- 20 6月, 2017 2 次提交
-
-
由 John Stultz 提交于
Due to how the MONOTONIC_RAW accumulation logic was handled, there is the potential for a 1ns discontinuity when we do accumulations. This small discontinuity has for the most part gone un-noticed, but since ARM64 enabled CLOCK_MONOTONIC_RAW in their vDSO clock_gettime implementation, we've seen failures with the inconsistency-check test in kselftest. This patch addresses the issue by using the same sub-ns accumulation handling that CLOCK_MONOTONIC uses, which avoids the issue for in-kernel users. Since the ARM64 vDSO implementation has its own clock_gettime calculation logic, this patch reduces the frequency of errors, but failures are still seen. The ARM64 vDSO will need to be updated to include the sub-nanosecond xtime_nsec values in its calculation for this issue to be completely fixed. Signed-off-by: NJohn Stultz <john.stultz@linaro.org> Tested-by: NDaniel Mentz <danielmentz@google.com> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Richard Cochran <richardcochran@gmail.com> Cc: Stephen Boyd <stephen.boyd@linaro.org> Cc: Will Deacon <will.deacon@arm.com> Cc: "stable #4 . 8+" <stable@vger.kernel.org> Cc: Miroslav Lichvar <mlichvar@redhat.com> Link: http://lkml.kernel.org/r/1496965462-20003-3-git-send-email-john.stultz@linaro.orgSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
由 John Stultz 提交于
In tests, which excercise switching of clocksources, a NULL pointer dereference can be observed on AMR64 platforms in the clocksource read() function: u64 clocksource_mmio_readl_down(struct clocksource *c) { return ~(u64)readl_relaxed(to_mmio_clksrc(c)->reg) & c->mask; } This is called from the core timekeeping code via: cycle_now = tkr->read(tkr->clock); tkr->read is the cached tkr->clock->read() function pointer. When the clocksource is changed then tkr->clock and tkr->read are updated sequentially. The code above results in a sequential load operation of tkr->read and tkr->clock as well. If the store to tkr->clock hits between the loads of tkr->read and tkr->clock, then the old read() function is called with the new clock pointer. As a consequence the read() function dereferences a different data structure and the resulting 'reg' pointer can point anywhere including NULL. This problem was introduced when the timekeeping code was switched over to use struct tk_read_base. Before that, it was theoretically possible as well when the compiler decided to reload clock in the code sequence: now = tk->clock->read(tk->clock); Add a helper function which avoids the issue by reading tk_read_base->clock once into a local variable clk and then issue the read function via clk->read(clk). This guarantees that the read() function always gets the proper clocksource pointer handed in. Since there is now no use for the tkr.read pointer, this patch also removes it, and to address stopping the fast timekeeper during suspend/resume, it introduces a dummy clocksource to use rather then just a dummy read function. Signed-off-by: NJohn Stultz <john.stultz@linaro.org> Acked-by: NIngo Molnar <mingo@kernel.org> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Richard Cochran <richardcochran@gmail.com> Cc: Stephen Boyd <stephen.boyd@linaro.org> Cc: stable <stable@vger.kernel.org> Cc: Miroslav Lichvar <mlichvar@redhat.com> Cc: Daniel Mentz <danielmentz@google.com> Link: http://lkml.kernel.org/r/1496965462-20003-2-git-send-email-john.stultz@linaro.orgSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 13 6月, 2017 2 次提交
-
-
由 Heiner Kallweit 提交于
In case __irq_set_trigger() fails the resources requested via irq_request_resources() are not released. Add the missing release call into the error handling path. Fixes: c1bacbae ("genirq: Provide irq_request/release_resources chip callbacks") Signed-off-by: NHeiner Kallweit <hkallweit1@gmail.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org Link: http://lkml.kernel.org/r/655538f5-cb20-a892-ff15-fbd2dd1fa4ec@gmail.com
-
由 Stephen Boyd 提交于
This function isn't used outside of tick-broadcast.c, so let's mark it static. Signed-off-by: NStephen Boyd <sboyd@codeaurora.org> Link: http://lkml.kernel.org/r/20170608063603.13276-1-sboyd@codeaurora.orgSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 12 6月, 2017 1 次提交
-
-
由 Rafael J. Wysocki 提交于
Revert commit 39b64aa1 (cpufreq: schedutil: Reduce frequencies slower) that introduced unintentional changes in behavior leading to adverse effects on some systems. Reported-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 11 6月, 2017 2 次提交
-
-
由 Andy Lutomirski 提交于
idle_task_exit() can be called with IRQs on x86 on and therefore should use switch_mm(), not switch_mm_irqs_off(). This doesn't seem to cause any problems right now, but it will confuse my upcoming TLB flush changes. Nonetheless, I think it should be backported because it's trivial. There won't be any meaningful performance impact because idle_task_exit() is only used when offlining a CPU. Signed-off-by: NAndy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@suse.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org Fixes: f98db601 ("sched/core: Add switch_mm_irqs_off() and use it in the scheduler") Link: http://lkml.kernel.org/r/ca3d1a9fa93a0b49f5a8ff729eda3640fb6abdf9.1497034141.git.luto@kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Marcin Nowakowski 提交于
'schedstats' kernel parameter should be set to enable/disable, so correct the printk hint saying that it should be set to 'enable' rather than 'enabled' to enable scheduler tracepoints. Signed-off-by: NMarcin Nowakowski <marcin.nowakowski@imgtec.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1496995229-31245-1-git-send-email-marcin.nowakowski@imgtec.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 08 6月, 2017 4 次提交
-
-
由 Paolo Bonzini 提交于
