- 02 6月, 2018 1 次提交
-
-
由 Greg Kroah-Hartman 提交于
When calling debugfs functions, there is no need to ever check the return value. The function can work or not, but the code logic should never do something different based on this. This cleans up the error handling a lot, as this code will never get hit. Cc: Paul Mackerras <paulus@ozlabs.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Christoffer Dall <christoffer.dall@arm.com> Cc: Marc Zyngier <marc.zyngier@arm.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: "Radim KrÄmář" <rkrcmar@redhat.com> Cc: Arvind Yadav <arvind.yadav.cs@gmail.com> Cc: Eric Auger <eric.auger@redhat.com> Cc: Andre Przywara <andre.przywara@arm.com> Cc: kvm-ppc@vger.kernel.org Cc: linuxppc-dev@lists.ozlabs.org Cc: linux-kernel@vger.kernel.org Cc: linux-arm-kernel@lists.infradead.org Cc: kvmarm@lists.cs.columbia.edu Cc: kvm@vger.kernel.org Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 25 5月, 2018 10 次提交
-
-
由 Eric Auger 提交于
Now all the internals are ready to handle multiple redistributor regions, let's allow the userspace to register them. Signed-off-by: NEric Auger <eric.auger@redhat.com> Reviewed-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Eric Auger 提交于
On vcpu first run, we eventually know the actual number of vcpus. This is a synchronization point to check all redistributors were assigned. On kvm_vgic_map_resources() we check both dist and redist were set, eventually check potential base address inconsistencies. Signed-off-by: NEric Auger <eric.auger@redhat.com> Reviewed-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Eric Auger 提交于
As we are going to register several redist regions, vgic_register_all_redist_iodevs() may be called several times. We need to register a redist_iodev for a given vcpu only once. So let's check if the base address has already been set. Initialize this latter in kvm_vgic_vcpu_init(). Signed-off-by: NEric Auger <eric.auger@redhat.com> Acked-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Eric Auger 提交于
kvm_vgic_vcpu_early_init gets called after kvm_vgic_cpu_init which is confusing. The call path is as follows: kvm_vm_ioctl_create_vcpu |_ kvm_arch_cpu_create |_ kvm_vcpu_init |_ kvm_arch_vcpu_init |_ kvm_vgic_vcpu_init |_ kvm_arch_vcpu_postcreate |_ kvm_vgic_vcpu_early_init Static initialization currently done in kvm_vgic_vcpu_early_init() can be moved to kvm_vgic_vcpu_init(). So let's move the code and remove kvm_vgic_vcpu_early_init(). kvm_arch_vcpu_postcreate() does nothing. Signed-off-by: NEric Auger <eric.auger@redhat.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Eric Auger 提交于
We introduce a new helper that creates and inserts a new redistributor region into the rdist region list. This helper both handles the case where the redistributor region size is known at registration time and the legacy case where it is not (eventually depending on the number of online vcpus). Depending on pfns, we perform all the possible checks that we can do: - end of memory crossing - incorrect alignment of the base address - collision with distributor region if already defined - collision with already registered rdist regions - check of the new index Rdist regions must be inserted by increasing order of indices. Indices must be contiguous. Signed-off-by: NEric Auger <eric.auger@redhat.com> Reviewed-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Eric Auger 提交于
vgic_v3_check_base() currently only handles the case of a unique legacy redistributor region whose size is not explicitly set but inferred, instead, from the number of online vcpus. We adapt it to handle the case of multiple redistributor regions with explicitly defined size. We rely on two new helpers: - vgic_v3_rdist_overlap() is used to detect overlap with the dist region if defined - vgic_v3_rd_region_size computes the size of the redist region, would it be a legacy unique region or a new explicitly sized region. Signed-off-by: NEric Auger <eric.auger@redhat.com> Reviewed-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Eric Auger 提交于
The TYPER of an redistributor reflects whether the rdist is the last one of the redistributor region. Let's compare the TYPER GPA against the address of the last occupied slot within the redistributor region. Signed-off-by: NEric Auger <eric.auger@redhat.com> Reviewed-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Eric Auger 提交于
We introduce vgic_v3_rdist_free_slot to help identifying where we can place a new 2x64KB redistributor. Signed-off-by: NEric Auger <eric.auger@redhat.com> Reviewed-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Eric Auger 提交于
At the moment KVM supports a single rdist region. We want to support several separate rdist regions so let's introduce a list of them. This patch currently only cares about a single entry in this list as the functionality to register several redist regions is not yet there. So this only translates the existing code into something functionally similar using that new data struct. The redistributor region handle is stored in the vgic_cpu structure to allow later computation of the TYPER last bit. Signed-off-by: NEric Auger <eric.auger@redhat.com> Reviewed-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Eric Auger 提交于
