- 25 9月, 2013 1 次提交
-
-
由 Andrew Morton 提交于
Revert commit 1be171d6 ("memcg: track all children over limit in the root") I merged this prematurely - Michal and Johannes still disagree about the overall design direction and the future remains unclear. Cc: Michal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 13 9月, 2013 16 次提交
-
-
由 Sha Zhengju 提交于
Add memcg routines to count writeback pages, later dirty pages will also be accounted. After Kame's commit 89c06bd5 ("memcg: use new logic for page stat accounting"), we can use 'struct page' flag to test page state instead of per page_cgroup flag. But memcg has a feature to move a page from a cgroup to another one and may have race between "move" and "page stat accounting". So in order to avoid the race we have designed a new lock: mem_cgroup_begin_update_page_stat() modify page information -->(a) mem_cgroup_update_page_stat() -->(b) mem_cgroup_end_update_page_stat() It requires both (a) and (b)(writeback pages accounting) to be pretected in mem_cgroup_{begin/end}_update_page_stat(). It's full no-op for !CONFIG_MEMCG, almost no-op if memcg is disabled (but compiled in), rcu read lock in the most cases (no task is moving), and spin_lock_irqsave on top in the slow path. There're two writeback interfaces to modify: test_{clear/set}_page_writeback(). And the lock order is: --> memcg->move_lock --> mapping->tree_lock Signed-off-by: NSha Zhengju <handai.szj@taobao.com> Acked-by: NMichal Hocko <mhocko@suse.cz> Reviewed-by: NGreg Thelen <gthelen@google.com> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Sha Zhengju 提交于
We should call mem_cgroup_begin_update_page_stat() before mem_cgroup_update_page_stat() to get proper locks, however the latter doesn't do any checking that we use proper locking, which would be hard. Suggested by Michal Hock we could at least test for rcu_read_lock_held() because RCU is held if !mem_cgroup_disabled(). Signed-off-by: NSha Zhengju <handai.szj@taobao.com> Acked-by: NMichal Hocko <mhocko@suse.cz> Reviewed-by: NGreg Thelen <gthelen@google.com> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Sha Zhengju 提交于
While accounting memcg page stat, it's not worth to use MEMCG_NR_FILE_MAPPED as an extra layer of indirection because of the complexity and presumed performance overhead. We can use MEM_CGROUP_STAT_FILE_MAPPED directly. Signed-off-by: NSha Zhengju <handai.szj@taobao.com> Acked-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: NMichal Hocko <mhocko@suse.cz> Acked-by: NFengguang Wu <fengguang.wu@intel.com> Reviewed-by: NGreg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Sha Zhengju 提交于
RESOURCE_MAX is far too general name, change it to RES_COUNTER_MAX. Signed-off-by: NSha Zhengju <handai.szj@taobao.com> Signed-off-by: NQiang Huang <h.huangqiang@huawei.com> Acked-by: NMichal Hocko <mhocko@suse.cz> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Jeff Liu <jeff.liu@oracle.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
The memcg OOM handling is incredibly fragile and can deadlock. When a task fails to charge memory, it invokes the OOM killer and loops right there in the charge code until it succeeds. Comparably, any other task that enters the charge path at this point will go to a waitqueue right then and there and sleep until the OOM situation is resolved. The problem is that these tasks may hold filesystem locks and the mmap_sem; locks that the selected OOM victim may need to exit. For example, in one reported case, the task invoking the OOM killer was about to charge a page cache page during a write(), which holds the i_mutex. The OOM killer selected a task that was just entering truncate() and trying to acquire the i_mutex: OOM invoking task: mem_cgroup_handle_oom+0x241/0x3b0 mem_cgroup_cache_charge+0xbe/0xe0 add_to_page_cache_locked+0x4c/0x140 add_to_page_cache_lru+0x22/0x50 grab_cache_page_write_begin+0x8b/0xe0 ext3_write_begin+0x88/0x270 generic_file_buffered_write+0x116/0x290 __generic_file_aio_write+0x27c/0x480 generic_file_aio_write+0x76/0xf0 # takes ->i_mutex do_sync_write+0xea/0x130 vfs_write+0xf3/0x1f0 sys_write+0x51/0x90 system_call_fastpath+0x18/0x1d OOM kill victim: do_truncate+0x58/0xa0 # takes i_mutex do_last+0x250/0xa30 path_openat+0xd7/0x440 do_filp_open+0x49/0xa0 do_sys_open+0x106/0x240 sys_open+0x20/0x30 system_call_fastpath+0x18/0x1d The OOM handling task will retry the charge indefinitely while the OOM killed task is not releasing any resources. A similar scenario can happen when the kernel OOM killer for a memcg is disabled and a userspace task is in charge of resolving OOM situations. In this case, ALL tasks that enter the OOM path will be made to sleep on the OOM waitqueue and wait for userspace to free resources or increase the group's limit. But a userspace OOM handler is prone to deadlock itself on the locks held by the waiting tasks. For example one of the sleeping tasks may be stuck in a brk() call with the mmap_sem held for writing but the userspace handler, in order to pick an optimal victim, may need to read files from /proc/<pid>, which tries to acquire the same mmap_sem for reading and deadlocks. This patch changes the way tasks behave after detecting a memcg OOM and makes sure nobody loops or sleeps with locks held: 1. When OOMing in a user fault, invoke the OOM killer and restart the fault instead of looping on the charge attempt. This way, the OOM victim can not get stuck on locks the looping task may hold. 2. When OOMing in a user fault but somebody else is handling it (either the kernel OOM killer or a userspace handler), don't go to sleep in the charge context. Instead, remember the OOMing memcg in the task struct and then fully unwind the page fault stack with -ENOMEM. pagefault_out_of_memory() will then call back into the memcg code to check if the -ENOMEM came from the memcg, and then either put the task to sleep on the memcg's OOM waitqueue or just restart the fault. The OOM victim can no longer get stuck on any lock a sleeping task may hold. Debugged by Michal Hocko. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Reported-by: NazurIt <azurit@pobox.sk> Acked-by: NMichal Hocko <mhocko@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
The memcg OOM handler open-codes a sleeping lock for OOM serialization (trylock, wait, repeat) because the required locking is so specific to memcg hierarchies. However, it would be nice if this construct would be clearly recognizable and not be as obfuscated as it is right now. Clean up as follows: 1. Remove the return value of mem_cgroup_oom_unlock() 2. Rename mem_cgroup_oom_lock() to mem_cgroup_oom_trylock(). 3. Pull the prepare_to_wait() out of the memcg_oom_lock scope. This makes it more obvious that the task has to be on the waitqueue before attempting to OOM-trylock the hierarchy, to not miss any wakeups before going to sleep. It just didn't matter until now because it was all lumped together into the global memcg_oom_lock spinlock section. 4. Pull the mem_cgroup_oom_notify() out of the memcg_oom_lock scope. It is proctected by the hierarchical OOM-lock. 5. The memcg_oom_lock spinlock is only required to propagate the OOM lock in any given hierarchy atomically. Restrict its scope to mem_cgroup_oom_(trylock|unlock). 6. Do not wake up the waitqueue unconditionally at the end of the function. Only the lockholder has to wake up the next in line after releasing the lock. Note that the lockholder kicks off the OOM-killer, which in turn leads to wakeups from the uncharges of the exiting task. But a contender is not guaranteed to see them if it enters the OOM path after the OOM kills but before the lockholder releases the lock. Thus there has to be an explicit wakeup after releasing the lock. 7. Put the OOM task on the waitqueue before marking the hierarchy as under OOM as that is the point where we start to receive wakeups. No point in listening before being on the waitqueue. 8. Likewise, unmark the hierarchy before finishing the sleep, for symmetry. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NMichal Hocko <mhocko@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: azurIt <azurit@pobox.sk> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
