- 20 7月, 2018 1 次提交
-
-
由 Ondrej Mosnacek 提交于
Add 'const' to some function arguments and variables to make it easier to read the code. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Miroslav Lichvar <mlichvar@redhat.com> Cc: Richard Cochran <richardcochran@gmail.com> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Stephen Boyd <sboyd@kernel.org> Signed-off-by: NOndrej Mosnacek <omosnace@redhat.com> [jstultz: Also fixup pre-existing checkpatch warnings for prototype arguments with no variable name] Signed-off-by: NJohn Stultz <john.stultz@linaro.org>
-
- 19 5月, 2018 4 次提交
-
-
由 Arnd Bergmann 提交于
The set of APIs we provide has a few holes for coarse times, e.g. we provide ktime_get_coarse_boottime() and ktime_get_boottime_ts64(), but not the combination of the two. This adds four new functions: ktime_get_coarse_boottime_ts64() ktime_get_boottime_seconds() ktime_get_coarse_clocktai_ts64() ktime_get_clocktai_seconds() to fill in some of the missing pieces. I have missed only the ktime_get_boottime_seconds() accessor in a few occasions in the past, but it seems better to just provide all four together, as there is very little cost to having them. Signed-off-by: NArnd Bergmann <arnd@arndb.de> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: Stephen Boyd <sboyd@kernel.org> Cc: y2038@lists.linaro.org Cc: John Stultz <john.stultz@linaro.org> Link: https://lkml.kernel.org/r/20180427134016.2525989-6-arnd@arndb.de
-
由 Arnd Bergmann 提交于
I have run into a couple of drivers using current_kernel_time() suffering from the y2038 problem, and they could be converted to using ktime_t, but don't have interfaces that skip the nanosecond calculation at the moment. This introduces ktime_get_coarse_with_offset() as a simpler variant of ktime_get_with_offset(), and adds wrappers for the three time domains we support with the existing function. Signed-off-by: NArnd Bergmann <arnd@arndb.de> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: Stephen Boyd <sboyd@kernel.org> Cc: y2038@lists.linaro.org Cc: John Stultz <john.stultz@linaro.org> Link: https://lkml.kernel.org/r/20180427134016.2525989-5-arnd@arndb.de
-
由 Arnd Bergmann 提交于
The current_kernel_time64, get_monotonic_coarse64, getrawmonotonic64, get_monotonic_boottime64 and timekeeping_clocktai64 interfaces have rather inconsistent naming, and they differ in the calling conventions by passing the output either by reference or as a return value. Rename them to ktime_get_coarse_real_ts64, ktime_get_coarse_ts64, ktime_get_raw_ts64, ktime_get_boottime_ts64 and ktime_get_clocktai_ts64 respectively, and provide the interfaces with macros or inline functions as needed. Signed-off-by: NArnd Bergmann <arnd@arndb.de> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: Stephen Boyd <sboyd@kernel.org> Cc: y2038@lists.linaro.org Cc: John Stultz <john.stultz@linaro.org> Link: https://lkml.kernel.org/r/20180427134016.2525989-4-arnd@arndb.de
-
由 Arnd Bergmann 提交于
In a move to make ktime_get_*() the preferred driver interface into the timekeeping code, sanitizes ktime_get_real_ts64() to be a proper exported symbol rather than an alias for getnstimeofday64(). The internal __getnstimeofday64() is no longer used, so remove that and merge it into ktime_get_real_ts64(). Signed-off-by: NArnd Bergmann <arnd@arndb.de> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: Stephen Boyd <sboyd@kernel.org> Cc: y2038@lists.linaro.org Cc: John Stultz <john.stultz@linaro.org> Link: https://lkml.kernel.org/r/20180427134016.2525989-3-arnd@arndb.de
-
- 26 4月, 2018 1 次提交
-
-
由 Thomas Gleixner 提交于
Revert commits 92af4dcb ("tracing: Unify the "boot" and "mono" tracing clocks") 127bfa5f ("hrtimer: Unify MONOTONIC and BOOTTIME clock behavior") 7250a404 ("posix-timers: Unify MONOTONIC and BOOTTIME clock behavior") d6c7270e ("timekeeping: Remove boot time specific code") f2d6fdbf ("Input: Evdev - unify MONOTONIC and BOOTTIME clock behavior") d6ed449a ("timekeeping: Make the MONOTONIC clock behave like the BOOTTIME clock") 72199320 ("timekeeping: Add the new CLOCK_MONOTONIC_ACTIVE clock") As stated in the pull request for the unification of CLOCK_MONOTONIC and CLOCK_BOOTTIME, it was clear that we might have to revert the change. As reported by several folks systemd and other applications rely on the documented behaviour of CLOCK_MONOTONIC on Linux and break with the above changes. After resume daemons time out and other timeout related issues are observed. Rafael compiled this list: * systemd kills daemons on resume, after >WatchdogSec seconds of suspending (Genki Sky). [Verified that that's because systemd uses