Linu Cherian reported a WARN in cleanup_srcu_struct() when shutting down a guest running iperf on a VFIO assigned device. This happens because irqfd_wakeup() calls srcu_read_lock(&kvm->irq_srcu) in interrupt context, while a worker thread does the same inside kvm_set_irq(). If the interrupt happens while the worker thread is executing __srcu_read_lock(), updates to the Classic SRCU ->lock_count[] field or the Tree SRCU ->srcu_lock_count[] field can be lost. The docs say you are not supposed to call srcu_read_lock() and srcu_read_unlock() from irq context, but KVM interrupt injection happens from (host) interrupt context and it would be nice if SRCU supported the use case. KVM is using SRCU here not really for the "sleepable" part, but rather due to its IPI-free fast detection of grace periods. It is therefore not desirable to switch back to RCU, which would effectively revert commit 719d93cd ("kvm/irqchip: Speed up KVM_SET_GSI_ROUTING", 2014-01-16). However, the docs are overly conservative. You can have an SRCU instance only has users in irq context, and you can mix process and irq context as long as process context users disable interrupts. In addition, __srcu_read_unlock() actually uses this_cpu_dec() on both Tree SRCU and Classic SRCU. For those two implementations, only srcu_read_lock() is unsafe. When Classic SRCU's __srcu_read_unlock() was changed to use this_cpu_dec(), in commit 5a41344a ("srcu: Simplify __srcu_read_unlock() via this_cpu_dec()", 2012-11-29), __srcu_read_lock() did two increments. Therefore it kept __this_cpu_inc(), with preempt_disable/enable in the caller. Tree SRCU however only does one increment, so on most architectures it is more efficient for __srcu_read_lock() to use this_cpu_inc(), and any performance differences appear to be down in the noise. Cc: stable@vger.kernel.org Fixes: 719d93cd ("kvm/irqchip: Speed up KVM_SET_GSI_ROUTING") Reported-by: NLinu Cherian <linuc.decode@gmail.com> Suggested-by: NLinu Cherian <linuc.decode@gmail.com> Cc: kvm@vger.kernel.org Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paolo Bonzini 提交于
Linu Cherian reported a WARN in cleanup_srcu_struct() when shutting down a guest running iperf on a VFIO assigned device. This happens because irqfd_wakeup() calls srcu_read_lock(&kvm->irq_srcu) in interrupt context, while a worker thread does the same inside kvm_set_irq(). If the interrupt happens while the worker thread is executing __srcu_read_lock(), updates to the Classic SRCU ->lock_count[] field or the Tree SRCU ->srcu_lock_count[] field can be lost. The docs say you are not supposed to call srcu_read_lock() and srcu_read_unlock() from irq context, but KVM interrupt injection happens from (host) interrupt context and it would be nice if SRCU supported the use case. KVM is using SRCU here not really for the "sleepable" part, but rather due to its IPI-free fast detection of grace periods. It is therefore not desirable to switch back to RCU, which would effectively revert commit 719d93cd ("kvm/irqchip: Speed up KVM_SET_GSI_ROUTING", 2014-01-16). However, the docs are overly conservative. You can have an SRCU instance only has users in irq context, and you can mix process and irq context as long as process context users disable interrupts. In addition, __srcu_read_unlock() actually uses this_cpu_dec() on both Tree SRCU and Classic SRCU. For those two implementations, only srcu_read_lock() is unsafe. When Classic SRCU's __srcu_read_unlock() was changed to use this_cpu_dec(), in commit 5a41344a ("srcu: Simplify __srcu_read_unlock() via this_cpu_dec()", 2012-11-29), __srcu_read_lock() did two increments. Therefore it kept __this_cpu_inc(), with preempt_disable/enable in the caller. Tree SRCU however only does one increment, so on most architectures it is more efficient for __srcu_read_lock() to use this_cpu_inc(), and any performance differences appear to be down in the noise. Unlike Classic and Tree SRCU, Tiny SRCU does increments and decrements on a single variable. Therefore, as Peter Zijlstra pointed out, Tiny SRCU's implementation already supports mixed-context use of srcu_read_lock() and srcu_read_unlock(), at least as long as uses of srcu_read_lock() and srcu_read_unlock() in each handler are nested and paired properly. In other words, it is still illegal to (say) invoke srcu_read_lock() in an interrupt handler and to invoke the matching srcu_read_unlock() in a softirq handler. Therefore, the only change required for Tiny SRCU is to its comments. Fixes: 719d93cd ("kvm/irqchip: Speed up KVM_SET_GSI_ROUTING") Reported-by: NLinu Cherian <linuc.decode@gmail.com> Suggested-by: NLinu Cherian <linuc.decode@gmail.com> Cc: kvm@vger.kernel.org Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Tested-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Petr Mladek 提交于
This reverts commit cf39bf58. The commit regression to users that define both console=ttyS1 and console=ttyS0 on the command line, see https://lkml.kernel.org/r/20170509082915.GA13236@bistromath.localdomain The kernel log messages always appeared only on one serial port. It is even documented in Documentation/admin-guide/serial-console.rst: "Note that you can only define one console per device type (serial, video)." The above mentioned commit changed the order in which the command line parameters are searched. As a result, the kernel log messages go to the last mentioned ttyS* instead of the first one. We long thought that using two console=ttyS* on the command line did not make sense. But then we realized that console= parameters were handled also by systemd, see http://0pointer.de/blog/projects/serial-console.html "By default systemd will instantiate one serial-getty@.service on the main kernel console, if it is not a virtual terminal." where "[4] If multiple kernel consoles are used simultaneously, the main console is the one listed first in /sys/class/tty/console/active, which is the last one listed on the kernel command line." This puts the original report into another light. The system is running in qemu. The first serial port is used to store the messages into a file. The second one is used to login to the system via a socket. It depends on systemd and the historic kernel behavior. By other words, systemd causes that it makes sense to define both console=ttyS1 console=ttyS0 on the command line. The kernel fix caused regression related to userspace (systemd) and need to be reverted. In addition, it went out that the fix helped only partially. The messages still were duplicated when the boot console was removed early by late_initcall(printk_late_init). Then the entire log was replayed when the same console was registered as a normal one. Link: 20170606160339.GC7604@pathway.suse.cz Cc: Aleksey Makarov <aleksey.makarov@linaro.org> Cc: Sabrina Dubroca <sd@queasysnail.net> Cc: Sudeep Holla <sudeep.holla@arm.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Peter Hurley <peter@hurleysoftware.com> Cc: Jiri Slaby <jslaby@suse.com> Cc: Robin Murphy <robin.murphy@arm.com>, Cc: Steven Rostedt <rostedt@goodmis.org> Cc: "Nair, Jayachandran" <Jayachandran.Nair@cavium.com> Cc: linux-serial@vger.kernel.org Cc: linux-kernel@vger.kernel.org Reported-by: NSabrina Dubroca <sd@queasysnail.net> Acked-by: NSergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: NPetr Mladek <pmladek@suse.com>