System calls and kernel faults (uaccess, gup) can handle an out of memory situation gracefully and just return -ENOMEM. Enable the memcg OOM killer only for user faults, where it's really the only option available. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NMichal Hocko <mhocko@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: azurIt <azurit@pobox.sk> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andrew Morton 提交于
Clean up some mess made by the "Soft limit rework" series, and a few other things. Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
Children in soft limit excess are currently tracked up the hierarchy in memcg->children_in_excess. Nevertheless there still might exist tons of groups that are not in hierarchy relation to the root cgroup (e.g. all first level groups if root_mem_cgroup->use_hierarchy == false). As the whole tree walk has to be done when the iteration starts at root_mem_cgroup the iterator should be able to skip the walk if there is no child above the limit without iterating them. This can be done easily if the root tracks all children rather than only hierarchical children. This is done by this patch which updates root_mem_cgroup children_in_excess if root_mem_cgroup->use_hierarchy == false so the root knows about all children in excess. Please note that this is not an issue for inner memcgs which have use_hierarchy == false because then only the single group is visited so no special optimization is necessary. Signed-off-by: NMichal Hocko <mhocko@suse.cz> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Glauber Costa <glommer@openvz.org> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Michel Lespinasse <walken@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Ying Han <yinghan@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
mem_cgroup_should_soft_reclaim controls whether soft reclaim pass is done and it always says yes currently. Memcg iterators are clever to skip nodes that are not soft reclaimable quite efficiently but mem_cgroup_should_soft_reclaim can be more clever and do not start the soft reclaim pass at all if it knows that nothing would be scanned anyway. In order to do that, simply reuse mem_cgroup_soft_reclaim_eligible for the target group of the reclaim and allow the pass only if the whole subtree wouldn't be skipped. Signed-off-by: NMichal Hocko <mhocko@suse.cz> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Glauber Costa <glommer@openvz.org> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Michel Lespinasse <walken@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Ying Han <yinghan@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
Soft limit reclaim has to check the whole reclaim hierarchy while doing the first pass of the reclaim. This leads to a higher system time which can be visible especially when there are many groups in the hierarchy. This patch adds a per-memcg counter of children in excess. It also restores MEM_CGROUP_TARGET_SOFTLIMIT into mem_cgroup_event_ratelimit for a proper batching. If a group crosses soft limit for the first time it increases parent's children_in_excess up the hierarchy. The similarly if a group gets below the limit it will decrease the counter. The transition phase is recorded in soft_contributed flag. mem_cgroup_soft_reclaim_eligible then uses this information to better decide whether to skip the node or the whole subtree. The rule is simple. Skip the node with a children in excess or skip the whole subtree otherwise. This has been tested by a stream IO (dd if=/dev/zero of=file with 4*MemTotal size) which is quite sensitive to overhead during reclaim. The load is running in a group with soft limit set to 0 and without any limit. Apart from that there was a hierarchy with ~500, 2k and 8k groups (two groups on each level) without any pages in them. base denotes to the kernel on which the whole series is based on, rework is the kernel before this patch and reworkoptim is with this patch applied: * Run with soft limit set to 0 Elapsed 0-0-limit/base: min: 88.21 max: 94.61 avg: 91.73 std: 2.65 runs: 3 0-0-limit/rework: min: 76.05 [86.2%] max: 79.08 [83.6%] avg: 77.84 [84.9%] std: 1.30 runs: 3 0-0-limit/reworkoptim: min: 77.98 [88.4%] max: 80.36 [84.9%] avg: 78.92 [86.0%] std: 1.03 runs: 3 System 0.5k-0-limit/base: min: 34.86 max: 36.42 avg: 35.89 std: 0.73 runs: 3 0.5k-0-limit/rework: min: 43.26 [124.1%] max: 48.95 [134.4%] avg: 46.09 [128.4%] std: 2.32 runs: 3 0.5k-0-limit/reworkoptim: min: 46.98 [134.8%] max: 50.98 [140.0%] avg: 48.49 [135.1%] std: 1.77 runs: 3 Elapsed 0.5k-0-limit/base: min: 88.50 max: 97.52 avg: 93.92 std: 3.90 runs: 3 0.5k-0-limit/rework: min: 75.92 [85.8%] max: 78.45 [80.4%] avg: 77.34 [82.3%] std: 1.06 runs: 3 0.5k-0-limit/reworkoptim: min: 75.79 [85.6%] max: 79.37 [81.4%] avg: 77.55 [82.6%] std: 1.46 runs: 3 System 2k-0-limit/base: min: 34.57 max: 37.65 avg: 36.34 std: 1.30 runs: 3 2k-0-limit/rework: min: 64.17 [185.6%] max: 68.20 [181.1%] avg: 66.21 [182.2%] std: 1.65 runs: 3 2k-0-limit/reworkoptim: min: 49.78 [144.0%] max: 52.99 [140.7%] avg: 51.00 [140.3%] std: 1.42 runs: 3 Elapsed 2k-0-limit/base: min: 92.61 max: 97.83 avg: 95.03 std: 2.15 runs: 3 2k-0-limit/rework: min: 78.33 [84.6%] max: 84.08 [85.9%] avg: 81.09 [85.3%] std: 2.35 runs: 3 2k-0-limit/reworkoptim: min: 75.72 [81.8%] max: 78.57 [80.3%] avg: 76.73 [80.7%] std: 1.30 runs: 3 System 8k-0-limit/base: min: 39.78 max: 42.09 avg: 41.09 std: 0.97 runs: 3 8k-0-limit/rework: min: 200.86 [504.9%] max: 265.42 [630.6%] avg: 241.80 [588.5%] std: 29.06 runs: 3 8k-0-limit/reworkoptim: min: 53.70 [135.0%] max: 54.89 [130.4%] avg: 54.43 [132.5%] std: 0.52 runs: 3 Elapsed 8k-0-limit/base: min: 95.11 max: 98.61 avg: 96.81 std: 1.43 runs: 3 8k-0-limit/rework: min: 246.96 [259.7%] max: 331.47 [336.1%] avg: 301.32 [311.2%] std: 38.52 runs: 3 8k-0-limit/reworkoptim: min: 76.79 [80.7%] max: 81.71 [82.9%] avg: 78.97 [81.6%] std: 2.05 runs: 3 System time is increased by 30-40% but it is reduced a lot comparing to kernel without this patch. The higher time can be explained by the fact that the original soft reclaim scanned at priority 0 so it was much more effective for this workload (which is basically touch once and writeback). The Elapsed time looks better though (~20%). * Run with no soft limit set System 0-no-limit/base: min: 42.18 max: 50.38 avg: 46.44 std: 3.36 runs: 3 0-no-limit/rework: min: 40.57 [96.2%] max: 47.04 [93.4%] avg: 43.82 [94.4%] std: 2.64 runs: 3 0-no-limit/reworkoptim: min: 40.45 [95.9%] max: 45.28 [89.9%] avg: 42.10 [90.7%] std: 2.25 runs: 3 Elapsed 0-no-limit/base: min: 75.97 max: 78.21 avg: 76.87 std: 0.96 runs: 3 0-no-limit/rework: min: 75.59 [99.5%] max: 80.73 [103.2%] avg: 77.64 [101.0%] std: 2.23 runs: 3 0-no-limit/reworkoptim: min: 77.85 [102.5%] max: 82.42 [105.4%] avg: 79.64 [103.6%] std: 1.99 runs: 3 System 0.5k-no-limit/base: min: 44.54 max: 46.93 avg: 46.12 std: 1.12 runs: 3 0.5k-no-limit/rework: min: 42.09 [94.5%] max: 46.16 [98.4%] avg: 43.92 [95.2%] std: 1.69 runs: 3 0.5k-no-limit/reworkoptim: min: 42.47 [95.4%] max: 45.67 [97.3%] avg: 44.06 [95.5%] std: 1.31 runs: 3 Elapsed 0.5k-no-limit/base: min: 78.26 max: 81.49 avg: 79.65 std: 1.36 runs: 3 0.5k-no-limit/rework: min: 77.01 [98.4%] max: 80.43 [98.7%] avg: 78.30 [98.3%] std: 1.52 runs: 3 0.5k-no-limit/reworkoptim: min: 76.13 [97.3%] max: 77.87 [95.6%] avg: 77.18 [96.9%] std: 0.75 runs: 3 System 2k-no-limit/base: min: 62.96 max: 69.14 avg: 66.14 std: 2.53 runs: 3 2k-no-limit/rework: min: 76.01 [120.7%] max: 81.06 [117.2%] avg: 78.17 [118.2%] std: 2.12 runs: 3 2k-no-limit/reworkoptim: min: 62.57 [99.4%] max: 66.10 [95.6%] avg: 64.53 [97.6%] std: 1.47 runs: 3 Elapsed 2k-no-limit/base: min: 76.47 max: 84.22 avg: 79.12 std: 3.60 runs: 3 2k-no-limit/rework: min: 89.67 [117.3%] max: 93.26 [110.7%] avg: 91.10 [115.1%] std: 1.55 runs: 3 2k-no-limit/reworkoptim: min: 76.94 [100.6%] max: 79.21 [94.1%] avg: 78.45 [99.2%] std: 1.07 runs: 3 System 8k-no-limit/base: min: 104.74 max: 151.34 avg: 129.21 std: 19.10 runs: 3 8k-no-limit/rework: min: 205.23 [195.9%] max: 285.94 [188.9%] avg: 258.98 [200.4%] std: 38.01 runs: 3 8k-no-limit/reworkoptim: min: 161.16 [153.9%] max: 184.54 [121.9%] avg: 174.52 [135.1%] std: 9.83 runs: 3 Elapsed 8k-no-limit/base: min: 125.43 max: 181.00 avg: 154.81 std: 22.80 runs: 3 8k-no-limit/rework: min: 254.05 [202.5%] max: 355.67 [196.5%] avg: 321.46 [207.6%] std: 47.67 runs: 3 8k-no-limit/reworkoptim: min: 193.77 [154.5%] max: 222.72 [123.0%] avg: 210.18 [135.8%] std: 12.13 runs: 3 Both System and Elapsed are in stdev with the base kernel for all configurations except for 8k where both System and Elapsed are up by 35%. I do not have a good explanation for this because there is no soft reclaim pass going on as no group is above the limit which is checked in mem_cgroup_should_soft_reclaim. Then I have tested kernel build with the same configuration to see the behavior with a more general behavior. * Soft limit set to 0 for the build System 0-0-limit/base: min: 242.70 max: 245.17 avg: 243.85 std: 1.02 runs: 3 0-0-limit/rework min: 237.86 [98.0%] max: 240.22 [98.0%] avg: 239.00 [98.0%] std: 0.97 runs: 3 0-0-limit/reworkoptim: min: 241.11 [99.3%] max: 243.53 [99.3%] avg: 242.01 [99.2%] std: 1.08 runs: 3 Elapsed 0-0-limit/base: min: 348.48 max: 360.86 avg: 356.04 std: 5.41 runs: 3 0-0-limit/rework min: 286.95 [82.3%] max: 290.26 [80.4%] avg: 288.27 [81.0%] std: 1.43 runs: 3 0-0-limit/reworkoptim: min: 286.55 [82.2%] max: 289.00 [80.1%] avg: 287.69 [80.8%] std: 1.01 runs: 3 System 0.5k-0-limit/base: min: 251.77 max: 254.41 avg: 252.70 std: 1.21 runs: 3 0.5k-0-limit/rework min: 286.44 [113.8%] max: 289.30 [113.7%] avg: 287.60 [113.8%] std: 1.23 runs: 3 0.5k-0-limit/reworkoptim: min: 252.18 [100.2%] max: 253.16 [99.5%] avg: 252.62 [100.0%] std: 0.41 runs: 3 Elapsed 0.5k-0-limit/base: min: 347.83 max: 353.06 avg: 350.04 std: 2.21 runs: 3 0.5k-0-limit/rework min: 290.19 [83.4%] max: 295.62 [83.7%] avg: 293.12 [83.7%] std: 2.24 runs: 3 0.5k-0-limit/reworkoptim: min: 293.91 [84.5%] max: 294.87 [83.5%] avg: 294.29 [84.1%] std: 0.42 runs: 3 System 2k-0-limit/base: min: 263.05 max: 271.52 avg: 267.94 std: 3.58 runs: 3 2k-0-limit/rework min: 458.99 [174.5%] max: 468.31 [172.5%] avg: 464.45 [173.3%] std: 3.97 runs: 3 2k-0-limit/reworkoptim: min: 267.10 [101.5%] max: 279.38 [102.9%] avg: 272.78 [101.8%] std: 5.05 runs: 3 Elapsed 2k-0-limit/base: min: 372.33 max: 379.32 avg: 375.47 std: 2.90 runs: 3 2k-0-limit/rework min: 334.40 [89.8%] max: 339.52 [89.5%] avg: 337.44 [89.9%] std: 2.20 runs: 3 2k-0-limit/reworkoptim: min: 301.47 [81.0%] max: 319.19 [84.1%] avg: 307.90 [82.0%] std: 8.01 runs: 3 System 8k-0-limit/base: min: 320.50 max: 332.10 avg: 325.46 std: 4.88 runs: 3 8k-0-limit/rework min: 1115.76 [348.1%] max: 1165.66 [351.0%] avg: 1132.65 [348.0%] std: 23.34 runs: 3 8k-0-limit/reworkoptim: min: 403.75 [126.0%] max: 409.22 [123.2%] avg: 406.16 [124.8%] std: 2.28 runs: 3 Elapsed 8k-0-limit/base: min: 475.48 max: 585.19 avg: 525.54 std: 45.30 runs: 3 8k-0-limit/rework min: 616.25 [129.6%] max: 625.90 [107.0%] avg: 620.68 [118.1%] std: 3.98 runs: 3 8k-0-limit/reworkoptim: min: 420.18 [88.4%] max: 428.28 [73.2%] avg: 423.05 [80.5%] std: 3.71 runs: 3 Apart from 8k the system time is comparable with the base kernel while Elapsed is up to 20% better with all configurations. * No soft limit set System 0-no-limit/base: min: 234.76 max: 237.42 avg: 236.25 std: 1.11 runs: 3 0-no-limit/rework min: 233.09 [99.3%] max: 238.65 [100.5%] avg: 236.09 [99.9%] std: 2.29 runs: 3 0-no-limit/reworkoptim: min: 236.12 [100.6%] max: 240.53 [101.3%] avg: 237.94 [100.7%] std: 1.88 runs: 3 Elapsed 0-no-limit/base: min: 288.52 max: 295.42 avg: 291.29 std: 2.98 runs: 3 0-no-limit/rework min: 283.17 [98.1%] max: 284.33 [96.2%] avg: 283.78 [97.4%] std: 0.48 runs: 3 0-no-limit/reworkoptim: min: 288.50 [100.0%] max: 290.79 [98.4%] avg: 289.78 [99.5%] std: 0.95 runs: 3 System 0.5k-no-limit/base: min: 286.51 max: 293.23 avg: 290.21 std: 2.78 runs: 3 0.5k-no-limit/rework min: 291.69 [101.8%] max: 294.38 [100.4%] avg: 292.97 [101.0%] std: 1.10 runs: 3 0.5k-no-limit/reworkoptim: min: 277.05 [96.7%] max: 288.76 [98.5%] avg: 284.17 [97.9%] std: 5.11 runs: 3 Elapsed 0.5k-no-limit/base: min: 294.94 max: 298.92 avg: 296.47 std: 1.75 runs: 3 0.5k-no-limit/rework min: 292.55 [99.2%] max: 294.21 [98.4%] avg: 293.55 [99.0%] std: 0.72 runs: 3 0.5k-no-limit/reworkoptim: min: 294.41 [99.8%] max: 301.67 [100.9%] avg: 297.78 [100.4%] std: 2.99 runs: 3 System 2k-no-limit/base: min: 443.41 max: 466.66 avg: 457.66 std: 10.19 runs: 3 2k-no-limit/rework min: 490.11 [110.5%] max: 516.02 [110.6%] avg: 501.42 [109.6%] std: 10.83 runs: 3 2k-no-limit/reworkoptim: min: 435.25 [98.2%] max: 458.11 [98.2%] avg: 446.73 [97.6%] std: 9.33 runs: 3 Elapsed 2k-no-limit/base: min: 330.85 max: 333.75 avg: 332.52 std: 1.23 runs: 3 2k-no-limit/rework min: 343.06 [103.7%] max: 349.59 [104.7%] avg: 345.95 [104.0%] std: 2.72 runs: 3 2k-no-limit/reworkoptim: min: 330.01 [99.7%] max: 333.92 [100.1%] avg: 332.22 [99.9%] std: 1.64 runs: 3 System 8k-no-limit/base: min: 1175.64 max: 1259.38 avg: 1222.39 std: 34.88 runs: 3 8k-no-limit/rework min: 1226.31 [104.3%] max: 1241.60 [98.6%] avg: 1233.74 [100.9%] std: 6.25 runs: 3 8k-no-limit/reworkoptim: min: 1023.45 [87.1%] max: 1056.74 [83.9%] avg: 1038.92 [85.0%] std: 13.69 runs: 3 Elapsed 8k-no-limit/base: min: 613.36 max: 619.60 avg: 616.47 std: 2.55 runs: 3 8k-no-limit/rework min: 627.56 [102.3%] max: 642.33 [103.7%] avg: 633.44 [102.8%] std: 6.39 runs: 3 8k-no-limit/reworkoptim: min: 545.89 [89.0%] max: 555.36 [89.6%] avg: 552.06 [89.6%] std: 4.37 runs: 3 and these numbers look good as well. System time is around 100% (suprisingly better for the 8k case) and Elapsed is copies that trend. Signed-off-by: NMichal Hocko <mhocko@suse.cz> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Glauber Costa <glommer@openvz.org> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Michel Lespinasse <walken@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Ying Han <yinghan@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