CLOCK_MONOTONIC and expects it to not include the suspend time.] * systemd-journald misbehaves after resume: systemd-journald[7266]: File /var/log/journal/016627c3c4784cd4812d4b7e96a34226/system.journal corrupted or uncleanly shut down, renaming and replacing. (Mike Galbraith). * NetworkManager reports "networking disabled" and networking is broken after resume 50% of the time (Pavel). [May be because of systemd.] * MATE desktop dims the display and starts the screensaver right after system resume (Pavel). * Full system hang during resume (me). [May be due to systemd or NM or both.] That happens on debian and open suse systems. It's sad, that these problems were neither catched in -next nor by those folks who expressed interest in this change. Reported-by: NRafael J. Wysocki <rjw@rjwysocki.net> Reported-by: Genki Sky <sky@genki.is>, Reported-by: NPavel Machek <pavel@ucw.cz> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com> Cc: John Stultz <john.stultz@linaro.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kevin Easton <kevin@guarana.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mark Salyzyn <salyzyn@android.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org>
-
- 13 3月, 2018 3 次提交
-
-
由 Thomas Gleixner 提交于
Unify the "boot" and "mono" tracing clocks and document the new behaviour. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com> Cc: John Stultz <john.stultz@linaro.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kevin Easton <kevin@guarana.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mark Salyzyn <salyzyn@android.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Link: http://lkml.kernel.org/r/20180301165150.489635255@linutronix.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Thomas Gleixner 提交于
Now that the MONOTONIC and BOOTTIME clocks are the same, remove all the special handling from timekeeping. Keep wrappers for the existing users of the *boot* timekeeper interfaces. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com> Cc: John Stultz <john.stultz@linaro.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kevin Easton <kevin@guarana.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mark Salyzyn <salyzyn@android.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Link: http://lkml.kernel.org/r/20180301165150.236279497@linutronix.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Thomas Gleixner 提交于
The planned change to unify the behaviour of the MONOTONIC and BOOTTIME clocks vs. suspend removes the ability to retrieve the active non-suspended time of a system. Provide a new CLOCK_MONOTONIC_ACTIVE clock which returns the active non-suspended time of the system via clock_gettime(). This preserves the old behaviour of CLOCK_MONOTONIC before the BOOTTIME/MONOTONIC unification. This new clock also allows applications to detect programmatically that the MONOTONIC and BOOTTIME clocks are identical. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com> Cc: John Stultz <john.stultz@linaro.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kevin Easton <kevin@guarana.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mark Salyzyn <salyzyn@android.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Link: http://lkml.kernel.org/r/20180301165149.965235774@linutronix.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 25 1月, 2018 1 次提交
-
-
由 Arnd Bergmann 提交于
kdb is the only user of the __current_kernel_time() interface, which is not y2038 safe and should be removed at some point. The kdb code also goes to great lengths to print the time in a human-readable format from 'struct timespec', again using a non-y2038-safe re-implementation of the generic time_to_tm() code. Using __current_kernel_time() here is necessary since the regular accessors that require a sequence lock might hang when called during the xtime update. However, this is safe in the particular case since kdb is only interested in the tv_sec field that is updated atomically. In order to make this y2038-safe, I'm converting the code to the generic time64_to_tm helper, but that introduces the problem that we have no interface like __current_kernel_time() that provides a 64-bit timestamp in a lockless, safe and architecture-independent way. I have multiple ideas for how to solve that: - __ktime_get_real_seconds() is lockless, but can return incorrect results on 32-bit architectures in the special case that we are in the process of changing the time across the epoch, either during the timer tick that overflows the seconds in 2038, or while calling settimeofday. - ktime_get_real_fast_ns() would