in case kvm_vgic_map_resources() fails, typically if the vgic distributor is not defined, __kvm_vgic_destroy will be called several times. Indeed kvm_vgic_map_resources() is called on first vcpu run. As a result dist->spis is freeed more than once and on the second time it causes a "kernel BUG at mm/slub.c:3912!" Set dist->spis to NULL to avoid the crash. Fixes: ad275b8b ("KVM: arm/arm64: vgic-new: vgic_init: implement vgic_init") Signed-off-by: NEric Auger <eric.auger@redhat.com> Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Reviewed-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 15 5月, 2018 4 次提交
-
-
由 Andre Przywara 提交于
kvm_read_guest() will eventually look up in kvm_memslots(), which requires either to hold the kvm->slots_lock or to be inside a kvm->srcu critical section. In contrast to x86 and s390 we don't take the SRCU lock on every guest exit, so we have to do it individually for each kvm_read_guest() call. Use the newly introduced wrapper for that. Cc: Stable <stable@vger.kernel.org> # 4.12+ Reported-by: NJan Glauber <jan.glauber@caviumnetworks.com> Signed-off-by: NAndre Przywara <andre.przywara@arm.com> Acked-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Andre Przywara 提交于
kvm_read_guest() will eventually look up in kvm_memslots(), which requires either to hold the kvm->slots_lock or to be inside a kvm->srcu critical section. In contrast to x86 and s390 we don't take the SRCU lock on every guest exit, so we have to do it individually for each kvm_read_guest() call. Provide a wrapper which does that and use that everywhere. Note that ending the SRCU critical section before returning from the kvm_read_guest() wrapper is safe, because the data has been *copied*, so we don't need to rely on valid references to the memslot anymore. Cc: Stable <stable@vger.kernel.org> # 4.8+ Reported-by: NJan Glauber <jan.glauber@caviumnetworks.com> Signed-off-by: NAndre Przywara <andre.przywara@arm.com> Acked-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Andre Przywara 提交于
Apparently the development of update_affinity() overlapped with the promotion of irq_lock to be _irqsave, so the patch didn't convert this lock over. This will make lockdep complain. Fix this by disabling IRQs around the lock. Cc: stable@vger.kernel.org Fixes: 08c9fd04 ("KVM: arm/arm64: vITS: Add a helper to update the affinity of an LPI") Reported-by: NJan Glauber <jan.glauber@caviumnetworks.com> Signed-off-by: NAndre Przywara <andre.przywara@arm.com> Acked-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Andre Przywara 提交于
As Jan reported [1], lockdep complains about the VGIC not being bullet proof. This seems to be due to two issues: - When commit 006df0f3 ("KVM: arm/arm64: Support calling vgic_update_irq_pending from irq context") promoted irq_lock and ap_list_lock to _irqsave, we forgot two instances of irq_lock. lockdeps seems to pick those up. - If a lock is _irqsave, any other locks we take inside them should be _irqsafe as well. So the lpi_list_lock needs to be promoted also. This fixes both issues by simply making the remaining instances of those locks _irqsave. One irq_lock is addressed in a separate patch, to simplify backporting. [1] http://lists.infradead.org/pipermail/linux-arm-kernel/2018-May/575718.html Cc: stable@vger.kernel.org Fixes: 006df0f3 ("KVM: arm/arm64: Support calling vgic_update_irq_pending from irq context") Reported-by: NJan Glauber <jan.glauber@caviumnetworks.com> Acked-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NAndre Przywara <andre.przywara@arm.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 04 5月, 2018 1 次提交
-
-
由 Valentin Schneider 提交于
One comment still mentioned process_maintenance operations after commit af061499 ("KVM: arm/arm64: vgic: Get rid of unnecessary process_maintenance operation") Update the comment to point to vgic_fold_lr_state instead, which is where maintenance interrupts are taken care of. Acked-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NValentin Schneider <valentin.schneider@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 27 4月, 2018 3 次提交
-
-
由 Marc Zyngier 提交于