The caller of the iterator might know that some nodes or even subtrees should be skipped but there is no way to tell iterators about that so the only choice left is to let iterators to visit each node and do the selection outside of the iterating code. This, however, doesn't scale well with hierarchies with many groups where only few groups are interesting. This patch adds mem_cgroup_iter_cond variant of the iterator with a callback which gets called for every visited node. There are three possible ways how the callback can influence the walk. Either the node is visited, it is skipped but the tree walk continues down the tree or the whole subtree of the current group is skipped. [hughd@google.com: fix memcg-less page reclaim] Signed-off-by: NMichal Hocko <mhocko@suse.cz> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Glauber Costa <glommer@openvz.org> Cc: Greg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Michel Lespinasse <walken@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Ying Han <yinghan@google.com> Signed-off-by: NHugh Dickins <hughd@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
Soft reclaim has been done only for the global reclaim (both background and direct). Since "memcg: integrate soft reclaim tighter with zone shrinking code" there is no reason for this limitation anymore as the soft limit reclaim doesn't use any special code paths and it is a part of the zone shrinking code which is used by both global and targeted reclaims. From the semantic point of view it is natural to consider soft limit before touching all groups in the hierarchy tree which is touching the hard limit because soft limit tells us where to push back when there is a memory pressure. It is not important whether the pressure comes from the limit or imbalanced zones. This patch simply enables soft reclaim unconditionally in mem_cgroup_should_soft_reclaim so it is enabled for both global and targeted reclaim paths. mem_cgroup_soft_reclaim_eligible needs to learn about the root of the reclaim to know where to stop checking soft limit state of parents up the hierarchy. Say we have A (over soft limit) \ B (below s.l., hit the hard limit) / \ C D (below s.l.) B is the source of the outside memory pressure now for D but we shouldn't soft reclaim it because it is behaving well under B subtree and we can still reclaim from C (pressumably it is over the limit). mem_cgroup_soft_reclaim_eligible should therefore stop climbing up the hierarchy at B (root of the memory pressure). Signed-off-by: NMichal Hocko <mhocko@suse.cz> Reviewed-by: NGlauber Costa <glommer@openvz.org> Reviewed-by: NTejun Heo <tj@kernel.org> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ying Han <yinghan@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
Now that the soft limit is integrated to the reclaim directly the whole soft-limit tree infrastructure is not needed anymore. Rip it out. Signed-off-by: NMichal Hocko <mhocko@suse.cz> Reviewed-by: NGlauber Costa <glommer@openvz.org> Reviewed-by: NTejun Heo <tj@kernel.org> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ying Han <yinghan@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
This patchset is sitting out of tree for quite some time without any objections. I would be really happy if it made it into 3.12. I do not want to push it too hard but I think this work is basically ready and waiting more doesn't help. The basic idea is quite simple. Pull soft reclaim into shrink_zone in the first step and get rid of the previous soft reclaim infrastructure. shrink_zone is done in two passes now. First it tries to do the soft limit reclaim and it falls back to reclaim-all mode if no group is over the limit or no pages have been scanned. The second pass happens at the same priority so the only time we waste is the memcg tree walk which has been updated in the third step to have only negligible overhead. As a bonus we will get rid of a _lot_ of code by this and soft reclaim will not stand out like before when it wasn't integrated into the zone shrinking code and it reclaimed at priority 0 (the testing results show that some workloads suffers from such an aggressive reclaim). The clean up is in a separate patch because I felt it would be easier to review that way. The second step is soft limit reclaim integration into targeted reclaim. It should be rather straight forward. Soft limit has been used only for the global reclaim so far but it makes sense for any kind of pressure coming from up-the-hierarchy, including targeted reclaim. The third step (patches 4-8) addresses the tree walk overhead by enhancing memcg iterators to enable skipping whole subtrees and tracking number of over soft limit children at each level of the hierarchy. This information is updated same way the old soft limit tree was updated (from memcg_check_events) so we shouldn't see an additional overhead. In fact mem_cgroup_update_soft_limit is much simpler than tree manipulation done previously. __shrink_zone uses mem_cgroup_soft_reclaim_eligible as a predicate for mem_cgroup_iter so the decision whether a particular group should be visited is done at the iterator level which allows us to decide to skip the whole subtree as well (if there is no child in excess). This reduces the tree walk overhead considerably. * TEST 1 ======== My primary test case was a parallel kernel build with 2 groups (make is running with -j8 with a distribution .config in a separate cgroup without any hard limit) on a 32 CPU machine booted with 1GB memory and both builds run taskset to Node 0 cpus. I was mostly interested in 2 setups. Default - no soft limit set and - and 0 soft limit set to both groups. The first one should tell us whether the rework regresses the default behavior while the second one should show us improvements in an extreme case where both workloads are always over the soft limit. /usr/bin/time -v has been used to collect the statistics and each configuration had 3 runs after fresh boot without any other load on the system. base is mmotm-2013-07-18-16-40 rework all 8 patches applied on top of base * No-limit User no-limit/base: min: 651.92 max: 672.65 avg: 664.33 std: 8.01 runs: 6 no-limit/rework: min: 657.34 [100.8%] max: 668.39 [99.4%] avg: 663.13 [99.8%] std: 3.61 runs: 6 System no-limit/base: min: 69.33 max: 71.39 avg: 70.32 std: 0.79 runs: 6 no-limit/rework: min: 69.12 [99.7%] max: 71.05 [99.5%] avg: 70.04 [99.6%] std: 0.59 runs: 6 Elapsed no-limit/base: min: 398.27 max: 422.36 avg: 408.85 std: 7.74 runs: 6 no-limit/rework: min: 386.36 [97.0%] max: 438.40 [103.8%] avg: 416.34 [101.8%] std: 18.85 runs: 6 The results are within noise. Elapsed time has a bigger variance but the average looks good. * 0-limit User 0-limit/base: min: 573.76 max: 605.63 avg: 585.73 std: 12.21 runs: 6 0-limit/rework: min: 645.77 [112.6%] max: 666.25 [110.0%] avg: 656.97 [112.2%] std: 7.77 runs: 6 System 0-limit/base: min: 69.57 max: 71.13 avg: 70.29 std: 0.54 runs: 6 0-limit/rework: min: 68.68 [98.7%] max: 71.40 [100.4%] avg: 69.91 [99.5%] std: 0.87 runs: 6 Elapsed 0-limit/base: min: 1306.14 max: 1550.17 avg: 1430.35 std: 90.86 runs: 6 0-limit/rework: min: 404.06 [30.9%] max: 465.94 [30.1%] avg: 434.81 [30.4%] std: 22.68 runs: 6 The improvement is really huge here (even bigger than with my previous testing and I suspect that this highly depends on the storage). Page fault statistics tell us at least part of the story: Minor 0-limit/base: min: 37180461.00 max: 