- 09 3月, 2018 3 次提交
-
-
由 Peter Zijlstra 提交于
Instead of trying to duplicate scheduler state to track if an RT task is running, directly use the scheduler runqueue state for it. This vastly simplifies things and fixes a number of bugs related to sugov and the scheduler getting out of sync wrt this state. As a consequence we not also update the remove cfs/dl state when iterating the shared mask. Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Juri Lelli <juri.lelli@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Viresh Kumar <viresh.kumar@linaro.org> Cc: linux-kernel@vger.kernel.org Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
Bitrot... Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Juri Lelli <juri.lelli@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Viresh Kumar <viresh.kumar@linaro.org> Cc: linux-kernel@vger.kernel.org Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Norbert Manthey 提交于
Due to using GCC defines for configuration, some labels might be unused in certain configurations. While adding a __maybe_unused to the label is fine in general, the line has to be terminated with ';'. This is also reflected in the GCC documentation, but GCC parsed the previous variant without an error message. This has been spotted while compiling with goto-cc, the compiler for the CPROVER tool suite. Signed-off-by: NNorbert Manthey <nmanthey@amazon.de> Signed-off-by: NMichael Tautschnig <tautschn@amazon.co.uk> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1519717660-16157-1-git-send-email-nmanthey@amazon.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 04 3月, 2018 4 次提交
-
-
由 Ingo Molnar 提交于
Make it easier to concatenate all the scheduler .c files for single-module compilation. Cc: Peter Zijlstra <peterz@infradead.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: linux-kernel@vger.kernel.org Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Ingo Molnar 提交于
There are similarly named functions in both of these modules: kernel/sched/deadline.c:static inline void queue_push_tasks(struct rq *rq) kernel/sched/deadline.c:static inline void queue_pull_task(struct rq *rq) kernel/sched/deadline.c:static inline void queue_push_tasks(struct rq *rq) kernel/sched/deadline.c:static inline void queue_pull_task(struct rq *rq) kernel/sched/deadline.c: queue_push_tasks(rq); kernel/sched/deadline.c: queue_pull_task(rq); kernel/sched/deadline.c: queue_push_tasks(rq); kernel/sched/deadline.c: queue_pull_task(rq); kernel/sched/rt.c:static inline void queue_push_tasks(struct rq *rq) kernel/sched/rt.c:static inline void queue_pull_task(struct rq *rq) kernel/sched/rt.c:static inline void queue_push_tasks(struct rq *rq) kernel/sched/rt.c: queue_push_tasks(rq); kernel/sched/rt.c: queue_pull_task(rq); kernel/sched/rt.c: queue_push_tasks(rq); kernel/sched/rt.c: queue_pull_task(rq); ... which makes it harder to grep for them. Prefix them with deadline_ and rt_, respectively. Cc: Peter Zijlstra <peterz@infradead.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: linux-kernel@vger.kernel.org Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Ingo Molnar 提交于
Merge these two small .c modules as they implement two aspects of idle task handling. Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Ingo Molnar 提交于
Do the following cleanups and simplifications: - sched/sched.h already includes <asm/paravirt.h>, so no need to include it in sched/core.c again. - order the <linux/sched/*.h> headers alphabetically - add all <linux/sched/*.h> headers to kernel/sched/sched.h - remove all unnecessary includes from the .c files that are already included in kernel/sched/sched.h. Finally, make all scheduler .c files use a single common header: #include "sched.h" ... which now contains a union of the relied upon headers. This makes the various .c files easier to read and easier to handle. Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
- 03 3月, 2018 2 次提交
-
-
由 Ingo Molnar 提交于
A good number of small style inconsistencies have accumulated in the scheduler core, so do a pass over them to harmonize all these details: - fix speling in comments, - use curly braces for multi-line statements, - remove unnecessary parentheses from integer literals, - capitalize consistently, - remove stray newlines, - add comments where necessary, - remove invalid/unnecessary comments, - align structure definitions and other data types vertically, - add missing newlines for increased readability, - fix vertical tabulation where it's misaligned, - harmonize preprocessor conditional block labeling and vertical alignment, - remove line-breaks where they uglify the code, - add newline after local variable definitions, No change in functionality: md5: 1191fa0a890cfa8132156d2959d7e9e2 built-in.o.before.asm 1191fa0a890cfa8132156d2959d7e9e2 built-in.o.after.asm Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mario Leinweber 提交于
- Fixed style error: Missing space before the open parenthesis - Fixed style warnings: 2x Missing blank line after declaration One warning left: else after return (I don't feel comfortable fixing that without side effects) Signed-off-by: NMario Leinweber <marioleinweber@web.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/20180302182007.28691-1-marioleinweber@web.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 21 2月, 2018 10 次提交
-
-
由 Frederic Weisbecker 提交于
Now that the 1Hz tick is offloaded to workqueues, we can safely remove the residual code that used to handle it locally. Signed-off-by: NFrederic Weisbecker <frederic@kernel.org> Reviewed-by: NThomas Gleixner <tglx@linutronix.de> Acked-by: NPeter Zijlstra <peterz@infradead.org> Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: Christoph Lameter <cl@linux.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Rik van Riel <riel@redhat.com> Cc: Wanpeng Li <kernellwp@gmail.com> Link: http://lkml.kernel.org/r/1519186649-3242-7-git-send-email-frederic@kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Frederic Weisbecker 提交于