work in this context, but does require a call into the clocksource driver to return a high-resolution timestamp. This may have undesired side-effects in the debugger, since we want to limit the interactions with the rest of the kernel. - Adding a ktime_get_real_fast_seconds() based on tk_fast_mono plus tkr->base_real without the tk_clock_read() delta. Not sure about the value of adding yet another interface here. - Changing the existing ktime_get_real_seconds() to use tk_fast_mono on 32-bit architectures rather than xtime_sec. I think this could work, but am not entirely sure if this is an improvement. I picked the first of those for simplicity here. It's technically not correct but probably good enough as the time is only used for the debugging output and the race will likely never be hit in practice. Another downside is having to move the declaration into a public header file. Let me know if anyone has a different preference. Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Link: https://patchwork.kernel.org/patch/9775309/Signed-off-by: NArnd Bergmann <arnd@arndb.de> Signed-off-by: NJason Wessel <jason.wessel@windriver.com>
-
- 14 11月, 2017 1 次提交
-
-
由 Dou Liyang 提交于
Commit ba26621e got rid of ktime_get_raw_and_real_ts64(), but left its declaration behind. Remove it. Fixes: ba26621e ("time: Remove duplicated code in ktime_get_raw_and_real()") Signed-off-by: NDou Liyang <douly.fnst@cn.fujitsu.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: Christopher S. Hall <christopher.s.hall@intel.com> Cc: joelaf@google.com Cc: arnd@arndb.de Cc: gregkh@linuxfoundation.org Cc: john.stultz@linaro.org Cc: deepa.kernel@gmail.com Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/1510552144-20831-1-git-send-email-douly.fnst@cn.fujitsu.com
-
- 02 11月, 2017 1 次提交
-
-
由 Greg Kroah-Hartman 提交于
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: NKate Stewart <kstewart@linuxfoundation.org> Reviewed-by: NPhilippe Ombredanne <pombredanne@nexb.com> Reviewed-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 31 10月, 2017 1 次提交
-
-
由 Arnd Bergmann 提交于
The interfaces based on 'struct timespec' and 'unsigned long' seconds are no longer recommended for new code, and we are trying to migrate to ktime_t based interfaces and other y2038-safe variants. This moves all the legacy interfaces from linux/timekeeping.h into a new timekeeping32.h to better document this. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Miroslav Lichvar <mlichvar@redhat.com> Cc: Richard Cochran <richardcochran@gmail.com> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Stephen Boyd <stephen.boyd@linaro.org> Signed-off-by: NArnd Bergmann <arnd@arndb.de> Signed-off-by: NJohn Stultz <john.stultz@linaro.org>
-
- 26 9月, 2017 1 次提交
-
-
由 Thomas Gleixner 提交于
The configurable printk timestamping wants access to clock realtime. Right now there is no ktime_get_real_fast_ns() accessor because reading the monotonic base and the realtime offset cannot be done atomically. Contrary to boot time this offset can change during runtime and cause half updated readouts. struct tk_read_base was fully packed when the fast timekeeper access was implemented. commit ceea5e37 ("time: Fix clock->read(clock) race around clocksource changes") removed the 'read' function pointer from the structure, but of course left the comment stale. So now the structure can fit a new 64bit member w/o violating the cache line constraints. Add real_base to tk_read_base and update it in the fast timekeeper update sequence. Implement an accessor which follows the same scheme as the accessor to clock monotonic, but uses the new real_base to access clock real time. The runtime overhead for updating real_base is minimal as it just adds two cache hot values and stores them into an already dirtied cache line along with the other fast timekeeper updates. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: Prarit Bhargava <prarit@redhat.com> Cc: John Stultz <john.stultz@linaro.org> Cc: Peter Zijlstra <peterz@infradead,org> Link: https://lkml.kernel.org/r/1505757060-2004-3-git-send-email-prarit@redhat.com
-
- 15 4月, 2017 2 次提交
-
-
由 Deepa Dinamani 提交于
struct timespec is not y2038 safe on 32 bit machines. Replace uses of struct timespec with struct timespec64 in the kernel. The syscall interfaces themselves will be changed in a separate series. Signed-off-by: NDeepa Dinamani <deepa.kernel@gmail.com> Cc: y2038@lists.linaro.org Cc: john.stultz@linaro.org Cc: arnd@arndb.de Link: http://lkml.kernel.org/r/1490555058-4603-4-git-send-email-deepa.kernel@gmail.comSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