37319986.00 avg: 37247470.00 std: 54772.71 runs: 6 0-limit/rework: min: 36751685.00 [98.8%] max: 36805379.00 [98.6%] avg: 36774506.33 [98.7%] std: 17109.03 runs: 6 Major 0-limit/base: min: 170604.00 max: 221141.00 avg: 196081.83 std: 18217.01 runs: 6 0-limit/rework: min: 2864.00 [1.7%] max: 10029.00 [4.5%] avg: 5627.33 [2.9%] std: 2252.71 runs: 6 Same as with my previous testing Minor faults are more or less within noise but Major fault count is way bellow the base kernel. While this looks as a nice win it is fair to say that 0-limit configuration is quite artificial. So I was playing with 0-no-limit loads as well. * TEST 2 ======== The following results are from 2 groups configuration on a 16GB machine (single NUMA node). - A running stream IO (dd if=/dev/zero of=local.file bs=1024) with 2*TotalMem with 0 soft limit. - B running a mem_eater which consumes TotalMem-1G without any limit. The mem_eater consumes the memory in 100 chunks with 1s nap after each mmap+poppulate so that both loads have chance to fight for the memory. The expected result is that B shouldn't be reclaimed and A shouldn't see a big dropdown in elapsed time. User base: min: 2.68 max: 2.89 avg: 2.76 std: 0.09 runs: 3 rework: min: 3.27 [122.0%] max: 3.74 [129.4%] avg: 3.44 [124.6%] std: 0.21 runs: 3 System base: min: 86.26 max: 88.29 avg: 87.28 std: 0.83 runs: 3 rework: min: 81.05 [94.0%] max: 84.96 [96.2%] avg: 83.14 [95.3%] std: 1.61 runs: 3 Elapsed base: min: 317.28 max: 332.39 avg: 325.84 std: 6.33 runs: 3 rework: min: 281.53 [88.7%] max: 298.16 [89.7%] avg: 290.99 [89.3%] std: 6.98 runs: 3 System time improved slightly as well as Elapsed. My previous testing has shown worse numbers but this again seem to depend on the storage speed. My theory is that the writeback doesn't catch up and prio-0 soft reclaim falls into wait on writeback page too often in the base kernel. The patched kernel doesn't do that because the soft reclaim is done from the kswapd/direct reclaim context. This can be seen on the following graph nicely. The A's group usage_in_bytes regurarly drops really low very often. All 3 runs http://labs.suse.cz/mhocko/soft_limit_rework/stream_io-vs-mem_eater/stream.png resp. a detail of the single run http://labs.suse.cz/mhocko/soft_limit_rework/stream_io-vs-mem_eater/stream-one-run.png mem_eater seems to be doing better as well. It gets to the full allocation size faster as can be seen on the following graph: http://labs.suse.cz/mhocko/soft_limit_rework/stream_io-vs-mem_eater/mem_eater-one-run.png /proc/meminfo collected during the test also shows that rework kernel hasn't swapped that much (well almost not at all): base: max: 123900 K avg: 56388.29 K rework: max: 300 K avg: 128.68 K kswapd and direct reclaim statistics are of no use unfortunatelly because soft reclaim is not accounted properly as the counters are hidden by global_reclaim() checks in the base kernel. * TEST 3 ======== Another test was the same configuration as TEST2 except the stream IO was replaced by a single kbuild (16 parallel jobs bound to Node0 cpus same as in TEST1) and mem_eater allocated TotalMem-200M so kbuild had only 200MB left. Kbuild did better with the rework kernel here as well: User base: min: 860.28 max: 872.86 avg: 868.03 std: 5.54 runs: 3 rework: min: 880.81 [102.4%] max: 887.45 [101.7%] avg: 883.56 [101.8%] std: 2.83 runs: 3 System base: min: 84.35 max: 85.06 avg: 84.79 std: 0.31 runs: 3 rework: min: 85.62 [101.5%] max: 86.09 [101.2%] avg: 85.79 [101.2%] std: 0.21 runs: 3 Elapsed base: min: 135.36 max: 243.30 avg: 182.47 std: 45.12 runs: 3 rework: min: 110.46 [81.6%] max: 116.20 [47.8%] avg: 114.15 [62.6%] std: 2.61 runs: 3 Minor base: min: 36635476.00 max: 36673365.00 avg: 36654812.00 std: 15478.03 runs: 3 rework: min: 36639301.00 [100.0%] max: 36695541.00 [100.1%] avg: 36665511.00 [100.0%] std: 23118.23 runs: 3 Major base: min: 14708.00 max: 53328.00 avg: 31379.00 std: 16202.24 runs: 3 rework: min: 302.00 [2.1%] max: 414.00 [0.8%] avg: 366.33 [1.2%] std: 47.22 runs: 3 Again we can see a significant improvement in Elapsed (it also seems to be more stable), there is a huge dropdown for the Major page faults and much more swapping: base: max: 583736 K avg: 112547.43 K rework: max: 4012 K avg: 124.36 K Graphs from all three runs show the variability of the kbuild quite nicely. It even seems that it took longer after every run with the base kernel which would be quite surprising as the source tree for the build is removed and caches are dropped after each run so the build operates on a freshly extracted sources everytime. http://labs.suse.cz/mhocko/soft_limit_rework/stream_io-vs-mem_eater/kbuild-mem_eater.png My other testing shows that this is just a matter of timing and other runs behave differently the std for Elapsed time is similar ~50. Example of other three runs: http://labs.suse.cz/mhocko/soft_limit_rework/stream_io-vs-mem_eater/kbuild-mem_eater2.png So to wrap this up. The series is still doing good and improves the soft limit. The testing results for bunch of cgroups with both stream IO and kbuild loads can be found in "memcg: track children in soft limit excess to improve soft limit". This patch: Memcg soft reclaim has been traditionally triggered from the global reclaim paths before calling shrink_zone. mem_cgroup_soft_limit_reclaim then picked up a group which exceeds the soft limit the most and reclaimed it with 0 priority to reclaim at least SWAP_CLUSTER_MAX pages. The infrastructure requires per-node-zone trees which hold over-limit groups and keep them up-to-date (via memcg_check_events) which is not cost free. Although this overhead hasn't turned out to be a bottle neck the implementation is suboptimal because mem_cgroup_update_tree has no idea which zones consumed memory over the limit so we could easily end up having a group on a node-zone tree having only few pages from that node-zone. This patch doesn't try to fix node-zone trees management because it seems that integrating soft reclaim into zone shrinking sounds much easier and more appropriate for several reasons. First of all 0 priority reclaim was a crude hack which might lead to big stalls if the group's LRUs are big and hard to reclaim (e.g. a lot of dirty/writeback pages). Soft reclaim should be applicable also to the targeted reclaim which is awkward right now without additional hacks. Last but not least the whole infrastructure eats quite some code. After this patch shrink_zone is done in 2 passes. First it tries to do the soft reclaim if appropriate (only for global reclaim for now to keep compatible with the original state) and fall back to ignoring soft limit if no group is eligible to soft reclaim or nothing has been scanned during the first pass. Only groups which are over their soft limit or any of their parents up the hierarchy is over the limit are considered eligible during the first pass. Soft limit tree which is not necessary anymore will be removed in the follow up patch to make this patch smaller and easier to review. Signed-off-by: NMichal Hocko <mhocko@suse.cz> Reviewed-by: NGlauber Costa <glommer@openvz.org> Reviewed-by: NTejun Heo <tj@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Ying Han <yinghan@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Michel Lespinasse <walken@google.com> Cc: Greg Thelen <gthelen@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Glauber Costa <glommer@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Li Zefan 提交于