-
由 Jin Yao 提交于
When doing sampling, for example: perf record -e cycles:u ... On workloads that do a lot of kernel entry/exits we see kernel samples, even though :u is specified. This is due to skid existing. This might be a security issue because it can leak kernel addresses even though kernel sampling support is disabled. The patch drops the kernel samples if exclude_kernel is specified. For example, test on Haswell desktop: perf record -e cycles:u <mgen> perf report --stdio Before patch applied: 99.77% mgen mgen [.] buf_read 0.20% mgen mgen [.] rand_buf_init 0.01% mgen [kernel.vmlinux] [k] apic_timer_interrupt 0.00% mgen mgen [.] last_free_elem 0.00% mgen libc-2.23.so [.] __random_r 0.00% mgen libc-2.23.so [.] _int_malloc 0.00% mgen mgen [.] rand_array_init 0.00% mgen [kernel.vmlinux] [k] page_fault 0.00% mgen libc-2.23.so [.] __random 0.00% mgen libc-2.23.so [.] __strcasestr 0.00% mgen ld-2.23.so [.] strcmp 0.00% mgen ld-2.23.so [.] _dl_start 0.00% mgen libc-2.23.so [.] sched_setaffinity@@GLIBC_2.3.4 0.00% mgen ld-2.23.so [.] _start We can see kernel symbols apic_timer_interrupt and page_fault. After patch applied: 99.79% mgen mgen [.] buf_read 0.19% mgen mgen [.] rand_buf_init 0.00% mgen libc-2.23.so [.] __random_r 0.00% mgen mgen [.] rand_array_init 0.00% mgen mgen [.] last_free_elem 0.00% mgen libc-2.23.so [.] vfprintf 0.00% mgen libc-2.23.so [.] rand 0.00% mgen libc-2.23.so [.] __random 0.00% mgen libc-2.23.so [.] _int_malloc 0.00% mgen libc-2.23.so [.] _IO_doallocbuf 0.00% mgen ld-2.23.so [.] do_lookup_x 0.00% mgen ld-2.23.so [.] open_verify.constprop.7 0.00% mgen ld-2.23.so [.] _dl_important_hwcaps 0.00% mgen libc-2.23.so [.] sched_setaffinity@@GLIBC_2.3.4 0.00% mgen ld-2.23.so [.] _start There are only userspace symbols. Signed-off-by: NJin Yao <yao.jin@linux.intel.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: <stable@vger.kernel.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: acme@kernel.org Cc: jolsa@kernel.org Cc: kan.liang@intel.com Cc: mark.rutland@arm.com Cc: will.deacon@arm.com Cc: yao.jin@intel.com Link: http://lkml.kernel.org/r/1495706947-3744-1-git-send-email-yao.jin@linux.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 07 6月, 2017 1 次提交
-
-
由 Rafael J. Wysocki 提交于
Revert commit eed4d47e (ACPI / sleep: Ignore spurious SCI wakeups from suspend-to-idle) as it turned out to be premature and triggered a number of different issues on various systems. That includes, but is not limited to, premature suspend-to-RAM aborts on Dell XPS 13 (9343) reported by Dominik. The issue the commit in question attempted to address is real and will need to be taken care of going forward, but evidently more work is needed for this purpose. Reported-by: NDominik Brodowski <linux@dominikbrodowski.net> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 04 6月, 2017 2 次提交
-
-
由 Thomas Gleixner 提交于
The alarmtimer code has another source of potentially rearming itself too fast. Interval timers with a very samll interval have a similar CPU hog effect as the previously fixed overflow issue. The reason is that alarmtimers do not implement the normal protection against this kind of problem which the other posix timer use: timer expires -> queue signal -> deliver signal -> rearm timer This scheme brings the rearming under scheduler control and prevents permanently firing timers which hog the CPU. Bringing this scheme to the alarm timer code is a major overhaul because it lacks all the necessary mechanisms completely. So for a quick fix limit the interval to one jiffie. This is not problematic in practice as alarmtimers are usually backed by an RTC for suspend which have 1 second resolution. It could be therefor argued that the resolution of this clock should be set to 1 second in general, but that's outside the scope of this fix. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Kostya Serebryany <kcc@google.com> Cc: syzkaller <syzkaller@googlegroups.com> Cc: John Stultz <john.stultz@linaro.org> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: stable@vger.kernel.org Link: http://lkml.kernel.org/r/20170530211655.896767100@linutronix.de
-
由 Thomas Gleixner 提交于
Andrey reported a alartimer related RCU stall while fuzzing the kernel with syzkaller. The reason for this is an overflow in ktime_add() which brings the resulting time into negative space and causes immediate expiry of the timer. The following rearm with a small interval does not bring the timer back into positive space due to the same issue. This results in a permanent firing alarmtimer which hogs the CPU. Use ktime_add_safe() instead which detects the overflow and clamps the result to KTIME_SEC_MAX. Reported-by: NAndrey Konovalov <andreyknvl@google.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Kostya Serebryany <kcc@google.com> Cc: syzkaller <syzkaller@googlegroups.com> Cc: John Stultz <john.stultz@linaro.org> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: stable@vger.kernel.org Link: http://lkml.kernel.org/r/20170530211655.802921648@linutronix.de
-
- 03 6月, 2017 1 次提交
-
-
If a custom CPU target is specified and that one is not available _or_ can't be interrupted then the code returns to userland without dropping a lock as notices by lockdep: |echo 133 > /sys/devices/system/cpu/cpu7/hotplug/target | ================================================ | [ BUG: lock held when returning to user space! ] | ------------------------------------------------ | bash/503 is leaving the kernel with locks still held! | 1 lock held by bash/503: | #0: (device_hotplug_lock){+.+...}, at: [<ffffffff815b5650>] lock_device_hotplug_sysfs+0x10/0x40 So release the lock then. Fixes: 757c989b ("cpu/hotplug: Make target state writeable") Signed-off-by: NSebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org Link: http://lkml.kernel.org/r/20170602142714.3ogo25f2wbq6fjpj@linutronix.de