When a CPU runs in full dynticks mode, a 1Hz tick remains in order to keep the scheduler stats alive. However this residual tick is a burden for bare metal tasks that can't stand any interruption at all, or want to minimize them. The usual boot parameters "nohz_full=" or "isolcpus=nohz" will now outsource these scheduler ticks to the global workqueue so that a housekeeping CPU handles those remotely. The sched_class::task_tick() implementations have been audited and look safe to be called remotely as the target runqueue and its current task are passed in parameter and don't seem to be accessed locally. Note that in the case of using isolcpus, it's still up to the user to affine the global workqueues to the housekeeping CPUs through /sys/devices/virtual/workqueue/cpumask or domains isolation "isolcpus=nohz,domain". Signed-off-by: NFrederic Weisbecker <frederic@kernel.org> Reviewed-by: NThomas Gleixner <tglx@linutronix.de> Acked-by: NPeter Zijlstra <peterz@infradead.org> Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: Christoph Lameter <cl@linux.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Rik van Riel <riel@redhat.com> Cc: Wanpeng Li <kernellwp@gmail.com> Link: http://lkml.kernel.org/r/1519186649-3242-6-git-send-email-frederic@kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Frederic Weisbecker 提交于
As we prepare for offloading the residual 1hz scheduler ticks to workqueue, let's affine those to housekeepers so that they don't interrupt the CPUs that don't want to be disturbed. Signed-off-by: NFrederic Weisbecker <frederic@kernel.org> Reviewed-by: NThomas Gleixner <tglx@linutronix.de> Acked-by: NPeter Zijlstra <peterz@infradead.org> Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: Christoph Lameter <cl@linux.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Rik van Riel <riel@redhat.com> Cc: Wanpeng Li <kernellwp@gmail.com> Link: http://lkml.kernel.org/r/1519186649-3242-5-git-send-email-frederic@kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Frederic Weisbecker 提交于
Do that rename in order to normalize the hrtick namespace. Signed-off-by: NFrederic Weisbecker <frederic@kernel.org> Reviewed-by: NThomas Gleixner <tglx@linutronix.de> Acked-by: NPeter Zijlstra <peterz@infradead.org> Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: Christoph Lameter <cl@linux.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Rik van Riel <riel@redhat.com> Cc: Wanpeng Li <kernellwp@gmail.com> Link: http://lkml.kernel.org/r/1519186649-3242-2-git-send-email-frederic@kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mel Gorman 提交于
If wake_affine() pulls a task to another node for any reason and the node is no longer preferred then temporarily stop automatic NUMA balancing pulling the task back. Otherwise, tasks with a strong waker/wakee relationship may constantly fight automatic NUMA balancing over where a task should be placed. Once again netperf is interesting here. The performance barely changes but automatic NUMA balancing is interesting: Hmean send-64 354.67 ( 0.00%) 352.15 ( -0.71%) Hmean send-128 702.91 ( 0.00%) 693.84 ( -1.29%) Hmean send-256 1350.07 ( 0.00%) 1344.19 ( -0.44%) Hmean send-1024 5124.38 ( 0.00%) 4941.24 ( -3.57%) Hmean send-2048 9687.44 ( 0.00%) 9624.45 ( -0.65%) Hmean send-3312 14577.64 ( 0.00%) 14514.35 ( -0.43%) Hmean send-4096 16393.62 ( 0.00%) 16488.30 ( 0.58%) Hmean send-8192 26877.26 ( 0.00%) 26431.63 ( -1.66%) Hmean send-16384 38683.43 ( 0.00%) 38264.91 ( -1.08%) Hmean recv-64 354.67 ( 0.00%) 352.15 ( -0.71%) Hmean recv-128 702.91 ( 0.00%) 693.84 ( -1.29%) Hmean recv-256 1350.07 ( 0.00%) 1344.19 ( -0.44%) Hmean recv-1024 5124.38 ( 0.00%) 4941.24 ( -3.57%) Hmean recv-2048 9687.43 ( 0.00%) 9624.45 ( -0.65%) Hmean recv-3312 14577.59 ( 0.00%) 14514.35 ( -0.43%) Hmean recv-4096 16393.55 ( 0.00%) 16488.20 ( 0.58%) Hmean recv-8192 26876.96 ( 0.00%) 26431.29 ( -1.66%) Hmean recv-16384 38682.41 ( 0.00%) 38263.94 ( -1.08%) NUMA alloc hit 1465986 1423090 NUMA alloc miss 0 0 NUMA interleave hit 0 0 NUMA alloc local 1465897 1423003 NUMA base PTE updates 1473 1420 NUMA huge PMD updates 0 0 NUMA page range updates 1473 1420 NUMA hint faults 1383 1312 NUMA hint local faults 451 124 NUMA hint local percent 32 9 There is a slight degrading in performance but there are slightly fewer NUMA faults. There is a large drop in the percentage of local faults but the bulk of migrations for netperf are in small shared libraries so it's reflecting the fact that automatic NUMA balancing has backed off. This is a case where despite wake_affine() and automatic NUMA balancing fighting for placement that there is a marginal benefit to rescheduling to local data quickly. However, it should be noted that wake_affine() and automatic NUMA balancing fighting each other constantly is undesirable. However, the benefit in other cases is large. This is the result for NAS with the D class sizing on a 4-socket machine: nas-mpi 4.15.0 4.15.0 sdnuma-v1r23 delayretry-v1r23 Time cg.D 557.00 ( 0.00%) 431.82 ( 22.47%) Time ep.D 77.83 ( 0.00%) 79.01 ( -1.52%) Time is.D 26.46 ( 0.00%) 26.64 ( -0.68%) Time lu.D 727.14 ( 0.00%) 597.94 ( 17.77%) Time mg.D 191.35 ( 0.00%) 146.85 ( 23.26%) 4.15.0 4.15.0 sdnuma-v1r23delayretry-v1r23 User 75665.20 70413.30 System 20321.59 8861.67 Elapsed 766.13 634.92 Minor Faults 16528502 7127941 Major Faults 4553 5068 NUMA alloc local 6963197 6749135 NUMA base PTE updates 366409093 107491434 NUMA huge PMD updates 687556 198880 NUMA page range updates 718437765 209317994 NUMA hint faults 13643410 4601187 NUMA hint local faults 9212593 3063996 NUMA hint local percent 67 66 Note the massive reduction in system CPU usage even though the percentage of local faults is barely affected. There is a massive reduction in the number of PTE updates showing that automatic NUMA balancing has backed off. A critical observation is also that there is a massive reduction in minor faults which is due to far fewer NUMA hinting faults being trapped. There were questions on NAS OMP and how it behaved related to threads being bound to CPUs. First, there are more gains than losses with this patch applied and a reduction in system CPU usage: nas-omp 4.16.0-rc1 4.16.0-rc1 sdnuma-v2r1 delayretry-v2r1 Time bt.D 436.71 ( 0.00%) 430.05 ( 1.53%) Time cg.D 201.02 ( 0.00%) 180.87 ( 