Now that we make sure we don't inject multiple instances of the same GICv2 SGI at the same time, we've made another bug more obvious: If we exit with an active SGI, we completely lose track of which vcpu it came from. On the next entry, we restore it with 0 as a source, and if that wasn't the right one, too bad. While this doesn't seem to trouble GIC-400, the architectural model gets offended and doesn't deactivate the interrupt on EOI. Another connected issue is that we will happilly make pending an interrupt from another vcpu, overriding the above zero with something that is just as inconsistent. Don't do that. The final issue is that we signal a maintenance interrupt when no pending interrupts are present in the LR. Assuming we've fixed the two issues above, we end-up in a situation where we keep exiting as soon as we've reached the active state, and not be able to inject the following pending. The fix comes in 3 parts: - GICv2 SGIs have their source vcpu saved if they are active on exit, and restored on entry - Multi-SGIs cannot go via the Pending+Active state, as this would corrupt the source field - Multi-SGIs are converted to using MI on EOI instead of NPIE Fixes: 16ca6a60 ("KVM: arm/arm64: vgic: Don't populate multiple LRs with the same vintid") Reported-by: NMark Rutland <mark.rutland@arm.com> Tested-by: NMark Rutland <mark.rutland@arm.com> Reviewed-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Mark Rutland 提交于
It's possible for userspace to control n. Sanitize n when using it as an array index. Note that while it appears that n must be bound to the interval [0,3] due to the way it is extracted from addr, we cannot guarantee that compiler transformations (and/or future refactoring) will ensure this is the case, and given this is a slow path it's better to always perform the masking. Found by smatch. Signed-off-by: NMark Rutland <mark.rutland@arm.com> Acked-by: NChristoffer Dall <christoffer.dall@arm.com> Acked-by: NMarc Zyngier <marc.zyngier@arm.com> Cc: kvmarm@lists.cs.columbia.edu Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Mark Rutland 提交于
It's possible for userspace to control intid. Sanitize intid when using it as an array index. At the same time, sort the includes when adding <linux/nospec.h>. Found by smatch. Signed-off-by: NMark Rutland <mark.rutland@arm.com> Acked-by: NChristoffer Dall <christoffer.dall@arm.com> Acked-by: NMarc Zyngier <marc.zyngier@arm.com> Cc: kvmarm@lists.cs.columbia.edu Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 17 4月, 2018 1 次提交
-
-
由 Andre Przywara 提交于
When vgic_prune_ap_list() finds an interrupt that needs to be migrated to a new VCPU, we should notify this VCPU of the pending interrupt, since it requires immediate action. Kick this VCPU once we have added the new IRQ to the list, but only after dropping the locks. Reported-by: NStefano Stabellini <sstabellini@kernel.org> Reviewed-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NAndre Przywara <andre.przywara@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 26 3月, 2018 2 次提交
-
-
由 Marc Zyngier 提交于
vgic_copy_lpi_list() parses the LPI list and picks LPIs targeting a given vcpu. We allocate the array containing the intids before taking the lpi_list_lock, which means we can have an array size that is not equal to the number of LPIs. This is particularly obvious when looking at the path coming from vgic_enable_lpis, which is not a command, and thus can run in parallel with commands: vcpu 0: vcpu 1: vgic_enable_lpis its_sync_lpi_pending_table vgic_copy_lpi_list intids = kmalloc_array(irq_count) MAPI(lpi targeting vcpu 0) list_for_each_entry(lpi_list_head) intids[i++] = irq->intid; At that stage, we will happily overrun the intids array. Boo. An easy fix is is to break once the array is full. The MAPI command will update the config anyway, and we won't miss a thing. We also make sure that lpi_list_count is read exactly once, so that further updates of that value will not affect the array bound check. Cc: stable@vger.kernel.org Fixes: ccb1d791 ("KVM: arm64: vgic-its: Fix pending table sync") Reviewed-by: NAndre Przywara <andre.przywara@arm.com> Reviewed-by: NEric Auger <eric.auger@redhat.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Marc Zyngier 提交于
It was recently reported that VFIO mediated devices, and anything that VFIO exposes as level interrupts, do no strictly follow the expected logic of such interrupts as it only lowers the input line when the guest has EOId the interrupt at the GIC level, rather than when it Acked the interrupt at the device level. THe GIC's Active+Pending state is fundamentally incompatible with this behaviour, as it prevents KVM from observing the EOI, and in turn results in VFIO never dropping the line. This results in an interrupt storm in the guest, which it really never expected. As we cannot really change VFIO to follow the strict rules of level signalling, let's forbid the A+P state altogether, as it is in the end only an optimization. It ensures that we will transition via an invalid state, which we can use to notify VFIO of the EOI. Reviewed-by: NEric Auger <eric.auger@redhat.com> Tested-by: NEric Auger <eric.auger@redhat.com> Tested-by: NShunyong Yang <shunyong.yang@hxt-semitech.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 19 3月, 2018 8 次提交
-
-
由 Marc Zyngier 提交于
As we're about to change the way we map devices at HYP, we need to move away from kern_hyp_va on an IO address. One way of achieving this is to store the VAs in kvm_vgic_global_state, and use that directly from the HYP code. This requires a small change to create_hyp_io_mappings so that it can also return a HYP VA. We take this opportunity to nuke the vctrl_base field in the emulated distributor, as it is not used anymore. Acked-by: NCatalin Marinas <catalin.marinas@arm.com> Reviewed-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Marc Zyngier 提交于