由 Deepa Dinamani 提交于
struct timespec is not y2038 safe on 32 bit machines and needs to be replaced with struct timespec64. do_sys_timeofday() is just a wrapper function. Replace all calls to this function with direct calls to do_sys_timeofday64() instead and delete do_sys_timeofday(). Signed-off-by: NDeepa Dinamani <deepa.kernel@gmail.com> Cc: y2038@lists.linaro.org Cc: john.stultz@linaro.org Cc: arnd@arndb.de Cc: linux-alpha@vger.kernel.org Link: http://lkml.kernel.org/r/1490555058-4603-2-git-send-email-deepa.kernel@gmail.comSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 03 3月, 2017 1 次提交
-
-
由 Ingo Molnar 提交于
Move the update_process_times() and xtime_update() prototypes to <linux/timekeeping.h>. Acked-by: NLinus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
- 25 12月, 2016 1 次提交
-
-
由 Thomas Gleixner 提交于
There is no point in having an extra type for extra confusion. u64 is unambiguous. Conversion was done with the following coccinelle script: @rem@ @@ -typedef u64 cycle_t; @fix@ typedef cycle_t; @@ -cycle_t +u64 Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: John Stultz <john.stultz@linaro.org>
-
- 30 11月, 2016 1 次提交
-
-
由 Joel Fernandes 提交于
This boot clock can be used as a tracing clock and will account for suspend time. To keep it NMI safe since we're accessing from tracing, we're not using a separate timekeeper with updates to monotonic clock and boot offset protected with seqlocks. This has the following minor side effects: (1) Its possible that a timestamp be taken after the boot offset is updated but before the timekeeper is updated. If this happens, the new boot offset is added to the old timekeeping making the clock appear to update slightly earlier: CPU 0 CPU 1 timekeeping_inject_sleeptime64() __timekeeping_inject_sleeptime(tk, delta); timestamp(); timekeeping_update(tk, TK_CLEAR_NTP...); (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be partially updated. Since the tk->offs_boot update is a rare event, this should be a rare occurrence which postprocessing should be able to handle. Signed-off-by: NJoel Fernandes <joelaf@google.com> Signed-off-by: NJohn Stultz <john.stultz@linaro.org> Reviewed-by: NThomas Gleixner <tglx@linutronix.de> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Richard Cochran <richardcochran@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Link: http://lkml.kernel.org/r/1480372524-15181-6-git-send-email-john.stultz@linaro.orgSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 22 9月, 2016 1 次提交
-
-
由 Christoph Hellwig 提交于
asm-generic headers are only defaults for architectures. We need to get the proper defintion, which goes through <linux/errno.h> and <asm/errno.h>. Signed-off-by: NChristoph Hellwig <hch@lst.de> Cc: john.stultz@linaro.org Link: http://lkml.kernel.org/r/1474555697-8206-1-git-send-email-hch@lst.deSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 02 6月, 2016 1 次提交
-
-
由 John Stultz 提交于
In commit 86d34732 some of the checking for a valid timeval was subtley changed which caused -EINVAL to be returned whenever the timeval was null. However, it is possible to set the timezone data while specifying a NULL timeval, which is usually done to handle systems where the RTC keeps local time instead of UTC. Thus the patch causes such systems to have the time incorrectly set. This patch addresses the issue by handling the error conditionals in the same way as was done previously. Fixes: 86d34732 "time: Introduce do_sys_settimeofday64()" Reported-by: NMika Westerberg <mika.westerberg@linux.intel.com> Signed-off-by: NJohn Stultz <john.stultz@linaro.org> Tested-by: NMika Westerberg <mika.westerberg@linux.intel.com> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Baolin Wang <baolin.wang@linaro.org> Cc: Richard Cochran <richardcochran@gmail.com> Cc: Shuah Khan <shuahkh@osg.samsung.com> Link: http://lkml.kernel.org/r/1464807207-16530-2-git-send-email-john.stultz@linaro.orgSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 23 4月, 2016 1 次提交
-
-
由 Baolin Wang 提交于
The do_sys_settimeofday() function uses a timespec, which is not year 2038 safe on 32bit systems. Thus this patch introduces do_sys_settimeofday64(), which allows us to transition users of do_sys_settimeofday() to using 64bit time types. Cc: Prarit Bhargava <prarit@redhat.com> Cc: Richard Cochran <richardcochran@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Signed-off-by: NBaolin Wang <baolin.wang@linaro.org> [jstultz: Include errno-base.h to avoid build issue on some arches] Signed-off-by: NJohn Stultz <john.stultz@linaro.org>
-
- 03 3月, 2016 3 次提交
-
-