10.02%) Time ep.D 32.84 ( 0.00%) 32.68 ( 0.49%) Time is.D 9.63 ( 0.00%) 9.64 ( -0.10%) Time lu.D 331.20 ( 0.00%) 304.80 ( 7.97%) Time mg.D 54.87 ( 0.00%) 52.72 ( 3.92%) Time sp.D 1108.78 ( 0.00%) 917.10 ( 17.29%) Time ua.D 378.81 ( 0.00%) 398.83 ( -5.28%) 4.16.0-rc1 4.16.0-rc1 sdnuma-v2r1delayretry-v2r1 User 305633.08 296751.91 System 451.75 357.80 Elapsed 2595.73 2368.13 However, it does not close the gap between binding and being unbound. There is negligible difference between the performance of the baseline and a patched kernel when threads are bound so it is not presented here: 4.16.0-rc1 4.16.0-rc1 delayretry-bind delayretry-unbound Time bt.D 385.02 ( 0.00%) 430.05 ( -11.70%) Time cg.D 144.02 ( 0.00%) 180.87 ( -25.59%) Time ep.D 32.85 ( 0.00%) 32.68 ( 0.52%) Time is.D 10.52 ( 0.00%) 9.64 ( 8.37%) Time lu.D 285.31 ( 0.00%) 304.80 ( -6.83%) Time mg.D 43.21 ( 0.00%) 52.72 ( -22.01%) Time sp.D 820.24 ( 0.00%) 917.10 ( -11.81%) Time ua.D 337.09 ( 0.00%) 398.83 ( -18.32%) 4.16.0-rc1 4.16.0-rc1 delayretry-binddelayretry-unbound User 277731.25 296751.91 System 261.29 357.80 Elapsed 2100.55 2368.13 Unfortunately, while performance is improved by the patch, there is still quite a long way to go before it's equivalent to hard binding. Other workloads like hackbench, tbench, dbench and schbench are barely affected. dbench shows a mix of gains and losses depending on the machine although in general, the results are more stable. Signed-off-by: NMel Gorman <mgorman@techsingularity.net> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Giovanni Gherdovich <ggherdovich@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20180213133730.24064-7-mgorman@techsingularity.netSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mel Gorman 提交于
find_idlest_group() compares a local group with each other group to select the one that is most idle. When comparing groups in different NUMA domains, a very slight imbalance is enough to select a remote NUMA node even if the runnable load on both groups is 0 or close to 0. This ignores the cost of remote accesses entirely and is a problem when selecting the CPU for a newly forked task to run on. This is problematic when a forking server is almost guaranteed to run on a remote node incurring numerous remote accesses and potentially causing automatic NUMA balancing to try migrate the task back or migrate the data to another node. Similar weirdness is observed if a basic shell command pipes output to another as each process in the pipeline is likely to start on different nodes and then get adjusted later by wake_affine(). This patch adds imbalance to remote domains when considering whether to select CPUs from remote domains. If the local domain is selected, imbalance will still be used to try select a CPU from a lower scheduler domain's group instead of stacking tasks on the same CPU. A variety of workloads and machines were tested and as expected, there is no difference on UMA. The difference on NUMA can be dramatic. This is a comparison of elapsed times running the git regression test suite. It's fork-intensive with short-lived processes: 4.15.0 4.15.0 noexit-v1r23 sdnuma-v1r23 Elapsed min 1706.06 ( 0.00%) 1435.94 ( 15.83%) Elapsed mean 1709.53 ( 0.00%) 1436.98 ( 15.94%) Elapsed stddev 2.16 ( 0.00%) 1.01 ( 53.38%) Elapsed coeffvar 0.13 ( 0.00%) 0.07 ( 44.54%) Elapsed max 1711.59 ( 0.00%) 1438.01 ( 15.98%) 4.15.0 4.15.0 noexit-v1r23 sdnuma-v1r23 User 5434.12 5188.41 System 4878.77 3467.09 Elapsed 10259.06 8624.21 That shows a considerable reduction in elapsed times. It's important to note that automatic NUMA balancing does not affect this load as processes are too short-lived. There is also a noticable impact on hackbench such as this example using processes and pipes: hackbench-process-pipes 4.15.0 4.15.0 noexit-v1r23 sdnuma-v1r23 Amean 1 1.0973 ( 0.00%) 0.9393 ( 14.40%) Amean 4 1.3427 ( 0.00%) 1.3730 ( -2.26%) Amean 7 1.4233 ( 0.00%) 1.6670 ( -17.12%) Amean 12 3.0250 ( 0.00%) 3.3013 ( -9.13%) Amean 21 9.0860 ( 0.00%) 9.5343 ( -4.93%) Amean 30 14.6547 ( 0.00%) 13.2433 ( 9.63%) Amean 48 22.5447 ( 0.00%) 20.4303 ( 9.38%) Amean 79 29.2010 ( 0.00%) 26.7853 ( 8.27%) Amean 110 36.7443 ( 0.00%) 35.8453 ( 2.45%) Amean 141 45.8533 ( 0.00%) 42.6223 ( 7.05%) Amean 172 55.1317 ( 0.00%) 50.6473 ( 8.13%) Amean 203 64.4420 ( 0.00%) 58.3957 ( 9.38%) Amean 234 73.2293 ( 0.00%) 67.1047 ( 8.36%) Amean 265 80.5220 ( 0.00%) 75.7330 ( 5.95%) Amean 296 88.7567 ( 0.00%) 82.1533 ( 7.44%) It's not a universal win as there are occasions when spreading wide and quickly is a benefit but it's more of a win than it is a loss. For other workloads, there is little difference but netperf is interesting. Without the patch, the server and client starts on different nodes but quickly get migrated due to wake_affine. Hence, the difference is overall performance is marginal but detectable: 4.15.0 4.15.0 noexit-v1r23 sdnuma-v1r23 Hmean send-64 349.09 ( 0.00%) 354.67 ( 1.60%) Hmean send-128 699.16 ( 0.00%) 702.91 ( 0.54%) Hmean send-256 1316.34 ( 0.00%) 1350.07 ( 2.56%) Hmean send-1024 5063.99 ( 0.00%) 5124.38 ( 1.19%) Hmean send-2048 9705.19 ( 0.00%) 9687.44 ( -0.18%) Hmean send-3312 14359.48 ( 0.00%) 14577.64 ( 1.52%) Hmean send-4096 16324.20 ( 0.00%) 16393.62 ( 0.43%) Hmean send-8192 26112.61 ( 0.00%) 26877.26 ( 2.93%) Hmean send-16384 37208.44 ( 0.00%) 38683.43 ( 3.96%) Hmean recv-64 349.09 ( 0.00%) 354.67 ( 1.60%) Hmean recv-128 699.16 ( 0.00%) 702.91 ( 0.54%) Hmean recv-256 1316.34 ( 0.00%) 1350.07 ( 2.56%) Hmean recv-1024 5063.99 ( 0.00%) 5124.38 ( 1.19%) Hmean recv-2048 9705.16 ( 0.00%) 9687.43 ( -0.18%) Hmean recv-3312 14359.42 ( 0.00%) 14577.59 ( 1.52%) Hmean recv-4096 16323.98 ( 0.00%) 16393.55 ( 0.43%) Hmean recv-8192 26111.85 ( 0.00%) 26876.96 ( 2.93%) Hmean recv-16384 37206.99 ( 0.00%) 38682.41 ( 3.97%) However, what is very interesting is how automatic NUMA balancing behaves. Each netperf instance runs long enough for balancing to activate: NUMA base PTE updates 4620 1473 NUMA huge PMD updates 0 0 NUMA page range updates 4620 1473 NUMA hint faults 4301 1383 NUMA hint local faults 1309 451 NUMA hint local percent 30 32 NUMA pages migrated 1335 491 AutoNUMA cost 21% 6% There is an unfortunate number of remote faults although tracing indicated that the vast majority are in shared libraries. However, the tendency to start tasks on the same node if there is capacity means that there were far fewer PTE updates and faults incurred overall. Signed-off-by: NMel Gorman <mgorman@techsingularity.net> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Giovanni Gherdovich <ggherdovich@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20180213133730.24064-6-mgorman@techsingularity.netSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