vfs guarantees the cgroup won't be destroyed, so it's redundant to get a css reference. Signed-off-by: NLi Zefan <lizefan@huawei.com> Acked-by: NMichal Hocko <mhocko@suse.cz> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 12 9月, 2013 2 次提交
-
-
由 Greg Thelen 提交于
A memory cgroup with (1) multiple threshold notifications and (2) at least one threshold >=2G was not reliable. Specifically the notifications would either not fire or would not fire in the proper order. The __mem_cgroup_threshold() signaling logic depends on keeping 64 bit thresholds in sorted order. mem_cgroup_usage_register_event() sorts them with compare_thresholds(), which returns the difference of two 64 bit thresholds as an int. If the difference is positive but has bit[31] set, then sort() treats the difference as negative and breaks sort order. This fix compares the two arbitrary 64 bit thresholds returning the classic -1, 0, 1 result. The test below sets two notifications (at 0x1000 and 0x81001000): cd /sys/fs/cgroup/memory mkdir x for x in 4096 2164264960; do cgroup_event_listener x/memory.usage_in_bytes $x | sed "s/^/$x listener:/" & done echo $$ > x/cgroup.procs anon_leaker 500M v3.11-rc7 fails to signal the 4096 event listener: Leaking... Done leaking pages. Patched v3.11-rc7 properly notifies: Leaking... 4096 listener:2013:8:31:14:13:36 Done leaking pages. The fixed bug is old. It appears to date back to the introduction of memcg threshold notifications in v2.6.34-rc1-116-g2e72b634 "memcg: implement memory thresholds" Signed-off-by: NGreg Thelen <gthelen@google.com> Acked-by: NMichal Hocko <mhocko@suse.cz> Acked-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andrey Vagin 提交于
The memcg_cache_params structure contains the common part and the union, which represents two different types of data: one for root cashes and another for child caches. The size of child data is fixed. The size of the memcg_caches array is calculated in runtime. Currently the size of memcg_cache_params for root caches is calculated incorrectly, because it includes the size of parameters for child caches. ssize_t size = memcg_caches_array_size(num_groups); size *= sizeof(void *); size += sizeof(struct memcg_cache_params); v2: Fix a typo in calculations Signed-off-by: NAndrey Vagin <avagin@openvz.org> Cc: Glauber Costa <glommer@openvz.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Balbir Singh <bsingharora@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 24 8月, 2013 1 次提交
-
-
由 Michal Hocko 提交于
The swapaccount kernel parameter without any values has been removed by commit a2c8990a ("memsw: remove noswapaccount kernel parameter") but it seems that we didn't get rid of all the left overs. Make sure that menuconfig help text and kernel-parameters.txt are clear about value for the paramter and remove the stalled comment which is not very much useful on its own. Signed-off-by: NMichal Hocko <mhocko@suse.cz> Reported-by: NGergely Risko <gergely@risko.hu> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 14 8月, 2013 1 次提交
-
-
由 Andrey Vagin 提交于
struct memcg_cache_params has a union. Different parts of this union are used for root and non-root caches. A part with destroying work is used only for non-root caches. I fixed the same problem in another place v3.9-rc1-16204-gf101a946, but didn't notice this one. This patch fixes the kernel panic: [ 46.848187] BUG: unable to handle kernel paging request at 000000fffffffeb8 [ 46.849026] IP: [<ffffffff811a484c>] kmem_cache_destroy_memcg_children+0x6c/0xc0 [ 46.849092] PGD 0 [ 46.849092] Oops: 0000 [#1] SMP ... Signed-off-by: NAndrey Vagin <avagin@openvz.org> Cc: Glauber Costa <glommer@openvz.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Acked-by: NMichal Hocko <mhocko@suse.cz> Cc: Balbir Singh <bsingharora@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: <stable@vger.kernel.org> [3.9.x] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 09 8月, 2013 11 次提交
-
-
由 Tejun Heo 提交于
Previously, all css descendant iterators didn't include the origin (root of subtree) css in the iteration. The reasons were maintaining consistency with css_for_each_child() and that at the time of introduction more use cases needed skipping the origin anyway; however, given that css_is_descendant() considers self to be a descendant, omitting the origin css has become more confusing and looking at the accumulated use cases rather clearly indicates that including origin would result in simpler code overall. While this is a change which can easily lead to subtle bugs, cgroup API including the iterators has recently gone through major restructuring and no out-of-tree changes will be applicable without adjustments making this a relatively acceptable opportunity for this type of change. The conversions are mostly straight-forward. If the iteration block had explicit origin handling before or after, it's moved inside the iteration. If not, if (pos == origin) continue; is added. Some conversions add extra reference get/put around origin handling by consolidating origin handling and the rest. While the extra ref operations aren't strictly necessary, this shouldn't cause any noticeable difference. Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NLi Zefan <lizefan@huawei.com> Acked-by: NVivek Goyal <vgoyal@redhat.com> Acked-by: NAristeu Rozanski <aris@redhat.com> Acked-by: NMichal Hocko <mhocko@suse.cz> Cc: Jens Axboe <axboe@kernel.dk> Cc: Matt Helsley <matthltc@us.ibm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Balbir Singh <bsingharora@gmail.com>
-
由 Tejun Heo 提交于
cgroup is in the process of converting to css (cgroup_subsys_state) from cgroup as the principal subsystem interface handle. This is mostly to prepare for the unified hierarchy support where css's will be created and destroyed dynamically but also helps cleaning up subsystem implementations as css is usually what they are interested in anyway. cftype->[un]register_event() is among the remaining couple interfaces which still use struct cgroup. Convert it to cgroup_subsys_state. The conversion is mostly mechanical and removes the last users of mem_cgroup_from_cont() and cg_to_vmpressure(), which are removed. v2: indentation update as suggested by Li Zefan. Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NLi Zefan <lizefan@huawei.com> Acked-by: NMichal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Balbir Singh <bsingharora@gmail.com>
-
由 Tejun Heo 提交于
cgroup is in the process of converting to css (cgroup_subsys_state) from cgroup as the principal subsystem interface handle. This is mostly to prepare for the unified hierarchy support where css's will be created and destroyed dynamically but also helps cleaning up subsystem implementations as css is usually what they are interested in anyway. This patch converts task iterators to deal with css instead of cgroup. Note that under unified hierarchy, different sets of tasks will be considered belonging to a given cgroup depending on the subsystem in question and making the iterators deal with css instead cgroup provides them with enough information about the iteration. While at it, fix several function comment formats in cpuset.c. This patch doesn't introduce any behavior differences. Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NLi Zefan <lizefan@huawei.com> Acked-by: NMichal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Matt Helsley <matthltc@us.ibm.com>
-
由 Tejun Heo 提交于