由 Christopher S. Hall 提交于
Another representative use case of time sync and the correlated clocksource (in addition to PTP noted above) is PTP synchronized audio. In a streaming application, as an example, samples will be sent and/or received by multiple devices with a presentation time that is in terms of the PTP master clock. Synchronizing the audio output on these devices requires correlating the audio clock with the PTP master clock. The more precise this correlation is, the better the audio quality (i.e. out of sync audio sounds bad). From an application standpoint, to correlate the PTP master clock with the audio device clock, the system clock is used as a intermediate timebase. The transforms such an application would perform are: System Clock <-> Audio clock System Clock <-> Network Device Clock [<-> PTP Master Clock] Modern Intel platforms can perform a more accurate cross timestamp in hardware (ART,audio device clock). The audio driver requires ART->system time transforms -- the same as required for the network driver. These platforms offload audio processing (including cross-timestamps) to a DSP which to ensure uninterrupted audio processing, communicates and response to the host only once every millsecond. As a result is takes up to a millisecond for the DSP to receive a request, the request is processed by the DSP, the audio output hardware is polled for completion, the result is copied into shared memory, and the host is notified. All of these operation occur on a millisecond cadence. This transaction requires about 2 ms, but under heavier workloads it may take up to 4 ms. Adding a history allows these slow devices the option of providing an ART value outside of the current interval. In this case, the callback provided is an accessor function for the previously obtained counter value. If get_system_device_crosststamp() receives a counter value previous to cycle_last, it consults the history provided as an argument in history_ref and interpolates the realtime and monotonic raw system time using the provided counter value. If there are any clock discontinuities, e.g. from calling settimeofday(), the monotonic raw time is interpolated in the usual way, but the realtime clock time is adjusted by scaling the monotonic raw adjustment. When an accessor function is used a history argument *must* be provided. The history is initialized using ktime_get_snapshot() and must be called before the counter values are read. Cc: Prarit Bhargava <prarit@redhat.com> Cc: Richard Cochran <richardcochran@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: kevin.b.stanton@intel.com Cc: kevin.j.clarke@intel.com Cc: hpa@zytor.com Cc: jeffrey.t.kirsher@intel.com Cc: netdev@vger.kernel.org Reviewed-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NChristopher S. Hall <christopher.s.hall@intel.com> [jstultz: Fixed up cycles_t/cycle_t type confusion] Signed-off-by: NJohn Stultz <john.stultz@linaro.org>
-
由 Christopher S. Hall 提交于
ACKNOWLEDGMENT: cross timestamp code was developed by Thomas Gleixner <tglx@linutronix.de>. It has changed considerably and any mistakes are mine. The precision with which events on multiple networked systems can be synchronized using, as an example, PTP (IEEE 1588, 802.1AS) is limited by the precision of the cross timestamps between the system clock and the device (timestamp) clock. Precision here is the degree of simultaneity when capturing the cross timestamp. Currently the PTP cross timestamp is captured in software using the PTP device driver ioctl PTP_SYS_OFFSET. Reads of the device clock are interleaved with reads of the realtime clock. At best, the precision of this cross timestamp is on the order of several microseconds due to software latencies. Sub-microsecond precision is required for industrial control and some media applications. To achieve this level of precision hardware supported cross timestamping is needed. The function get_device_system_crosstimestamp() allows device drivers to return a cross timestamp with system time properly scaled to nanoseconds. The realtime value is needed to discipline that clock using PTP and the monotonic raw value is used for applications that don't require a "real" time, but need an unadjusted clock time. The get_device_system_crosstimestamp() code calls back into the driver to ensure that the system counter is within the current timekeeping update interval. Modern Intel hardware provides an Always Running Timer (ART) which is exactly related to TSC through a known frequency ratio. The ART is routed to devices on the system and is used to precisely and simultaneously capture the device clock with the ART. Cc: Prarit Bhargava <prarit@redhat.com> Cc: Richard Cochran <richardcochran@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: kevin.b.stanton@intel.com Cc: kevin.j.clarke@intel.com Cc: hpa@zytor.com Cc: jeffrey.t.kirsher@intel.com Cc: netdev@vger.kernel.org Reviewed-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NChristopher S. Hall <christopher.s.hall@intel.com> [jstultz: Reworked to remove extra structures and simplify calling] Signed-off-by: NJohn Stultz <john.stultz@linaro.org>