When a task exits, it notifies the parent that it has exited. This is a sync wakeup and the exiting task may pull the parent towards the wakers CPU. For simple workloads like using a shell, it was observed that the shell is pulled across nodes by exiting processes. This is daft as the parent may be long-lived and properly placed. This patch special cases a sync wakeup on exit to avoid pulling tasks across nodes. Testing on a range of workloads and machines showed very little differences in performance although there was a small 3% boost on some machines running a shellscript intensive workload (git regression test suite). Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: NMel Gorman <mgorman@techsingularity.net> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Giovanni Gherdovich <ggherdovich@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20180213133730.24064-5-mgorman@techsingularity.netSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mel Gorman 提交于
wake_affine_weight() will consider migrating a task to, or near, the current CPU if there is a load imbalance. If the CPUs share LLC then either CPU is valid as a search-for-idle-sibling target and equally appropriate for stacking two tasks on one CPU if an idle sibling is unavailable. If they do not share cache then a cross-node migration potentially impacts locality so while they are equal from a CPU capacity point of view, they are not equal in terms of memory locality. In either case, it's more appropriate to migrate only if there is a difference in their effective load. This patch modifies wake_affine_weight() to only consider migrating a task if there is a load imbalance for normal wakeups but will allow potential stacking if the loads are equal and it's a sync wakeup. For the most part, the different in performance is marginal. For example, on a 4-socket server running netperf UDP_STREAM on localhost the differences are as follows: 4.15.0 4.15.0 16rc0 noequal-v1r23 Hmean send-64 355.47 ( 0.00%) 349.50 ( -1.68%) Hmean send-128 697.98 ( 0.00%) 693.35 ( -0.66%) Hmean send-256 1328.02 ( 0.00%) 1318.77 ( -0.70%) Hmean send-1024 5051.83 ( 0.00%) 5051.11 ( -0.01%) Hmean send-2048 9637.02 ( 0.00%) 9601.34 ( -0.37%) Hmean send-3312 14355.37 ( 0.00%) 14414.51 ( 0.41%) Hmean send-4096 16464.97 ( 0.00%) 16301.37 ( -0.99%) Hmean send-8192 26722.42 ( 0.00%) 26428.95 ( -1.10%) Hmean send-16384 38137.81 ( 0.00%) 38046.11 ( -0.24%) Hmean recv-64 355.47 ( 0.00%) 349.50 ( -1.68%) Hmean recv-128 697.98 ( 0.00%) 693.35 ( -0.66%) Hmean recv-256 1328.02 ( 0.00%) 1318.77 ( -0.70%) Hmean recv-1024 5051.83 ( 0.00%) 5051.11 ( -0.01%) Hmean recv-2048 9636.95 ( 0.00%) 9601.30 ( -0.37%) Hmean recv-3312 14355.32 ( 0.00%) 14414.48 ( 0.41%) Hmean recv-4096 16464.74 ( 0.00%) 16301.16 ( -0.99%) Hmean recv-8192 26721.63 ( 0.00%) 26428.17 ( -1.10%) Hmean recv-16384 38136.00 ( 0.00%) 38044.88 ( -0.24%) Stddev send-64 7.30 ( 0.00%) 4.75 ( 34.96%) Stddev send-128 15.15 ( 0.00%) 22.38 ( -47.66%) Stddev send-256 13.99 ( 0.00%) 19.14 ( -36.81%) Stddev send-1024 105.73 ( 0.00%) 67.38 ( 36.27%) Stddev send-2048 294.57 ( 0.00%) 223.88 ( 24.00%) Stddev send-3312 302.28 ( 0.00%) 271.74 ( 10.10%) Stddev send-4096 195.92 ( 0.00%) 121.10 ( 38.19%) Stddev send-8192 399.71 ( 0.00%) 563.77 ( -41.04%) Stddev send-16384 1163.47 ( 0.00%) 1103.68 ( 5.14%) Stddev recv-64 7.30 ( 0.00%) 4.75 ( 34.96%) Stddev recv-128 15.15 ( 0.00%) 22.38 ( -47.66%) Stddev recv-256 13.99 ( 0.00%) 19.14 ( -36.81%) Stddev recv-1024 105.73 ( 0.00%) 67.38 ( 36.27%) Stddev recv-2048 294.59 ( 0.00%) 223.89 ( 24.00%) Stddev recv-3312 302.24 ( 0.00%) 271.75 ( 10.09%) Stddev recv-4096 196.03 ( 0.00%) 121.14 ( 38.20%) Stddev recv-8192 399.86 ( 0.00%) 563.65 ( -40.96%) Stddev recv-16384 1163.79 ( 0.00%) 1103.86 ( 5.15%) The difference in overall performance is marginal but note that most measurements are less variable. There were similar observations for other netperf comparisons. hackbench with sockets or threads with processes or threads showed minor difference with some reduction of migration. tbench showed only marginal differences that were within the noise. dbench, regardless of filesystem, showed minor differences all of which are within noise. Multiple machines, both UMA and NUMA were tested without any regressions showing up. The biggest risk with a patch like this is affecting wakeup latencies. However, the schbench load from Facebook which is very sensitive to wakeup latency showed a mixed result with mostly improvements in wakeup latency: 4.15.0 4.15.0 16rc0 noequal-v1r23 Lat 50.00th-qrtle-1 38.00 ( 0.00%) 38.00 ( 0.00%) Lat 75.00th-qrtle-1 49.00 ( 0.00%) 41.00 ( 16.33%) Lat 90.00th-qrtle-1 52.00 ( 0.00%) 50.00 ( 3.85%) Lat 95.00th-qrtle-1 54.00 ( 0.00%) 51.00 ( 5.56%) Lat 99.00th-qrtle-1 63.00 ( 0.00%) 60.00 ( 4.76%) Lat 99.50th-qrtle-1 66.00 ( 0.00%) 61.00 ( 7.58%) Lat 99.90th-qrtle-1 78.00 ( 0.00%) 65.00 ( 16.67%) Lat 50.00th-qrtle-2 38.00 ( 0.00%) 38.00 ( 0.00%) Lat 75.00th-qrtle-2 42.00 ( 0.00%) 43.00 ( -2.38%) Lat 90.00th-qrtle-2 46.00 ( 0.00%) 48.00 ( -4.35%) Lat 95.00th-qrtle-2 49.00 ( 0.00%) 50.00 ( -2.04%) Lat 99.00th-qrtle-2 55.00 ( 0.00%) 57.00 ( -3.64%) Lat 99.50th-qrtle-2 58.00 ( 0.00%) 60.00 ( -3.45%) Lat 99.90th-qrtle-2 65.00 ( 0.00%) 68.00 ( -4.62%) Lat 50.00th-qrtle-4 41.00 ( 0.00%) 41.00 ( 0.00%) Lat 75.00th-qrtle-4 45.00 ( 0.00%) 46.00 ( -2.22%) Lat 90.00th-qrtle-4 50.00 ( 0.00%) 50.00 ( 0.00%) Lat 95.00th-qrtle-4 54.00 ( 0.00%) 53.00 ( 1.85%) Lat 99.00th-qrtle-4 61.00 ( 0.00%) 61.00 ( 0.00%) Lat 99.50th-qrtle-4 65.00 ( 0.00%) 64.00 ( 1.54%) Lat 99.90th-qrtle-4 76.00 ( 0.00%) 82.00 ( -7.89%) Lat 50.00th-qrtle-8 48.00 ( 0.00%) 46.00 ( 4.17%) Lat 75.00th-qrtle-8 55.00 ( 0.00%) 54.00 ( 1.82%) Lat 90.00th-qrtle-8 60.00 ( 0.00%) 59.00 ( 1.67%) Lat 95.00th-qrtle-8 63.00 ( 0.00%) 63.00 ( 0.00%) Lat 99.00th-qrtle-8 71.00 ( 0.00%) 69.00 ( 2.82%) Lat 99.50th-qrtle-8 74.00 ( 0.00%) 73.00 ( 1.35%) Lat 99.90th-qrtle-8 98.00 ( 0.00%) 90.00 ( 8.16%) Lat 50.00th-qrtle-16 56.00 ( 0.00%) 55.00 ( 1.79%) Lat 75.00th-qrtle-16 68.00 ( 0.00%) 67.00 ( 1.47%) Lat 90.00th-qrtle-16 77.00 ( 0.00%) 78.00 ( -1.30%) Lat 95.00th-qrtle-16 82.00 ( 0.00%) 84.00 ( -2.44%) Lat 99.00th-qrtle-16 90.00 ( 0.00%) 93.00 ( -3.33%) Lat 99.50th-qrtle-16 93.00 ( 0.00%) 97.00 ( -4.30%) Lat 99.90th-qrtle-16 110.00 ( 0.00%) 110.00 ( 0.00%) Lat 50.00th-qrtle-32 68.00 ( 0.00%) 62.00 ( 8.82%) Lat 75.00th-qrtle-32 90.00 ( 0.00%) 83.00 ( 7.78%) Lat 90.00th-qrtle-32 110.00 ( 0.00%) 100.00 ( 9.09%) Lat 95.00th-qrtle-32 122.00 ( 0.00%) 111.00 ( 9.02%) Lat 99.00th-qrtle-32 145.00 ( 0.00%) 133.00 ( 8.28%) Lat 99.50th-qrtle-32 154.00 ( 0.00%) 143.00 ( 7.14%) Lat 99.90th-qrtle-32 2316.00 ( 0.00%) 515.00 ( 77.76%) Lat 50.00th-qrtle-35 69.00 ( 0.00%) 72.00 ( -4.35%) Lat 75.00th-qrtle-35 92.00 ( 0.00%) 95.00 ( -3.26%) Lat 90.00th-qrtle-35 111.00 ( 0.00%) 114.00 ( -2.70%) Lat 95.00th-qrtle-35 122.00 ( 0.00%) 124.00 ( -1.64%) Lat 99.00th-qrtle-35 142.00 ( 0.00%) 144.00 ( -1.41%) Lat 99.50th-qrtle-35 150.00 ( 0.00%) 154.00 ( -2.67%) Lat 99.90th-qrtle-35 6104.00 ( 0.00%) 5640.00 ( 7.60%) Signed-off-by: NMel Gorman <mgorman@techsingularity.net> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Giovanni Gherdovich <ggherdovich@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20180213133730.24064-4-mgorman@techsingularity.netSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mel Gorman 提交于
On sync wakeups, the previous CPU effective load may not be used so delay the calculation until it's needed. Signed-off-by: NMel Gorman <mgorman@techsingularity.net> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Giovanni Gherdovich <ggherdovich@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20180213133730.24064-3-mgorman@techsingularity.netSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mel Gorman 提交于
The only caller of wake_affine() knows the CPU ID. Pass it in instead of rechecking it. Signed-off-by: NMel Gorman <mgorman@techsingularity.net> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Giovanni Gherdovich <ggherdovich@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20180213133730.24064-2-mgorman@techsingularity.netSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 13 2月, 2018 5 次提交
-
-
由 Leo Yan 提交于
Since schedutil kernel thread directly set priority to 0, the macro SUGOV_KTHREAD_PRIORITY is not used. So remove it. Signed-off-by: NLeo Yan <leo.yan@linaro.org> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Acked-by: NDaniel Lezcano <daniel.lezcano@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vikram Mulukutla <markivx@codeaurora.org> Cc: Vincent Guittot <vincent.guittot@linaro.org> Link: http://lkml.kernel.org/r/1518097702-9665-1-git-send-email-leo.yan@linaro.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
Mark noticed that he had sporadic "spinlock recursion" warnings from the DEBUG_SPINLOCK code. Now rq->lock is special in that the owner changes in the middle of a context switch. It so happens that we fix up the lock.owner too late, @prev can run (remotely) the moment prev->on_cpu is cleared, this then allows @prev to again try and acquire this rq->lock and trigger this warning. So we have to switch lock.owner before clearing prev->on_cpu. Do this by moving the DEBUG_SPINLOCK annotation from after switch_to() to before switch_to() and collect all lockdep annotations there into prepare_lock_switch() to mirror the existing finish_lock_switch(). Debugged-by: NMark Rutland <mark.rutland@arm.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Acked-by: NMark Rutland <mark.rutland@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Wen Yang 提交于
rq->clock_task may be updated between the two calls of rq_clock_task() in update_curr_rt(). Calling rq_clock_task() only once makes it more accurate and efficient, taking update_curr() as reference. Signed-off-by: NWen Yang <wen.yang99@zte.com.cn> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: NJiang Biao <jiang.biao2@zte.com.cn> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: zhong.weidong@zte.com.cn Link: http://lkml.kernel.org/r/1517882008-44552-1-git-send-email-wen.yang99@zte.com.cnSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Wen Yang 提交于
rq->clock_task may be updated between the two calls of rq_clock_task() in update_curr_dl(). Calling rq_clock_task() only once makes it more accurate and efficient, taking update_curr() as reference. Suggested-by: NPeter Zijlstra <peterz@infradead.org> Signed-off-by: NWen Yang <wen.yang99@zte.com.cn> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: NJiang Biao <jiang.biao2@zte.com.cn> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: zhong.weidong@zte.com.cn Link: http://lkml.kernel.org/r/1517882148-44599-1-git-send-email-wen.yang99@zte.com.cnSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Vincent Guittot 提交于
Remove a useless space in # ifdef and align it with others. Signed-off-by: NVincent Guittot <vincent.guittot@linaro.org> Acked-by: NPeter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1518512382-29426-1-git-send-email-vincent.guittot@linaro.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 07 2月, 2018 1 次提交
-
-
由 Alexey Dobriyan 提交于
CPUmasks are never big enough to warrant 64-bit code. Space savings: add/remove: 0/0 grow/shrink: 1/4 up/down: 3/-17 (-14) Function old new delta sched_init_numa 1530 1533 +3 compat_sys_sched_setaffinity 160 159 -1 sys_sched_getaffinity 197 195 -2 sys_sched_setaffinity 183 176 -7 compat_sys_sched_getaffinity 179 172 -7 Link: http://lkml.kernel.org/r/20171204165531.GA8221@avx2Signed-off-by: NAlexey Dobriyan <adobriyan@gmail.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 06 2月, 2018 13 次提交
-
-
由 Mel Gorman 提交于