-
- 27 5月, 2017 3 次提交
-
-
由 Masami Hiramatsu 提交于
Fix kprobes to set(recover) RWX bits correctly on trampoline buffer before releasing it. Releasing readonly page to module_memfree() crash the kernel. Without this fix, if kprobes user register a bunch of kprobes in function body (since kprobes on function entry usually use ftrace) and unregister it, kernel hits a BUG and crash. Link: http://lkml.kernel.org/r/149570868652.3518.14120169373590420503.stgit@devboxSigned-off-by: NMasami Hiramatsu <mhiramat@kernel.org> Fixes: d0381c81 ("kprobes/x86: Set kprobes pages read-only") Signed-off-by: NSteven Rostedt (VMware) <rostedt@goodmis.org>
-
由 Luis Henriques 提交于
ftrace_hash is being kfree'ed in ftrace_graph_release(), however the ->buckets field is not. This results in a memory leak that is easily captured by kmemleak: unreferenced object 0xffff880038afe000 (size 8192): comm "trace-cmd", pid 238, jiffies 4294916898 (age 9.736s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<ffffffff815f561e>] kmemleak_alloc+0x4e/0xb0 [<ffffffff8113964d>] __kmalloc+0x12d/0x1a0 [<ffffffff810bf6d1>] alloc_ftrace_hash+0x51/0x80 [<ffffffff810c0523>] __ftrace_graph_open.isra.39.constprop.46+0xa3/0x100 [<ffffffff810c05e8>] ftrace_graph_open+0x68/0xa0 [<ffffffff8114003d>] do_dentry_open.isra.1+0x1bd/0x2d0 [<ffffffff81140df7>] vfs_open+0x47/0x60 [<ffffffff81150f95>] path_openat+0x2a5/0x1020 [<ffffffff81152d6a>] do_filp_open+0x8a/0xf0 [<ffffffff811411df>] do_sys_open+0x12f/0x200 [<ffffffff811412ce>] SyS_open+0x1e/0x20 [<ffffffff815fa6e0>] entry_SYSCALL_64_fastpath+0x13/0x94 [<ffffffffffffffff>] 0xffffffffffffffff Link: http://lkml.kernel.org/r/20170525152038.7661-1-lhenriques@suse.com Cc: stable@vger.kernel.org Fixes: b9b0c831 ("ftrace: Convert graph filter to use hash tables") Signed-off-by: NLuis Henriques <lhenriques@suse.com> Signed-off-by: NSteven Rostedt (VMware) <rostedt@goodmis.org>
-
由 Miroslav Benes 提交于
If TRIM_UNUSED_KSYMS is enabled, all unneeded exported symbols are made unexported. Two-pass build of the kernel is done to find out which symbols are needed based on a configuration. This effectively complicates things for out-of-tree modules. Livepatch exports functions to (un)register and enable/disable a live patch. The only in-tree module which uses these functions is a sample in samples/livepatch/. If the sample is disabled, the functions are trimmed and out-of-tree live patches cannot be built. Note that live patches are intended to be built out-of-tree. Suggested-by: NMichal Marek <mmarek@suse.com> Acked-by: NJosh Poimboeuf <jpoimboe@redhat.com> Acked-by: NJessica Yu <jeyu@redhat.com> Signed-off-by: NMiroslav Benes <mbenes@suse.cz> Signed-off-by: NJiri Kosina <jkosina@suse.cz>
-
- 26 5月, 2017 3 次提交
-
-
由 Daniel Borkmann 提交于
trie_alloc() always needs to have BPF_F_NO_PREALLOC passed in via attr->map_flags, since it does not support preallocation yet. We check the flag, but we never copy the flag into trie->map.map_flags, which is later on exposed into fdinfo and used by loaders such as iproute2. Latter uses this in bpf_map_selfcheck_pinned() to test whether a pinned map has the same spec as the one from the BPF obj file and if not, bails out, which is currently the case for lpm since it exposes always 0 as flags. Also copy over flags in array_map_alloc() and stack_map_alloc(). They always have to be 0 right now, but we should make sure to not miss to copy them over at a later point in time when we add actual flags for them to use. Fixes: b95a5c4d ("bpf: add a longest prefix match trie map implementation") Reported-by: NJarno Rajahalme <jarno@covalent.io> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Daniel Borkmann 提交于
Currently, after performing helper calls, we clear all caller saved registers, that is r0 - r5 and fill r0 depending on struct bpf_func_proto specification. The way we reset these regs can affect pruning decisions in later paths, since we only reset register's imm to 0 and type to NOT_INIT. However, we leave out clearing of other variables such as id, min_value, max_value, etc, which can later on lead to pruning mismatches due to stale data. Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Daniel Borkmann 提交于
Currently, when we enforce alignment tracking on direct packet access, the verifier lets the following program pass despite doing a packet write with unaligned access: 0: (61) r2 = *(u32 *)(r1 +76) 1: (61) r3 = *(u32 *)(r1 +80) 2: (61) r7 = *(u32 *)(r1 +8) 3: (bf) r0 = r2 4: (07) r0 += 14 5: (25) if r7 > 0x1 goto pc+4 R0=pkt(id=0,off=14,r=0) R1=ctx R2=pkt(id=0,off=0,r=0) R3=pkt_end R7=inv,min_value=0,max_value=1 R10=fp 6: (2d) if r0 > r3 goto pc+1 R0=pkt(id=0,off=14,r=14) R1=ctx R2=pkt(id=0,off=0,r=14) R3=pkt_end R7=inv,min_value=0,max_value=1 R10=fp 7: (63) *(u32 *)(r0 -4) = r0 8: (b7) r0 = 0 9: (95) exit from 6 to 8: R0=pkt(id=0,off=14,r=0) R1=ctx R2=pkt(id=0,off=0,r=0) R3=pkt_end R7=inv,min_value=0,max_value=1 R10=fp 8: (b7) r0 = 0 9: (95) exit from 5 to 10: R0=pkt(id=0,off=14,r=0) R1=ctx R2=pkt(id=0,off=0,r=0) R3=pkt_end R7=inv,min_value=2 R10=fp 10: (07) r0 += 1 11: (05) goto pc-6 6: safe <----- here, wrongly found safe processed 15 insns However, if we enforce a pruning mismatch by adding state into r8 which is then being mismatched in states_equal(), we find that for the otherwise same program, the verifier detects a misaligned packet access when actually walking that path: 0: (61) r2 = *(u32 *)(r1 +76) 1: (61) r3 = *(u32 *)(r1 +80) 2: (61) r7 = *(u32 *)(r1 +8) 3: (b7) r8 = 1 4: (bf) r0 = r2 5: (07) r0 += 14 6: (25) if r7 > 0x1 goto pc+4 R0=pkt(id=0,off=14,r=0) R1=ctx R2=pkt(id=0,off=0,r=0) R3=pkt_end R7=inv,min_value=0,max_value=1 R8=imm1,min_value=1,max_value=1,min_align=1 R10=fp 7: (2d) if r0 > r3 goto pc+1 R0=pkt(id=0,off=14,r=14) R1=ctx R2=pkt(id=0,off=0,r=14) R3=pkt_end R7=inv,min_value=0,max_value=1 R8=imm1,min_value=1,max_value=1,min_align=1 R10=fp 8: (63) *(u32 *)(r0 -4) = r0 9: (b7) r0 = 0 10: (95) exit from 7 to 9: R0=pkt(id=0,off=14,r=0) R1=ctx R2=pkt(id=0,off=0,r=0) R3=pkt_end R7=inv,min_value=0,max_value=1 R8=imm1,min_value=1,max_value=1,min_align=1 R10=fp 9: (b7) r0 = 0 10: (95) exit from 6 to 11: R0=pkt(id=0,off=14,r=0) R1=ctx