-
由 Christopher S. Hall 提交于
In the current timekeeping code there isn't any interface to atomically capture the current relationship between the system counter and system time. ktime_get_snapshot() returns this triple (counter, monotonic raw, realtime) in the system_time_snapshot struct. Cc: Prarit Bhargava <prarit@redhat.com> Cc: Richard Cochran <richardcochran@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: kevin.b.stanton@intel.com Cc: kevin.j.clarke@intel.com Cc: hpa@zytor.com Cc: jeffrey.t.kirsher@intel.com Cc: netdev@vger.kernel.org Reviewed-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NChristopher S. Hall <christopher.s.hall@intel.com> [jstultz: Moved structure definitions around to clean things up, fixed cycles_t/cycle_t confusion.] Signed-off-by: NJohn Stultz <john.stultz@linaro.org>
-
- 02 10月, 2015 1 次提交
-
-
由 Arnd Bergmann 提交于
There is exactly one caller of getnstime_raw_and_real in the kernel, which is the pps_get_ts function. This changes the caller and the implementation to work on timespec64 types rather than timespec, to avoid the time_t overflow on 32-bit architectures. For consistency with the other new functions (ktime_get_seconds, ktime_get_real_*, ...), I'm renaming the function to ktime_get_raw_and_real_ts64. We still need to convert from the internal 64-bit type to 32 bit types in the caller, but this conversion is now pushed out from getnstime_raw_and_real to pps_get_ts. A follow-up patch changes the remaining pps code to completely avoid the conversion. Acked-by: NRichard Cochran <richardcochran@gmail.com> Acked-by: NDavid S. Miller <davem@davemloft.net> Reviewed-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NArnd Bergmann <arnd@arndb.de> Signed-off-by: NJohn Stultz <john.stultz@linaro.org>
-
- 18 8月, 2015 1 次提交
-
-
由 Baolin Wang 提交于
The current_kernel_time() is not year 2038 safe on 32bit systems since it returns a timespec value. Introduce current_kernel_time64() which returns a timespec64 value. Cc: Prarit Bhargava <prarit@redhat.com> Cc: Richard Cochran <richardcochran@gmail.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: NBaolin Wang <baolin.wang@linaro.org> Signed-off-by: NJohn Stultz <john.stultz@linaro.org>
-
- 09 7月, 2015 1 次提交
-
-
由 Thomas Gleixner 提交于
All users gone. Remove it before we get another one. Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 23 5月, 2015 2 次提交
-
-
由 Xunlei Pang 提交于
Now that we have a read_boot_clock64() function available on every architecture, and converted all the users to it, it's time to remove the (now unused) read_boot_clock() completely from the kernel. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Signed-off-by: NXunlei Pang <pang.xunlei@linaro.org> [jstultz: Minor commit message tweak suggested by Ingo] Signed-off-by: NJohn Stultz <john.stultz@linaro.org>
-
由 Harald Geyer 提交于
This patch series introduces a new function u32 ktime_get_resolution_ns(void) which allows to clean up some driver code. In particular the IIO subsystem has a function to provide timestamps for events but no means to get their resolution. So currently the dht11 driver tries to guess the resolution in a rather messy and convoluted way. We can do much better with the new code. This API is not designed to be exposed to user space. This has been tested on i386, sunxi and mxs. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Signed-off-by: NHarald Geyer <harald@ccbib.org> [jstultz: Tweaked to make it build after upstream changes] Signed-off-by: NJohn Stultz <john.stultz@linaro.org>
-
- 03 4月, 2015 4 次提交
-
-
由 Xunlei Pang 提交于
If a system does not provide a persistent_clock(), the time will be updated on resume by rtc_resume(). With the addition of the non-stop clocksources for suspend timing, those systems set the time on resume in timekeeping_resume(), but may not provide a valid persistent_clock(). This results in the rtc_resume() logic thinking no one has set the time and it then will over-write the suspend time again, which is not necessary and only increases clock error. So, fix this for rtc_resume(). This patch also improves the name of persistent_clock_exist to make it more grammatical. Signed-off-by: NXunlei Pang <pang.xunlei@linaro.org> Signed-off-by: NJohn Stultz <john.stultz@linaro.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1427945681-29972-19-git-send-email-john.stultz@linaro.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Xunlei Pang 提交于