The select_idle_sibling() (SIS) rewrite in commit: 10e2f1ac ("sched/core: Rewrite and improve select_idle_siblings()") ... replaced a domain iteration with a search that broadly speaking does a wrapped walk of the scheduler domain sharing a last-level-cache. While this had a number of improvements, one consequence is that two tasks that share a waker/wakee relationship push each other around a socket. Even though two tasks may be active, all cores are evenly used. This is great from a search perspective and spreads a load across individual cores, but it has adverse consequences for cpufreq. As each CPU has relatively low utilisation, cpufreq may decide the utilisation is too low to used a higher P-state and overall computation throughput suffers. While individual cpufreq and cpuidle drivers may compensate by artifically boosting P-state (at c0) or avoiding lower C-states (during idle), it does not help if hardware-based cpufreq (e.g. HWP) is used. This patch tracks a recently used CPU based on what CPU a task was running on when it last was a waker a CPU it was recently using when a task is a wakee. During SIS, the recently used CPU is used as a target if it's still allowed by the task and is idle. The benefit may be non-obvious so consider an example of two tasks communicating back and forth. Task A may be an application doing IO where task B is a kworker or kthread like journald. Task A may issue IO, wake B and B wakes up A on completion. With the existing scheme this may look like the following (potentially different IDs if SMT is in use but similar principal applies). A (cpu 0) wake B (wakes on cpu 1) B (cpu 1) wake A (wakes on cpu 2) A (cpu 2) wake B (wakes on cpu 3) etc. A careful reader may wonder why CPU 0 was not idle when B wakes A the first time and it's simply due to the fact that A can be rescheduled to another CPU and the pattern is that prev == target when B tries to wakeup A and the information about CPU 0 has been lost. With this patch, the pattern is more likely to be: A (cpu 0) wake B (wakes on cpu 1) B (cpu 1) wake A (wakes on cpu 0) A (cpu 0) wake B (wakes on cpu 1) etc i.e. two communicating casts are more likely to use just two cores instead of all available cores sharing a LLC. The most dramatic speedup was noticed on dbench using the XFS filesystem on UMA as clients interact heavily with workqueues in that configuration. Note that a similar speedup is not observed on ext4 as the wakeup pattern is different: 4.15.0-rc9 4.15.0-rc9 waprev-v1 biasancestor-v1 Hmean 1 287.54 ( 0.00%) 817.01 ( 184.14%) Hmean 2 1268.12 ( 0.00%) 1781.24 ( 40.46%) Hmean 4 1739.68 ( 0.00%) 1594.47 ( -8.35%) Hmean 8 2464.12 ( 0.00%) 2479.56 ( 0.63%) Hmean 64 1455.57 ( 0.00%) 1434.68 ( -1.44%) The results can be less dramatic on NUMA where automatic balancing interferes with the test. It's also known that network benchmarks running on localhost also benefit quite a bit from this patch (roughly 10% on netperf RR for UDP and TCP depending on the machine). Hackbench also seens small improvements (6-11% depending on machine and thread count). The facebook schbench was also tested but in most cases showed little or no different to wakeup latencies. Signed-off-by: NMel Gorman <mgorman@techsingularity.net> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20180130104555.4125-5-mgorman@techsingularity.netSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mel Gorman 提交于
wake_affine_idle() prefers to move a task to the current CPU if the wakeup is due to an interrupt. The expectation is that the interrupt data is cache hot and relevant to the waking task as well as avoiding a search. However, there is no way to determine if there was cache hot data on the previous CPU that may exceed the interrupt data. Furthermore, round-robin delivery of interrupts can migrate tasks around a socket where each CPU is under-utilised. This can interact badly with cpufreq which makes decisions based on per-cpu data. It has been observed on machines with HWP that p-states are not boosted to their maximum levels even though the workload is latency and throughput sensitive. This patch uses the previous CPU for the task if it's idle and cache-affine with the current CPU even if the current CPU is idle due to the wakup being related to the interrupt. This reduces migrations at the cost of the interrupt data not being cache hot when the task wakes. A variety of workloads were tested on various machines and no adverse impact was noticed that was outside noise. dbench on ext4 on UMA showed roughly 10% reduction in the number of CPU migrations and it is a case where interrupts are frequent for IO competions. In most cases, the difference in performance is quite small but variability is often reduced. For example, this is the result for pgbench running on a UMA machine with different numbers of clients. 4.15.0-rc9 4.15.0-rc9 baseline waprev-v1 Hmean 1 22096.28 ( 0.00%) 22734.86 ( 2.89%) Hmean 4 74633.42 ( 0.00%) 75496.77 ( 1.16%) Hmean 7 115017.50 ( 0.00%) 113030.81 ( -1.73%) Hmean 12 126209.63 ( 0.00%) 126613.40 ( 0.32%) Hmean 16 131886.91 ( 0.00%) 130844.35 ( -0.79%) Stddev 1 636.38 ( 0.00%) 417.11 ( 34.46%) Stddev 4 614.64 ( 0.00%) 583.24 ( 5.11%) Stddev 7 542.46 ( 0.00%) 435.45 ( 19.73%) Stddev 12 173.93 ( 0.00%) 171.50 ( 1.40%) Stddev 16 671.42 ( 0.00%) 680.30 ( -1.32%) CoeffVar 1 2.88 ( 0.00%) 1.83 ( 36.26%) Note that the different in performance is marginal but for low utilisation, there is less variability. Signed-off-by: NMel Gorman <mgorman@techsingularity.net> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20180130104555.4125-4-mgorman@techsingularity.netSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mel Gorman 提交于
This is a preparation patch that has wake_affine*() return a CPU ID instead of a boolean. The intent is to allow the wake_affine() helpers to be avoided if a decision is already made. This patch has no functional change. Signed-off-by: NMel Gorman <mgorman@techsingularity.net> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20180130104555.4125-3-mgorman@techsingularity.netSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mel Gorman 提交于