R2=pkt(id=0,off=0,r=0) R3=pkt_end R7=inv,min_value=2 R8=imm1,min_value=1,max_value=1,min_align=1 R10=fp 11: (07) r0 += 1 12: (b7) r8 = 0 13: (05) goto pc-7 <----- mismatch due to r8 7: (2d) if r0 > r3 goto pc+1 R0=pkt(id=0,off=15,r=15) R1=ctx R2=pkt(id=0,off=0,r=15) R3=pkt_end R7=inv,min_value=2 R8=imm0,min_value=0,max_value=0,min_align=2147483648 R10=fp 8: (63) *(u32 *)(r0 -4) = r0 misaligned packet access off 2+15+-4 size 4 The reason why we fail to see it in states_equal() is that the third test in compare_ptrs_to_packet() ... if (old->off <= cur->off && old->off >= old->range && cur->off >= cur->range) return true; ... will let the above pass. The situation we run into is that old->off <= cur->off (14 <= 15), meaning that prior walked paths went with smaller offset, which was later used in the packet access after successful packet range check and found to be safe already. For example: Given is R0=pkt(id=0,off=0,r=0). Adding offset 14 as in above program to it, results in R0=pkt(id=0,off=14,r=0) before the packet range test. Now, testing this against R3=pkt_end with 'if r0 > r3 goto out' will transform R0 into R0=pkt(id=0,off=14,r=14) for the case when we're within bounds. A write into the packet at offset *(u32 *)(r0 -4), that is, 2 + 14 -4, is valid and aligned (2 is for NET_IP_ALIGN). After processing this with all fall-through paths, we later on check paths from branches. When the above skb->mark test is true, then we jump near the end of the program, perform r0 += 1, and jump back to the 'if r0 > r3 goto out' test we've visited earlier already. This time, R0 is of type R0=pkt(id=0,off=15,r=0), and we'll prune that part because this time we'll have a larger safe packet range, and we already found that with off=14 all further insn were already safe, so it's safe as well with a larger off. However, the problem is that the subsequent write into the packet with 2 + 15 -4 is then unaligned, and not caught by the alignment tracking. Note that min_align, aux_off, and aux_off_align were all 0 in this example. Since we cannot tell at this time what kind of packet access was performed in the prior walk and what minimal requirements it has (we might do so in the future, but that requires more complexity), fix it to disable this pruning case for strict alignment for now, and let the verifier do check such paths instead. With that applied, the test cases pass and reject the program due to misalignment. Fixes: d1174416 ("bpf: Track alignment of register values in the verifier.") Reference: http://patchwork.ozlabs.org/patch/761909/Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 25 5月, 2017 1 次提交
-
-
由 Tejun Heo 提交于
In most cases, a cgroup controller don't care about the liftimes of cgroups. For the controller, a css becomes online when ->css_online() is called on it and offline when ->css_offline() is called. However, cpuset is special in that the user interface it exposes cares whether certain cgroups exist or not. Combined with the RCU delay between cgroup removal and css offlining, this can lead to user visible behavior oddities where operations which should succeed after cgroup removals fail for some time period. The effects of cgroup removals are delayed when seen from userland. This patch adds css_is_dying() which tests whether offline is pending and updates is_cpuset_online() so that the function returns false also while offline is pending. This gets rid of the userland visible delays. Signed-off-by: NTejun Heo <tj@kernel.org> Reported-by: NDaniel Jordan <daniel.m.jordan@oracle.com> Link: http://lkml.kernel.org/r/327ca1f5-7957-fbb9-9e5f-9ba149d40ba2@oracle.com Cc: stable@vger.kernel.org Signed-off-by: NTejun Heo <tj@kernel.org>
-
- 24 5月, 2017 1 次提交
-
-
由 Thomas Gleixner 提交于
A recent commit added extra printks for CPU/RT limits. This can result in excessive spam in dmesg. Make the printks conditional on print_fatal_signals. Fixes: e7ea7c98 ("rlimits: Print more information when CPU/RT limits are exceeded") Reported-by: NDave Jones <davej@codemonkey.org.uk> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: Arun Raghavan <arun@arunraghavan.net>
-
- 23 5月, 2017 4 次提交
-
-
由 Eric W. Biederman 提交于
When I introduced ptracer_cred I failed to consider the weirdness of fork where the task_struct copies the old value by default. This winds up leaving ptracer_cred set even when a process forks and the child process does not wind up being ptraced. Because ptracer_cred is not set on non-ptraced processes whose parents were ptraced this has broken the ability of the enlightenment window manager to start setuid children. Fix this by properly initializing ptracer_cred in ptrace_init_task This must be done with a little bit of care to preserve the current value of ptracer_cred when ptrace carries through fork. Re-reading the ptracer_cred from the ptracing process at this point is inconsistent with how PT_PTRACE_CAP has been maintained all of these years. Tested-by: NTakashi Iwai <tiwai@suse.de> Fixes: 64b875f7 ("ptrace: Capture the ptracer's creds not PT_PTRACE_CAP") Signed-off-by: N"Eric W. Biederman" <ebiederm@xmission.com>
-
由 Vegard Nossum 提交于
If a kthread forks (e.g. usermodehelper since commit 1da5c46f) but fails in copy_process() between calling dup_task_struct() and setting p->set_child_tid, then the value of p->set_child_tid will be inherited from the parent and get prematurely freed by free_kthread_struct(). kthread() - worker_thread() - process_one_work() | - call_usermodehelper_exec_work() | - kernel_thread() | - _do_fork() | - copy_process() | - dup_task_struct() | - arch_dup_task_struct() | - tsk->set_child_tid = current->set_child_tid // implied | - ... | - goto bad_fork_* | - ... | - free_task(tsk) | - free_kthread_struct(tsk) | - kfree(tsk->set_child_tid) - ... - schedule() - __schedule() - wq_worker_sleeping() - kthread_data(task)->flags // UAF The problem started showing up with commit 1da5c46f since it reused ->set_child_tid for the kthread worker data. A better long-term solution might be to get rid of the ->set_child_tid abuse. The comment in set_kthread_struct() also looks slightly wrong. Debugged-by: NJamie Iles <jamie.iles@oracle.com> Fixes: 1da5c46f ("kthread: Make struct kthread kmalloc'ed") Signed-off-by: NVegard Nossum <vegard.nossum@oracle.com> Acked-by: NOleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Jamie Iles <jamie.iles@oracle.com> Cc: stable@vger.kernel.org Link: http://lkml.kernel.org/r/20170509073959.17858-1-vegard.nossum@oracle.comSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
