 1 win 257 <sack 1461:13141,nop,nop> 0.300 > P. 1:731(730) ack 1 0.300 > P. 731:1461(730) ack 1 0.400 < . 1:1(0) ack 13141 win 257 0.400 close(4) = 0 0.400 > F. 13141:13141(0) ack 1 0.500 < F. 1:1(0) ack 13142 win 257 0.500 > . 13142:13142(0) ack 2 Signed-off-by: NMartin KaFai Lau <kafai@fb.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Soheil Hassas Yeganeh <soheil@google.com> Cc: Willem de Bruijn <willemb@google.com> Cc: Yuchung Cheng <ycheng@google.com> Acked-by: NEric Dumazet <edumazet@google.com> Acked-by: NSoheil Hassas Yeganeh <soheil@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Soheil Hassas Yeganeh 提交于
The SKBTX_ACK_TSTAMP flag is set in skb_shinfo->tx_flags when the timestamp of the TCP acknowledgement should be reported on error queue. Since accessing skb_shinfo is likely to incur a cache-line miss at the time of receiving the ack, the txstamp_ack bit was added in tcp_skb_cb, which is set iff the SKBTX_ACK_TSTAMP flag is set for an skb. This makes SKBTX_ACK_TSTAMP flag redundant. Remove the SKBTX_ACK_TSTAMP and instead use the txstamp_ack bit everywhere. Note that this frees one bit in shinfo->tx_flags. Signed-off-by: NSoheil Hassas Yeganeh <soheil@google.com> Acked-by: NMartin KaFai Lau <kafai@fb.com> Suggested-by: NWillem de Bruijn <willemb@google.com> Acked-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 28 4月, 2016 2 次提交
-
-
由 Eric Dumazet 提交于
Rename NET_INC_STATS_BH() to __NET_INC_STATS() and NET_ADD_STATS_BH() to __NET_ADD_STATS() Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Eric Dumazet 提交于
Rename TCP_INC_STATS_BH() to __TCP_INC_STATS() Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-