wake_affine_idle() takes parameters it never uses so clean it up. Signed-off-by: NMel Gorman <mgorman@techsingularity.net> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20180130104555.4125-2-mgorman@techsingularity.netSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Wen Yang 提交于
rq->clock_task may be updated between the two calls of rq_clock_task() in update_curr_rt(). Calling rq_clock_task() only once makes it more accurate and efficient, taking update_curr() as reference. Signed-off-by: NWen Yang <wen.yang99@zte.com.cn> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: NJiang Biao <jiang.biao2@zte.com.cn> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: zhong.weidong@zte.com.cn Link: http://lkml.kernel.org/r/1517800721-42092-1-git-send-email-wen.yang99@zte.com.cnSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Steven Rostedt (VMware) 提交于
When issuing an IPI RT push, where an IPI is sent to each CPU that has more than one RT task scheduled on it, it references the root domain's rto_mask, that contains all the CPUs within the root domain that has more than one RT task in the runable state. The problem is, after the IPIs are initiated, the rq->lock is released. This means that the root domain that is associated to the run queue could be freed while the IPIs are going around. Add a sched_get_rd() and a sched_put_rd() that will increment and decrement the root domain's ref count respectively. This way when initiating the IPIs, the scheduler will up the root domain's ref count before releasing the rq->lock, ensuring that the root domain does not go away until the IPI round is complete. Reported-by: NPavan Kondeti <pkondeti@codeaurora.org> Signed-off-by: NSteven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: 4bdced5c ("sched/rt: Simplify the IPI based RT balancing logic") Link: http://lkml.kernel.org/r/CAEU1=PkiHO35Dzna8EQqNSKW1fr1y1zRQ5y66X117MG06sQtNA@mail.gmail.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Steven Rostedt (VMware) 提交于
When the rto_push_irq_work_func() is called, it looks at the RT overloaded bitmask in the root domain via the runqueue (rq->rd). The problem is that during CPU up and down, nothing here stops rq->rd from changing between taking the rq->rd->rto_lock and releasing it. That means the lock that is released is not the same lock that was taken. Instead of using this_rq()->rd to get the root domain, as the irq work is part of the root domain, we can simply get the root domain from the irq work that is passed to the routine: container_of(work, struct root_domain, rto_push_work) This keeps the root domain consistent. Reported-by: NPavan Kondeti <pkondeti@codeaurora.org> Signed-off-by: NSteven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: 4bdced5c ("sched/rt: Simplify the IPI based RT balancing logic") Link: http://lkml.kernel.org/r/CAEU1=PkiHO35Dzna8EQqNSKW1fr1y1zRQ5y66X117MG06sQtNA@mail.gmail.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
These functions are already gated by schedstats_enabled(), there is no point in then issuing another static_branch for every individual update in them. Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
The whole of ttwu_stat() is guarded by a single schedstat_enabled(), there is absolutely no point in then issuing another static_branch for every single schedstat_inc() in there. Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mathieu Desnoyers 提交于
Provide core serializing membarrier command to support memory reclaim by JIT. Each architecture needs to explicitly opt into that support by documenting in their architecture code how they provide the core serializing instructions required when returning from the membarrier IPI, and after the scheduler has updated the curr->mm pointer (before going back to user-space). They should then select ARCH_HAS_MEMBARRIER_SYNC_CORE to enable support for that command on their architecture. Architectures selecting this feature need to either document that they issue core serializing instructions when returning to user-space, or implement their architecture-specific sync_core_before_usermode(). Signed-off-by: NMathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: NThomas Gleixner <tglx@linutronix.de> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrea Parri <parri.andrea@gmail.com> Cc: Andrew Hunter <ahh@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Avi Kivity <avi@scylladb.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Dave Watson <davejwatson@fb.com> Cc: David Sehr <sehr@google.com> Cc: Greg Hackmann <ghackmann@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Maged Michael <maged.michael@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-api@vger.kernel.org Cc: linux-arch@vger.kernel.org Link: http://lkml.kernel.org/r/20180129202020.8515-9-mathieu.desnoyers@efficios.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mathieu Desnoyers 提交于
Allow expedited membarrier to be used for data shared between processes through shared memory. Processes wishing to receive the membarriers register with MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED. Those which want to issue membarrier invoke MEMBARRIER_CMD_GLOBAL_EXPEDITED. This allows extremely simple kernel-level implementation: we have almost everything we need with the PRIVATE_EXPEDITED barrier code. All we need to do is to add a flag in the mm_struct that will be used to check whether we need to send the IPI to the current thread of each CPU. There is a slight downside to this approach compared to targeting specific shared memory users: when performing a membarrier operation, all registered "global" receivers will get the barrier, even if they don't share a memory mapping with the sender issuing MEMBARRIER_CMD_GLOBAL_EXPEDITED. This registration approach seems to fit the requirement of not disturbing processes that really deeply care about real-time: they simply should not register with MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED. In order to align the membarrier command names, the "MEMBARRIER_CMD_SHARED" command is renamed to "MEMBARRIER_CMD_GLOBAL", keeping an alias of MEMBARRIER_CMD_SHARED to MEMBARRIER_CMD_GLOBAL for UAPI header backward compatibility. Signed-off-by: NMathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: NThomas Gleixner <tglx@linutronix.de> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrea Parri <parri.andrea@gmail.com> Cc: Andrew Hunter <ahh@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Avi Kivity <avi@scylladb.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Dave Watson <davejwatson@fb.com> Cc: David Sehr <sehr@google.com> Cc: Greg Hackmann <ghackmann@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Maged Michael <maged.michael@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-api@vger.kernel.org Link: http://lkml.kernel.org/r/20180129202020.8515-5-mathieu.desnoyers@efficios.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mathieu Desnoyers 提交于