由 Peter Zijlstra 提交于
Markus reported that the glibc/nptl/tst-robustpi8 test was failing after commit: cfafcd11 ("futex: Rework futex_lock_pi() to use rt_mutex_*_proxy_lock()") The following trace shows the problem: ld-linux-x86-64-2161 [019] .... 410.760971: SyS_futex: 00007ffbeb76b028: 80000875 op=FUTEX_LOCK_PI ld-linux-x86-64-2161 [019] ...1 410.760972: lock_pi_update_atomic: 00007ffbeb76b028: curval=80000875 uval=80000875 newval=80000875 ret=0 ld-linux-x86-64-2165 [011] .... 410.760978: SyS_futex: 00007ffbeb76b028: 80000875 op=FUTEX_UNLOCK_PI ld-linux-x86-64-2165 [011] d..1 410.760979: do_futex: 00007ffbeb76b028: curval=80000875 uval=80000875 newval=80000871 ret=0 ld-linux-x86-64-2165 [011] .... 410.760980: SyS_futex: 00007ffbeb76b028: 80000871 ret=0000 ld-linux-x86-64-2161 [019] .... 410.760980: SyS_futex: 00007ffbeb76b028: 80000871 ret=ETIMEDOUT Task 2165 does an UNLOCK_PI, assigning the lock to the waiter task 2161 which then returns with -ETIMEDOUT. That wrecks the lock state, because now the owner isn't aware it acquired the lock and removes the pending robust list entry. If 2161 is killed, the robust list will not clear out this futex and the subsequent acquire on this futex will then (correctly) result in -ESRCH which is unexpected by glibc, triggers an internal assertion and dies. Task 2161 Task 2165 rt_mutex_wait_proxy_lock() timeout(); /* T2161 is still queued in the waiter list */ return -ETIMEDOUT; futex_unlock_pi() spin_lock(hb->lock); rtmutex_unlock() remove_rtmutex_waiter(T2161); mark_lock_available(); /* Make the next waiter owner of the user space side */ futex_uval = 2161; spin_unlock(hb->lock); spin_lock(hb->lock); rt_mutex_cleanup_proxy_lock() if (rtmutex_owner() !== current) ... return FAIL; .... return -ETIMEOUT; This means that rt_mutex_cleanup_proxy_lock() needs to call try_to_take_rt_mutex() so it can take over the rtmutex correctly which was assigned by the waker. If the rtmutex is owned by some other task then this call is harmless and just confirmes that the waiter is not able to acquire it. While there, fix what looks like a merge error which resulted in rt_mutex_cleanup_proxy_lock() having two calls to fixup_rt_mutex_waiters() and rt_mutex_wait_proxy_lock() not having any. Both should have one, since both potentially touch the waiter list. Fixes: 38d589f2 ("futex,rt_mutex: Restructure rt_mutex_finish_proxy_lock()") Reported-by: NMarkus Trippelsdorf <markus@trippelsdorf.de> Bug-Spotted-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Florian Weimer <fweimer@redhat.com> Cc: Darren Hart <dvhart@infradead.org> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Markus Trippelsdorf <markus@trippelsdorf.de> Link: http://lkml.kernel.org/r/20170519154850.mlomgdsd26drq5j6@hirez.programming.kicks-ass.netSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
由 David S. Miller 提交于
The assignmnet: ip_align = strict ? 2 : NET_IP_ALIGN; in compare_pkt_ptr_alignment() trips up Coverity because we can only get to this code when strict is true, therefore ip_align will always be 2 regardless of NET_IP_ALIGN's value. So just assign directly to '2' and explain the situation in the comment above. Reported-by: N"Gustavo A. R. Silva" <garsilva@embeddedor.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 19 5月, 2017 2 次提交
-
-
由 Shaohua Li 提交于
sscanf is a very poor way to parse integer. For example, I input "discard" for act_mask, it gets 0xd and completely messes up. Using correct API to do integer parse. This patch also makes attributes accept any base of integer. Signed-off-by: NShaohua Li <shli@fb.com> Signed-off-by: NJens Axboe <axboe@fb.com>
-
由 Steven Rostedt (VMware) 提交于
As stack tracing now requires "rcu watching", force RCU to be watching when recording a stack trace. Link: http://lkml.kernel.org/r/20170512172449.879684501@goodmis.orgAcked-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: NSteven Rostedt (VMware) <rostedt@goodmis.org>
-
- 18 5月, 2017 8 次提交
-
-
由 Daniel Borkmann 提交于
Current limits with regards to processing program paths do not really reflect today's needs anymore due to programs becoming more complex and verifier smarter, keeping track of more data such as const ALU operations, alignment tracking, spilling of PTR_TO_MAP_VALUE_ADJ registers, and other features allowing for smarter matching of what LLVM generates. This also comes with the side-effect that we result in fewer opportunities to prune search states and thus often need to do more work to prove safety than in the past due to different register states and stack layout where we mismatch. Generally, it's quite hard to determine what caused a sudden increase in complexity, it could be caused by something as trivial as a single branch somewhere at the beginning of the program where LLVM assigned a stack slot that is marked differently throughout other branches and thus causing a mismatch, where verifier then needs to prove safety for the whole rest of the program. Subsequently, programs with even less than half the insn size limit can get rejected. We noticed that while some programs load fine under pre 4.11, they get rejected due to hitting limits on more recent kernels. We saw that in the vast majority of cases (90+%) pruning failed due to register mismatches. In case of stack mismatches, majority of cases failed due to different stack slot types (invalid, spill, misc) rather than differences in spilled registers. This patch makes pruning more aggressive by also adding markers that sit at conditional jumps as well. Currently, we only mark jump targets for pruning. For example in direct packet access, these are usually error paths where we bail out. We found that adding these markers, it can reduce number of processed insns by up to 30%. Another option is to ignore reg->id in probing PTR_TO_MAP_VALUE_OR_NULL registers, which can help pruning slightly as well by up to 7% observed complexity reduction as stand-alone. Meaning, if a previous path with register type PTR_TO_MAP_VALUE_OR_NULL for map X was found to be safe, then in the current state a PTR_TO_MAP_VALUE_OR_NULL register for the same map X must be safe as well. Last but not least the patch also adds a scheduling point and bumps the current limit for instructions to be processed to a more adequate value. Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Steven Rostedt (VMware) 提交于