Both HYP io mappings call ioremap, followed by create_hyp_io_mappings. Let's move the ioremap call into create_hyp_io_mappings itself, which simplifies the code a bit and allows for further refactoring. Reviewed-by: NChristoffer Dall <christoffer.dall@linaro.org> Acked-by: NCatalin Marinas <catalin.marinas@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Christoffer Dall 提交于
We can finally get completely rid of any calls to the VGICv3 save/restore functions when the AP lists are empty on VHE systems. This requires carefully factoring out trap configuration from saving and restoring state, and carefully choosing what to do on the VHE and non-VHE path. One of the challenges is that we cannot save/restore the VMCR lazily because we can only write the VMCR when ICC_SRE_EL1.SRE is cleared when emulating a GICv2-on-GICv3, since otherwise all Group-0 interrupts end up being delivered as FIQ. To solve this problem, and still provide fast performance in the fast path of exiting a VM when no interrupts are pending (which also optimized the latency for actually delivering virtual interrupts coming from physical interrupts), we orchestrate a dance of only doing the activate/deactivate traps in vgic load/put for VHE systems (which can have ICC_SRE_EL1.SRE cleared when running in the host), and doing the configuration on every round-trip on non-VHE systems. Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Christoffer Dall 提交于
The APRs can only have bits set when the guest acknowledges an interrupt in the LR and can only have a bit cleared when the guest EOIs an interrupt in the LR. Therefore, if we have no LRs with any pending/active interrupts, the APR cannot change value and there is no need to clear it on every exit from the VM (hint: it will have already been cleared when we exited the guest the last time with the LRs all EOIed). The only case we need to take care of is when we migrate the VCPU away from a CPU or migrate a new VCPU onto a CPU, or when we return to userspace to capture the state of the VCPU for migration. To make sure this works, factor out the APR save/restore functionality into separate functions called from the VCPU (and by extension VGIC) put/load hooks. Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Christoffer Dall 提交于
Just like we can program the GICv2 hypervisor control interface directly from the core vgic code, we can do the same for the GICv3 hypervisor control interface on VHE systems. We do this by simply calling the save/restore functions when we have VHE and we can then get rid of the save/restore function calls from the VHE world switch function. One caveat is that we now write GICv3 system register state before the potential early exit path in the run loop, and because we sync back state in the early exit path, we have to ensure that we read a consistent GIC state from the sync path, even though we have never actually run the guest with the newly written GIC state. We solve this by inserting an ISB in the early exit path. Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Christoffer Dall 提交于
We can program the GICv2 hypervisor control interface logic directly from the core vgic code and can instead do the save/restore directly from the flush/sync functions, which can lead to a number of future optimizations. Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Christoffer Dall 提交于
There is really no need to store the vgic_elrsr on the VGIC data structures as the only need we have for the elrsr is to figure out if an LR is inactive when we save the VGIC state upon returning from the guest. We can might as well store this in a temporary local variable. Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Christoffer Dall 提交于
Moving the call to vcpu_load() in kvm_arch_vcpu_ioctl_run() to after we've called kvm_vcpu_first_run_init() simplifies some of the vgic and there is also no need to do vcpu_load() for things such as handling the immediate_exit flag. Reviewed-by: NJulien Grall <julien.grall@arm.com> Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 15 3月, 2018 4 次提交
-
-
由 Marc Zyngier 提交于