Document the membarrier requirement on having a full memory barrier in __schedule() after coming from user-space, before storing to rq->curr. It is provided by smp_mb__after_spinlock() in __schedule(). Document that membarrier requires a full barrier on transition from kernel thread to userspace thread. We currently have an implicit barrier from atomic_dec_and_test() in mmdrop() that ensures this. The x86 switch_mm_irqs_off() full barrier is currently provided by many cpumask update operations as well as write_cr3(). Document that write_cr3() provides this barrier. Signed-off-by: NMathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: NThomas Gleixner <tglx@linutronix.de> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrea Parri <parri.andrea@gmail.com> Cc: Andrew Hunter <ahh@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Avi Kivity <avi@scylladb.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Dave Watson <davejwatson@fb.com> Cc: David Sehr <sehr@google.com> Cc: Greg Hackmann <ghackmann@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Maged Michael <maged.michael@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-api@vger.kernel.org Link: http://lkml.kernel.org/r/20180129202020.8515-4-mathieu.desnoyers@efficios.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mathieu Desnoyers 提交于
Allow PowerPC to skip the full memory barrier in switch_mm(), and only issue the barrier when scheduling into a task belonging to a process that has registered to use expedited private. Threads targeting the same VM but which belong to different thread groups is a tricky case. It has a few consequences: It turns out that we cannot rely on get_nr_threads(p) to count the number of threads using a VM. We can use (atomic_read(&mm->mm_users) == 1 && get_nr_threads(p) == 1) instead to skip the synchronize_sched() for cases where the VM only has a single user, and that user only has a single thread. It also turns out that we cannot use for_each_thread() to set thread flags in all threads using a VM, as it only iterates on the thread group. Therefore, test the membarrier state variable directly rather than relying on thread flags. This means membarrier_register_private_expedited() needs to set the MEMBARRIER_STATE_PRIVATE_EXPEDITED flag, issue synchronize_sched(), and only then set MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY which allows private expedited membarrier commands to succeed. membarrier_arch_switch_mm() now tests for the MEMBARRIER_STATE_PRIVATE_EXPEDITED flag. Signed-off-by: NMathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: NThomas Gleixner <tglx@linutronix.de> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Alan Stern <stern@rowland.harvard.edu> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrea Parri <parri.andrea@gmail.com> Cc: Andrew Hunter <ahh@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Avi Kivity <avi@scylladb.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Dave Watson <davejwatson@fb.com> Cc: David Sehr <sehr@google.com> Cc: Greg Hackmann <ghackmann@google.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Maged Michael <maged.michael@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-api@vger.kernel.org Cc: linux-arch@vger.kernel.org Cc: linuxppc-dev@lists.ozlabs.org Link: http://lkml.kernel.org/r/20180129202020.8515-3-mathieu.desnoyers@efficios.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 24 1月, 2018 1 次提交
-
-
由 Peter Zijlstra 提交于
Tejun reported the following cpu-hotplug lock (percpu-rwsem) read recursion: tg_set_cfs_bandwidth() get_online_cpus() cpus_read_lock() cfs_bandwidth_usage_inc() static_key_slow_inc() cpus_read_lock() Reported-by: NTejun Heo <tj@kernel.org> Tested-by: NTejun Heo <tj@kernel.org> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20180122215328.GP3397@worktopSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 16 1月, 2018 1 次提交
-
-
由 Josh Snyder 提交于
Before commit: e33a9bba ("sched/core: move IO scheduling accounting from io_schedule_timeout() into scheduler") delayacct_blkio_end() was called after context-switching into the task which completed I/O. This resulted in double counting: the task would account a delay both waiting for I/O and for time spent in the runqueue. With e33a9bba, delayacct_blkio_end() is called by try_to_wake_up(). In ttwu, we have not yet context-switched. This is more correct, in that the delay accounting ends when the I/O is complete. But delayacct_blkio_end() relies on 'get_current()', and we have not yet context-switched into the task whose I/O completed. This results in the wrong task having its delay accounting statistics updated. Instead of doing that, pass the task_struct being woken to delayacct_blkio_end(), so that it can update the statistics of the correct task. Signed-off-by: NJosh Snyder <joshs@netflix.com> Acked-by: NTejun Heo <tj@kernel.org> Acked-by: NBalbir Singh <bsingharora@gmail.com> Cc: <stable@vger.kernel.org> Cc: Brendan Gregg <bgregg@netflix.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-block@vger.kernel.org Fixes: e33a9bba ("sched/core: move IO scheduling accounting from io_schedule_timeout() into scheduler") Link: http://lkml.kernel.org/r/1513613712-571-1-git-send-email-joshs@netflix.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-