Thomas discovered a bug where the kprobe trace tests had a race condition where the kprobe_optimizer called from a delayed work queue that does the optimizing and "unoptimizing" of a kprobe, can try to modify the text after it has been freed by the init code. The kprobe trace selftest is a special case, and Thomas and myself investigated to see if there's a chance that this could also be a bug with module unloading, as the code is not obvious to how it handles this. After adding lots of printks, I figured it out. Thomas suggested that this should be commented so that others will not have to go through this exercise again. Link: http://lkml.kernel.org/r/20170516145835.3827d3aa@gandalf.local.homeAcked-by: NMasami Hiramatsu <mhiramat@kernel.org> Suggested-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NSteven Rostedt (VMware) <rostedt@goodmis.org>
-
由 Steven Rostedt (VMware) 提交于
No need to add ugly #ifdefs in the code. Having a standard stub file is much prettier. Signed-off-by: NSteven Rostedt (VMware) <rostedt@goodmis.org>
-
由 Naveen N. Rao 提交于
If instance directories are deleted while there are registered function triggers: # cd /sys/kernel/debug/tracing/instances # mkdir test # echo "schedule:enable_event:sched:sched_switch" > test/set_ftrace_filter # rmdir test Unable to handle kernel paging request for data at address 0x00000008 Unable to handle kernel paging request for data at address 0x00000008 Faulting instruction address: 0xc0000000021edde8 Oops: Kernel access of bad area, sig: 11 [#1] SMP NR_CPUS=2048 NUMA pSeries Modules linked in: iptable_mangle ipt_MASQUERADE nf_nat_masquerade_ipv4 iptable_nat nf_nat_ipv4 nf_nat nf_conntrack_ipv4 nf_defrag_ipv4 xt_conntrack nf_conntrack ipt_REJECT nf_reject_ipv4 xt_tcpudp tun bridge stp llc kvm iptable_filter fuse binfmt_misc pseries_rng rng_core vmx_crypto ib_iser rdma_cm iw_cm ib_cm ib_core libiscsi scsi_transport_iscsi ip_tables x_tables autofs4 btrfs raid10 raid456 async_raid6_recov async_memcpy async_pq async_xor async_tx xor raid6_pq libcrc32c multipath virtio_net virtio_blk virtio_pci crc32c_vpmsum virtio_ring virtio CPU: 8 PID: 8694 Comm: rmdir Not tainted 4.11.0-nnr+ #113 task: c0000000bab52800 task.stack: c0000000baba0000 NIP: c0000000021edde8 LR: c0000000021f0590 CTR: c000000002119620 REGS: c0000000baba3870 TRAP: 0300 Not tainted (4.11.0-nnr+) MSR: 8000000000009033 <SF,EE,ME,IR,DR,RI,LE> CR: 22002422 XER: 20000000 CFAR: 00007fffabb725a8 DAR: 0000000000000008 DSISR: 40000000 SOFTE: 0 GPR00: c00000000220f750 c0000000baba3af0 c000000003157e00 0000000000000000 GPR04: 0000000000000040 00000000000000eb 0000000000000040 0000000000000000 GPR08: 0000000000000000 0000000000000113 0000000000000000 c00000000305db98 GPR12: c000000002119620 c00000000fd42c00 0000000000000000 0000000000000000 GPR16: 0000000000000000 0000000000000000 0000000000000000 0000000000000000 GPR20: 0000000000000000 0000000000000000 c0000000bab52e90 0000000000000000 GPR24: 0000000000000000 00000000000000eb 0000000000000040 c0000000baba3bb0 GPR28: c00000009cb06eb0 c0000000bab52800 c00000009cb06eb0 c0000000baba3bb0 NIP [c0000000021edde8] ring_buffer_lock_reserve+0x8/0x4e0 LR [c0000000021f0590] trace_event_buffer_lock_reserve+0xe0/0x1a0 Call Trace: [c0000000baba3af0] [c0000000021f96c8] trace_event_buffer_commit+0x1b8/0x280 (unreliable) [c0000000baba3b60] [c00000000220f750] trace_event_buffer_reserve+0x80/0xd0 [c0000000baba3b90] [c0000000021196b8] trace_event_raw_event_sched_switch+0x98/0x180 [c0000000baba3c10] [c0000000029d9980] __schedule+0x6e0/0xab0 [c0000000baba3ce0] [c000000002122230] do_task_dead+0x70/0xc0 [c0000000baba3d10] [c0000000020ea9c8] do_exit+0x828/0xd00 [c0000000baba3dd0] [c0000000020eaf70] do_group_exit+0x60/0x100 [c0000000baba3e10] [c0000000020eb034] SyS_exit_group+0x24/0x30 [c0000000baba3e30] [c00000000200bcec] system_call+0x38/0x54 Instruction dump: 60000000 60420000 7d244b78 7f63db78 4bffaa09 393efff8 793e0020 39200000 4bfffecc 60420000 3c4c00f7 3842a020 <81230008> 2f890000 409e02f0 a14d0008 ---[ end trace b917b8985d0e650b ]--- Unable to handle kernel paging request for data at address 0x00000008 Faulting instruction address: 0xc0000000021edde8 Unable to handle kernel paging request for data at address 0x00000008 Faulting instruction address: 0xc0000000021edde8 Faulting instruction address: 0xc0000000021edde8 To address this, let's clear all registered function probes before deleting the ftrace instance. Link: http://lkml.kernel.org/r/c5f1ca624043690bd94642bb6bffd3f2fc504035.1494956770.git.naveen.n.rao@linux.vnet.ibm.comReported-by: NMichael Ellerman <mpe@ellerman.id.au> Signed-off-by: NNaveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> Signed-off-by: NSteven Rostedt (VMware) <rostedt@goodmis.org>
-
由 Naveen N. Rao 提交于
Handle a NULL glob properly and simplify the check. Link: http://lkml.kernel.org/r/5df74d4ffb4721db6d5a22fa08ca031d62ead493.1494956770.git.naveen.n.rao@linux.vnet.ibm.comReviewed-by: NMasami Hiramatsu <mhiramat@kernel.org> Signed-off-by: NNaveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> Signed-off-by: NSteven Rostedt (VMware) <rostedt@goodmis.org>
-
由 Thomas Gleixner 提交于
Enabling the tracer selftest triggers occasionally the warning in text_poke(), which warns when the to be modified page is not marked reserved. The reason is that the tracer selftest installs kprobes on functions marked __init for testing. These probes are removed after the tests, but that removal schedules the delayed kprobes_optimizer work, which will do the actual text poke. If the work is executed after the init text is freed, then the warning triggers. The bug can be reproduced reliably when the work delay is increased. Flush the optimizer work and wait for the optimizing/unoptimizing lists to become empty before returning from the kprobes tracer selftest. That ensures that all operations which were queued due to the probes removal have completed. Link: http://lkml.kernel.org/r/20170516094802.76a468bb@gandalf.local.homeSigned-off-by: NThomas Gleixner <tglx@linutronix.de> Acked-by: NMasami Hiramatsu <mhiramat@kernel.org> Cc: stable@vger.kernel.org Fixes: 6274de49 ("kprobes: Support delayed unoptimizing") Signed-off-by: NSteven Rostedt (VMware) <rostedt@goodmis.org>