As part of addressing in-kernel y2038 issues, this patch adds update_persistent_clock64() and replaces all the call sites of update_persistent_clock() with this function. This is a __weak implementation, which simply calls the existing y2038 unsafe update_persistent_clock(). This allows architecture specific implementations to be converted independently, and eventually y2038-unsafe update_persistent_clock() can be removed after all its architecture specific implementations have been converted to update_persistent_clock64(). Suggested-by: NArnd Bergmann <arnd@arndb.de> Signed-off-by: NXunlei Pang <pang.xunlei@linaro.org> Signed-off-by: NJohn Stultz <john.stultz@linaro.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1427945681-29972-4-git-send-email-john.stultz@linaro.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Xunlei Pang 提交于
As part of addressing in-kernel y2038 issues, this patch adds read_persistent_clock64() and replaces all the call sites of read_persistent_clock() with this function. This is a __weak implementation, which simply calls the existing y2038 unsafe read_persistent_clock(). This allows architecture specific implementations to be converted independently, and eventually the y2038 unsafe read_persistent_clock() can be removed after all its architecture specific implementations have been converted to read_persistent_clock64(). Suggested-by: NArnd Bergmann <arnd@arndb.de> Signed-off-by: NXunlei Pang <pang.xunlei@linaro.org> Signed-off-by: NJohn Stultz <john.stultz@linaro.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1427945681-29972-3-git-send-email-john.stultz@linaro.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Xunlei Pang 提交于
As part of addressing in-kernel y2038 issues, this patch adds read_boot_clock64() and replaces all the call sites of read_boot_clock() with this function. This is a __weak implementation, which simply calls the existing y2038 unsafe read_boot_clock(). This allows architecture specific implementations to be converted independently, and eventually the y2038 unsafe read_boot_clock() can be removed after all its architecture specific implementations have been converted to read_boot_clock64(). Suggested-by: NArnd Bergmann <arnd@arndb.de> Signed-off-by: NXunlei Pang <pang.xunlei@linaro.org> Signed-off-by: NJohn Stultz <john.stultz@linaro.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1427945681-29972-2-git-send-email-john.stultz@linaro.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 27 3月, 2015 2 次提交
-
-
由 Peter Zijlstra 提交于
Because it was the only clock for which we didn't have a _ns() accessor yet. Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: John Stultz <john.stultz@linaro.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
Add the NMI safe CLOCK_MONOTONIC_RAW accessor.. Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Acked-by: NJohn Stultz <john.stultz@linaro.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20150319093400.562746929@infradead.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 24 1月, 2015 2 次提交
-
-
由 John Stultz 提交于
As part of the 2038 conversion process, add a get_monotonic_boottime64 accessor so we can depracate get_monotonic_boottime. Cc: pang.xunlei <pang.xunlei@linaro.org> Cc: Arnd Bergmann <arnd.bergmann@linaro.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Signed-off-by: NJohn Stultz <john.stultz@linaro.org>
-
由 John Stultz 提交于
Adds a timespec64 based getboottime64() implementation that can be used as we convert internal users of getboottime away from using timespecs. Cc: pang.xunlei <pang.xunlei@linaro.org> Cc: Arnd Bergmann <arnd.bergmann@linaro.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Signed-off-by: NJohn Stultz <john.stultz@linaro.org>
-
- 22 11月, 2014 2 次提交
-
-
由 John Stultz 提交于
Since all users have been converted to using the 64bit timekeeping_inject_sleeptime64(), remove the old y2038 problematic timekeeping_inject_sleeptime(). Signed-off-by: NJohn Stultz <john.stultz@linaro.org>
-
由 John Stultz 提交于
Adds a timespec64 based get_monotonic_coarse64() implementation that can be used as we convert internal users of get_monotonic_coarse away from using timespecs. Signed-off-by: NJohn Stultz <john.stultz@linaro.org>
-