Currently all cgroup_task_iter functions require @cgrp to be passed in, which is superflous and increases chance of usage error. Make cgroup_task_iter remember the cgroup being iterated and drop @cgrp argument from next and end functions. This patch doesn't introduce any behavior differences. Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NLi Zefan <lizefan@huawei.com> Acked-by: NMichal Hocko <mhocko@suse.cz> Cc: Matt Helsley <matthltc@us.ibm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Balbir Singh <bsingharora@gmail.com>
-
由 Tejun Heo 提交于
cgroup now has multiple iterators and it's quite confusing to have something which walks over tasks of a single cgroup named cgroup_iter. Let's rename it to cgroup_task_iter. While at it, reformat / update comments and replace the overview comment above the interface function decls with proper function comments. Such overview can be useful but function comments should be more than enough here. This is pure rename and doesn't introduce any functional changes. Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NLi Zefan <lizefan@huawei.com> Acked-by: NMichal Hocko <mhocko@suse.cz> Cc: Matt Helsley <matthltc@us.ibm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Balbir Singh <bsingharora@gmail.com>
-
由 Tejun Heo 提交于
cgroup is currently in the process of transitioning to using css (cgroup_subsys_state) as the primary handle instead of cgroup in subsystem API. For hierarchy iterators, this is beneficial because * In most cases, css is the only thing subsystems care about anyway. * On the planned unified hierarchy, iterations for different subsystems will need to skip over different subtrees of the hierarchy depending on which subsystems are enabled on each cgroup. Passing around css makes it unnecessary to explicitly specify the subsystem in question as css is intersection between cgroup and subsystem * For the planned unified hierarchy, css's would need to be created and destroyed dynamically independent from cgroup hierarchy. Having cgroup core manage css iteration makes enforcing deref rules a lot easier. Most subsystem conversions are straight-forward. Noteworthy changes are * blkio: cgroup_to_blkcg() is no longer used. Removed. * freezer: cgroup_freezer() is no longer used. Removed. * devices: cgroup_to_devcgroup() is no longer used. Removed. Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NLi Zefan <lizefan@huawei.com> Acked-by: NMichal Hocko <mhocko@suse.cz> Acked-by: NVivek Goyal <vgoyal@redhat.com> Acked-by: NAristeu Rozanski <aris@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Matt Helsley <matthltc@us.ibm.com> Cc: Jens Axboe <axboe@kernel.dk>
-
由 Tejun Heo 提交于
cgroup is currently in the process of transitioning to using struct cgroup_subsys_state * as the primary handle instead of struct cgroup. Please see the previous commit which converts the subsystem methods for rationale. This patch converts all cftype file operations to take @css instead of @cgroup. cftypes for the cgroup core files don't have their subsytem pointer set. These will automatically use the dummy_css added by the previous patch and can be converted the same way. Most subsystem conversions are straight forwards but there are some interesting ones. * freezer: update_if_frozen() is also converted to take @css instead of @cgroup for consistency. This will make the code look simpler too once iterators are converted to use css. * memory/vmpressure: mem_cgroup_from_css() needs to be exported to vmpressure while mem_cgroup_from_cont() can be made static. Updated accordingly. * cpu: cgroup_tg() doesn't have any user left. Removed. * cpuacct: cgroup_ca() doesn't have any user left. Removed. * hugetlb: hugetlb_cgroup_form_cgroup() doesn't have any user left. Removed. * net_cls: cgrp_cls_state() doesn't have any user left. Removed. Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NLi Zefan <lizefan@huawei.com> Acked-by: NMichal Hocko <mhocko@suse.cz> Acked-by: NVivek Goyal <vgoyal@redhat.com> Acked-by: NAristeu Rozanski <aris@redhat.com> Acked-by: NDaniel Wagner <daniel.wagner@bmw-carit.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Matt Helsley <matthltc@us.ibm.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Steven Rostedt <rostedt@goodmis.org>
-
由 Tejun Heo 提交于
cgroup is currently in the process of transitioning to using struct cgroup_subsys_state * as the primary handle instead of struct cgroup * in subsystem implementations for the following reasons. * With unified hierarchy, subsystems will be dynamically bound and unbound from cgroups and thus css's (cgroup_subsys_state) may be created and destroyed dynamically over the lifetime of a cgroup, which is different from the current state where all css's are allocated and destroyed together with the associated cgroup. This in turn means that cgroup_css() should be synchronized and may return NULL, making it more cumbersome to use. * Differing levels of per-subsystem granularity in the unified hierarchy means that the task and descendant iterators should behave differently depending on the specific subsystem the iteration is being performed for. * In majority of the cases, subsystems only care about its part in the cgroup hierarchy - ie. the hierarchy of css's. Subsystem methods often obtain the matching css pointer from the cgroup and don't bother with the cgroup pointer itself. Passing around css fits much better. This patch converts all cgroup_subsys methods to take @css instead of @cgroup. The conversions are mostly straight-forward. A few noteworthy changes are * ->css_alloc() now takes css of the parent cgroup rather than the pointer to the new cgroup as the css for the new cgroup doesn't exist yet. Knowing the parent css is enough for all the existing subsystems. * In kernel/cgroup.c::offline_css(), unnecessary open coded css dereference is replaced with local variable access. This patch shouldn't cause any behavior differences. v2: Unnecessary explicit cgrp->subsys[] deref in css_online() replaced with local variable @css as suggested by Li Zefan. Rebased on top of new for-3.12 which includes for-3.11-fixes so that ->css_free() invocation added by da0a12ca ("cgroup: fix a leak when percpu_ref_init() fails") is converted too. Suggested by Li Zefan. Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NLi Zefan <lizefan@huawei.com> Acked-by: NMichal Hocko <mhocko@suse.cz> Acked-by: NVivek Goyal <vgoyal@redhat.com> Acked-by: NAristeu Rozanski <aris@redhat.com> Acked-by: NDaniel Wagner <daniel.wagner@bmw-carit.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Matt Helsley <matthltc@us.ibm.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Steven Rostedt <rostedt@goodmis.org>
-
由 Tejun Heo 提交于
Currently, controllers have to explicitly follow the cgroup hierarchy to find the parent of a given css. cgroup is moving towards using cgroup_subsys_state as the main controller interface construct, so let's provide a way to climb the hierarchy using just csses. This patch implements css_parent() which, given a css, returns its parent. The function is guarnateed to valid non-NULL parent css as long as the target css is not at the top of the hierarchy. freezer, cpuset, cpu, cpuacct, hugetlb, memory, net_cls and devices are converted to use css_parent() instead of accessing cgroup->parent directly. * __parent_ca() is dropped from cpuacct and its usage is replaced with parent_ca(). The only difference between the two was NULL test on cgroup->parent which is now embedded in css_parent() making the distinction moot. Note that eventually a css->parent field will be added to css and the NULL check in css_parent() will go away. This patch shouldn't cause any behavior differences. Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NLi Zefan <lizefan@huawei.com>