-
由 Steven Rostedt 提交于
I hit the following lockdep splat when booting with ftrace selftests enabled, as well as CONFIG_PREEMPT and LOCKDEP. Testing dynamic ftrace ops #1: (1 0 1 0 0) (1 1 2 0 0) (2 1 3 0 169) (2 2 4 0 50066) ------------[ cut here ]------------ WARNING: CPU: 0 PID: 13 at kernel/rcu/srcutree.c:202 check_init_srcu_struct+0x60/0x70 Modules linked in: CPU: 0 PID: 13 Comm: rcu_tasks_kthre Not tainted 4.12.0-rc1-test+ #587 Hardware name: Hewlett-Packard HP Compaq Pro 6300 SFF/339A, BIOS K01 v02.05 05/07/2012 task: ffff880119628040 task.stack: ffffc900006a4000 RIP: 0010:check_init_srcu_struct+0x60/0x70 RSP: 0000:ffffc900006a7d98 EFLAGS: 00010246 RAX: 0000000000000246 RBX: 0000000000000000 RCX: 0000000000000000 RDX: ffff880119628040 RSI: 00000000ffffffff RDI: ffffffff81e5fb40 RBP: ffffc900006a7e20 R08: 00000023b403c000 R09: 0000000000000001 R10: ffffc900006a7e40 R11: 0000000000000000 R12: ffffffff81e5fb40 R13: 0000000000000286 R14: ffff880119628040 R15: ffffc900006a7e98 FS: 0000000000000000(0000) GS:ffff88011ea00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffff88011edff000 CR3: 0000000001e0f000 CR4: 00000000001406f0 Call Trace: ? __synchronize_srcu+0x6e/0x140 ? lock_acquire+0xdc/0x1d0 ? ktime_get_mono_fast_ns+0x5d/0xb0 synchronize_srcu+0x6f/0x110 ? synchronize_srcu+0x6f/0x110 rcu_tasks_kthread+0x20a/0x540 kthread+0x114/0x150 ? __rcu_read_unlock+0x70/0x70 ? kthread_create_on_node+0x40/0x40 ret_from_fork+0x2e/0x40 Code: f6 83 70 06 00 00 03 49 89 c5 74 0d be 01 00 00 00 48 89 df e8 42 fa ff ff 4c 89 ee 4c 89 e7 e8 b7 42 75 00 5b 41 5c 41 5d 5d c3 <0f> ff eb aa 66 90 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 ---[ end trace 5c3f4206ce50f6ac ]--- What happens is that the selftests include a creating of a dynamically allocated ftrace_ops, which requires the use of synchronize_rcu_tasks() which uses srcu, and triggers the above warning. It appears that synchronize_rcu_tasks() is not set up at early_initcall(), but it is at core_initcall(). By moving the tests down to that location works out properly. Link: http://lkml.kernel.org/r/20170517111435.7388c033@gandalf.local.homeAcked-by: N"Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Signed-off-by: NSteven Rostedt (VMware) <rostedt@goodmis.org>
-
由 Waiman Long 提交于
The kill_css() function may be called more than once under the condition that the css was killed but not physically removed yet followed by the removal of the cgroup that is hosting the css. This patch prevents any harmm from being done when that happens. Signed-off-by: NWaiman Long <longman@redhat.com> Signed-off-by: NTejun Heo <tj@kernel.org> Cc: stable@vger.kernel.org # v4.5+
-
- 16 5月, 2017 1 次提交
-
-
由 Thomas Gleixner 提交于
irq_set_chained_handler_and_data() sets up the chained interrupt and then stores the handler data. That's racy against an immediate interrupt which gets handled before the store of the handler data happened. The handler will dereference a NULL pointer and crash. Cure it by storing handler data before installing the chained handler. Reported-by: NBorislav Petkov <bp@alien8.de> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org
-
- 15 5月, 2017 1 次提交
-
-
由 Steven Rostedt (VMware) 提交于
I finally got around to creating trampolines for dynamically allocated ftrace_ops with using synchronize_rcu_tasks(). For users of the ftrace function hook callbacks, like perf, that allocate the ftrace_ops descriptor via kmalloc() and friends, ftrace was not able to optimize the functions being traced to use a trampoline because they would also need to be allocated dynamically. The problem is that they cannot be freed when CONFIG_PREEMPT is set, as there's no way to tell if a task was preempted on the trampoline. That was before Paul McKenney implemented synchronize_rcu_tasks() that would make sure all tasks (except idle) have scheduled out or have entered user space. While testing this, I triggered this bug: BUG: unable to handle kernel paging request at ffffffffa0230077 ... RIP: 0010:0xffffffffa0230077 ... Call Trace: schedule+0x5/0xe0 schedule_preempt_disabled+0x18/0x30 do_idle+0x172/0x220 What happened was that the idle task was preempted on the trampoline. As synchronize_rcu_tasks() ignores the idle thread, there's nothing that lets ftrace know that the idle task was preempted on a trampoline. The idle task shouldn't need to ever enable preemption. The idle task is simply a loop that calls schedule or places the cpu into idle mode. In fact, having preemption enabled is inefficient, because it can happen when idle is just about to call schedule anyway, which would cause schedule to be called twice. Once for when the interrupt came in and was returning back to normal context, and then again in the normal path that the idle loop is running in, which would be pointless, as it had already scheduled. The only reason schedule_preempt_disable() enables preemption is to be able to call sched_submit_work(), which requires preemption enabled. As this is a nop when the task is in the RUNNING state, and idle is always in the running state, there's no reason that idle needs to enable preemption. But that means it cannot use schedule_preempt_disable() as other callers of that function require calling sched_submit_work(). Adding a new function local to kernel/sched/ that allows idle to call the scheduler without enabling preemption, fixes the synchronize_rcu_tasks() issue, as well as removes the pointless spurious schedule calls caused by interrupts happening in the brief window where preemption is enabled just before it calls schedule. Reviewed: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: NSteven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Acked-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20170414084809.3dacde2a@gandalf.local.homeSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 14 5月, 2017 1 次提交
-
-
由 Pushkar Jambhlekar 提交于
Fixing sparse warnings: 'symbol not declared. Should it be static?' Signed-off-by: NPushkar Jambhlekar <pushkar.iit@gmail.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-