The vgic code is trying to be clever when injecting GICv2 SGIs, and will happily populate LRs with the same interrupt number if they come from multiple vcpus (after all, they are distinct interrupt sources). Unfortunately, this is against the letter of the architecture, and the GICv2 architecture spec says "Each valid interrupt stored in the List registers must have a unique VirtualID for that virtual CPU interface.". GICv3 has similar (although slightly ambiguous) restrictions. This results in guests locking up when using GICv2-on-GICv3, for example. The obvious fix is to stop trying so hard, and inject a single vcpu per SGI per guest entry. After all, pending SGIs with multiple source vcpus are pretty rare, and are mostly seen in scenario where the physical CPUs are severely overcomitted. But as we now only inject a single instance of a multi-source SGI per vcpu entry, we may delay those interrupts for longer than strictly necessary, and run the risk of injecting lower priority interrupts in the meantime. In order to address this, we adopt a three stage strategy: - If we encounter a multi-source SGI in the AP list while computing its depth, we force the list to be sorted - When populating the LRs, we prevent the injection of any interrupt of lower priority than that of the first multi-source SGI we've injected. - Finally, the injection of a multi-source SGI triggers the request of a maintenance interrupt when there will be no pending interrupt in the LRs (HCR_NPIE). At the point where the last pending interrupt in the LRs switches from Pending to Active, the maintenance interrupt will be delivered, allowing us to add the remaining SGIs using the same process. Cc: stable@vger.kernel.org Fixes: 0919e84c ("KVM: arm/arm64: vgic-new: Add IRQ sync/flush framework") Acked-by: NChristoffer Dall <cdall@kernel.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Ard Biesheuvel 提交于
On my GICv3 system, the following is printed to the kernel log at boot: kvm [1]: 8-bit VMID kvm [1]: IDMAP page: d20e35000 kvm [1]: HYP VA range: 800000000000:ffffffffffff kvm [1]: vgic-v2@2c020000 kvm [1]: GIC system register CPU interface enabled kvm [1]: vgic interrupt IRQ1 kvm [1]: virtual timer IRQ4 kvm [1]: Hyp mode initialized successfully The KVM IDMAP is a mapping of a statically allocated kernel structure, and so printing its physical address leaks the physical placement of the kernel when physical KASLR in effect. So change the kvm_info() to kvm_debug() to remove it from the log output. While at it, trim the output a bit more: IRQ numbers can be found in /proc/interrupts, and the HYP VA and vgic-v2 lines are not highly informational either. Cc: <stable@vger.kernel.org> Acked-by: NWill Deacon <will.deacon@arm.com> Acked-by: NChristoffer Dall <cdall@kernel.org> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Christoffer Dall 提交于
We currently don't allow resetting mapped IRQs from userspace, because their state is controlled by the hardware. But we do need to reset the state when the VM is reset, so we provide a function for the 'owner' of the mapped interrupt to reset the interrupt state. Currently only the timer uses mapped interrupts, so we call this function from the timer reset logic. Cc: stable@vger.kernel.org Fixes: 4c60e360 ("KVM: arm/arm64: Provide a get_input_level for the arch timer") Signed-off-by: NChristoffer Dall <cdall@kernel.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Andre Przywara 提交于
Our irq_is_pending() helper function accesses multiple members of the vgic_irq struct, so we need to hold the lock when calling it. Add that requirement as a comment to the definition and take the lock around the call in vgic_mmio_read_pending(), where we were missing it before. Fixes: 96b29800 ("KVM: arm/arm64: vgic-new: Add PENDING registers handlers") Signed-off-by: NAndre Przywara <andre.przywara@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 12 1月, 2018 1 次提交
-
-
由 Christoffer Dall 提交于
Commit 3d1ad640 ("KVM: arm/arm64: Fix GICv4 ITS initialization issues") moved the vgic_supports_direct_msis() check in vgic_v4_init(). However when vgic_v4_init is called from vgic_its_create(), the has_its field is not yet set. Hence vgic_supports_direct_msis returns false and vgic_v4_init does nothing. The gic/its init sequence is a bit messy, so let's be specific about the prerequisite checks in the various call paths instead of relying on a common wrapper. Fixes: 3d1ad640 ("KVM: arm/arm64: Fix GICv4 ITS initialization issues") Reported-by: NEric Auger <eric.auger@redhat.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
- 02 1月, 2018 5 次提交
-
-
由 Christoffer Dall 提交于
For mapped IRQs (with the HW bit set in the LR) we have to follow some rules of the architecture. One of these rules is that VM must not be allowed to deactivate a virtual interrupt with the HW bit set unless the physical interrupt is also active. This works fine when injecting mapped interrupts, because we leave it up to the injector to either set EOImode==1 or manually set the active state of the physical interrupt. However, the guest can set virtual interrupt to be pending or active by writing to the virtual distributor, which could lead to deactivating a virtual interrupt with the HW bit set without the physical interrupt being active. We could set the physical interrupt to active whenever we are about to enter the VM with a HW interrupt either pending or active, but that would be really slow, especially on GICv2. So we take the long way around and do the hard work when needed, which is expected to be extremely rare. When the VM sets the pending state for a HW interrupt on the virtual distributor we set the active state on the physical distributor, because the virtual interrupt can become active and then the guest can deactivate it. When the VM clears the pending state we also clear it on the physical side, because the injector might otherwise raise the interrupt. We also clear the physical active state when the virtual interrupt is not active, since otherwise a SPEND/CPEND sequence from the guest would prevent signaling of future interrupts. Changing the state of mapped interrupts from userspace is not supported, and it's expected that userspace unmaps devices from VFIO before attempting to set the interrupt state, because the interrupt state is driven by hardware. Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Reviewed-by: NEric Auger <eric.auger@redhat.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
由 Christoffer Dall 提交于
The GIC sometimes need to sample the physical line of a mapped interrupt. As we know this to be notoriously slow, provide a callback function for devices (such as the timer) which can do this much faster than talking to the distributor, for example by comparing a few in-memory values. Fall back to the good old method of poking the physical GIC if no callback is provided. Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Reviewed-by: NEric Auger <eric.auger@redhat.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
由 Christoffer Dall 提交于
Level-triggered mapped IRQs are special because we only observe rising edges as input to the VGIC, and we don't set the EOI flag and therefore are not told when the level goes down, so that we can re-queue a new interrupt when the level goes up. One way to solve this problem is to side-step the logic of the VGIC and special case the validation in the injection path, but it has the unfortunate drawback of having to peak into the physical GIC state whenever we want to know if the interrupt is pending on the virtual distributor. Instead, we can maintain the current semantics of a level triggered interrupt by sort of treating it as an edge-triggered interrupt, following from the fact that we only observe an asserting edge. This requires us to be a bit careful when populating the LRs and when folding the state back in though: * We lower the line level when populating the LR, so that when subsequently observing an asserting edge, the VGIC will do the right thing. * If the guest never acked the interrupt while running (for example if it had masked interrupts at the CPU level while running), we have to preserve the pending state of the LR and move it back to the line_level field of the struct irq when folding LR state. If the guest never acked the interrupt while running, but changed the device state and lowered the line (again with interrupts masked) then we need to observe this change in the line_level. Both of the above situations are solved by sampling the physical line and set the line level when folding the LR back. * Finally, if the guest never acked the interrupt while running and sampling the line reveals that the device state has changed and the line has been lowered, we must clear the physical active state, since we will otherwise never be told when the interrupt becomes asserted again. This has the added benefit of making the timer optimization patches (https://lists.cs.columbia.edu/pipermail/kvmarm/2017-July/026343.html) a bit simpler, because the timer code doesn't have to clear the active state on the sync anymore. It also potentially improves the performance of the timer implementation because the GIC knows the state or the LR and only needs to clear the active state when the pending bit in the LR is still set, where the timer has to always clear it when returning from running the guest with an injected timer interrupt. Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Reviewed-by: NEric Auger <eric.auger@redhat.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
由 Christoffer Dall 提交于
We are about to distinguish between userspace accesses and mmio traps for a number of the mmio handlers. When the requester vcpu is NULL, it means we are handling a userspace access. Factor out the functionality to get the request vcpu into its own function, mostly so we have a common place to document the semantics of the return value. Also take the chance to move the functionality outside of holding a spinlock and instead explicitly disable and enable preemption. This supports PREEMPT_RT kernels as well. Acked-by: NMarc Zyngier <marc.zyngier@arm.com> Reviewed-by: NAndre Przywara <andre.przywara@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
由 Vasyl Gomonovych 提交于
Fix ptr_ret.cocci warnings: virt/kvm/arm/vgic/vgic-its.c:971:1-3: WARNING: PTR_ERR_OR_ZERO can be used Use PTR_ERR_OR_ZERO rather than if(IS_ERR(...)) + PTR_ERR Generated by: scripts/coccinelle/api/ptr_ret.cocci Signed-off-by: NVasyl Gomonovych <gomonovych@gmail.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-