-
由 Tejun Heo 提交于
css (cgroup_subsys_state) is usually embedded in a subsys specific data structure. Subsystems either use container_of() directly to cast from css to such data structure or has an accessor function wrapping such cast. As cgroup as whole is moving towards using css as the main interface handle, add and update such accessors to ease dealing with css's. All accessors explicitly handle NULL input and return NULL in those cases. While this looks like an extra branch in the code, as all controllers specific data structures have css as the first field, the casting doesn't involve any offsetting and the compiler can trivially optimize out the branch. * blkio, freezer, cpuset, cpu, cpuacct and net_cls didn't have such accessor. Added. * memory, hugetlb and devices already had one but didn't explicitly handle NULL input. Updated. Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NLi Zefan <lizefan@huawei.com>
-
由 Tejun Heo 提交于
The names of the two struct cgroup_subsys_state accessors - cgroup_subsys_state() and task_subsys_state() - are somewhat awkward. The former clashes with the type name and the latter doesn't even indicate it's somehow related to cgroup. We're about to revamp large portion of cgroup API, so, let's rename them so that they're less awkward. Most per-controller usages of the accessors are localized in accessor wrappers and given the amount of scheduled changes, this isn't gonna add any noticeable headache. Rename cgroup_subsys_state() to cgroup_css() and task_subsys_state() to task_css(). This patch is pure rename. Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NLi Zefan <lizefan@huawei.com>
-
- 01 8月, 2013 1 次提交
-
-
由 Michal Hocko 提交于
vmpressure is called synchronously from reclaim where the target_memcg is guaranteed to be alive but the eventfd is signaled from the work queue context. This means that memcg (along with vmpressure structure which is embedded into it) might go away while the work item is pending which would result in use-after-release bug. We have two possible ways how to fix this. Either vmpressure pins memcg before it schedules vmpr->work and unpin it in vmpressure_work_fn or explicitely flush the work item from the css_offline context (as suggested by Tejun). This patch implements the later one and it introduces vmpressure_cleanup which flushes the vmpressure work queue item item. It hooks into mem_cgroup_css_offline after the memcg itself is cleaned up. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: NMichal Hocko <mhocko@suse.cz> Reported-by: NTejun Heo <tj@kernel.org> Cc: Anton Vorontsov <anton.vorontsov@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Li Zefan <lizefan@huawei.com> Acked-by: NTejun Heo <tj@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 15 7月, 2013 1 次提交
-
-
由 Paul Gortmaker 提交于
The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. This removes all the uses of the __cpuinit macros from C files in the core kernel directories (kernel, init, lib, mm, and include) that don't really have a specific maintainer. [1] https://lkml.org/lkml/2013/5/20/589Signed-off-by: NPaul Gortmaker <paul.gortmaker@windriver.com>
-
- 10 7月, 2013 6 次提交
-
-
由 Li Zefan 提交于
Now memcg has the same life cycle with its corresponding cgroup, and a cgroup is freed via RCU and then mem_cgroup_css_free() will be called in a work function, so we can simply call __mem_cgroup_free() in mem_cgroup_css_free(). This actually reverts commit 59927fb9 ("memcg: free mem_cgroup by RCU to fix oops"). Signed-off-by: NLi Zefan <lizefan@huawei.com> Cc: Hugh Dickins <hughd@google.com> Acked-by: NMichal Hocko <mhocko@suse.cz> Acked-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Tejun Heo <tj@kernel.org> Cc: Glauber Costa <glommer@openvz.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Li Zefan 提交于
Now memcg has the same life cycle as its corresponding cgroup. Kill the useless refcnt. Signed-off-by: NLi Zefan <lizefan@huawei.com> Acked-by: NMichal Hocko <mhocko@suse.cz> Acked-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hugh Dickins <hughd@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Glauber Costa <glommer@openvz.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Li Zefan 提交于
The cgroup core guarantees it's always safe to access the parent. Signed-off-by: NLi Zefan <lizefan@huawei.com> Acked-by: NMichal Hocko <mhocko@suse.cz> Acked-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hugh Dickins <hughd@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Glauber Costa <glommer@openvz.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Li Zefan 提交于
Use css_get/put instead of mem_cgroup_get/put. A simple replacement will do. The historical reason that memcg has its own refcnt instead of always using css_get/put, is that cgroup couldn't be removed if there're still css refs, so css refs can't be used as long-lived reference. The situation has changed so that rmdir a cgroup will succeed regardless css refs, but won't be freed until css refs goes down to 0. Signed-off-by: NLi Zefan <lizefan@huawei.com> Acked-by: NMichal Hocko <mhocko@suse.cz> Acked-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hugh Dickins <hughd@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Glauber Costa <glommer@openvz.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Li Zefan 提交于
Use css_get/put instead of mem_cgroup_get/put. We can't do a simple replacement, because here mem_cgroup_put() is called during mem_cgroup_css_free(), while mem_cgroup_css_free() won't be called until css refcnt goes down to 0. Instead we increment css refcnt in mem_cgroup_css_offline(), and then check if there's still kmem charges. If not, css refcnt will be decremented immediately, otherwise the refcnt will be released after the last kmem allocation is uncahred. [akpm@linux-foundation.org: tweak comment] Signed-off-by: NLi Zefan <lizefan@huawei.com> Acked-by: NMichal Hocko <mhocko@suse.cz> Acked-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: NTejun Heo <tj@kernel.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Glauber Costa <glommer@openvz.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Li Zefan 提交于
Use css_get()/css_put() instead of mem_cgroup_get()/mem_cgroup_put(). There are two things being done in the current code: First, we acquired a css_ref to make sure that the underlying cgroup would not go away. That is a short lived reference, and it is put as soon as the cache is created. At this point, we acquire a long-lived per-cache memcg reference count to guarantee that the memcg will still be alive. so it is: enqueue: css_get create : memcg_get, css_put destroy: memcg_put So we only need to get rid of the memcg_get, change the memcg_put to css_put, and get rid of the now extra css_put. (This changelog is mostly written by Glauber) Signed-off-by: NLi Zefan <lizefan@huawei.com> Acked-by: NMichal Hocko <mhocko@suse.cz> Acked-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hugh Dickins <hughd@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Glauber Costa <glommer@openvz.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-