- 25 8月, 2019 1 次提交
-
-
由 Marc Zyngier 提交于
commit 5eeaf10eec394b28fad2c58f1f5c3a5da0e87d1c upstream. Since commit commit 328e5664 ("KVM: arm/arm64: vgic: Defer touching GICH_VMCR to vcpu_load/put"), we leave ICH_VMCR_EL2 (or its GICv2 equivalent) loaded as long as we can, only syncing it back when we're scheduled out. There is a small snag with that though: kvm_vgic_vcpu_pending_irq(), which is indirectly called from kvm_vcpu_check_block(), needs to evaluate the guest's view of ICC_PMR_EL1. At the point were we call kvm_vcpu_check_block(), the vcpu is still loaded, and whatever changes to PMR is not visible in memory until we do a vcpu_put(). Things go really south if the guest does the following: mov x0, #0 // or any small value masking interrupts msr ICC_PMR_EL1, x0 [vcpu preempted, then rescheduled, VMCR sampled] mov x0, #ff // allow all interrupts msr ICC_PMR_EL1, x0 wfi // traps to EL2, so samping of VMCR [interrupt arrives just after WFI] Here, the hypervisor's view of PMR is zero, while the guest has enabled its interrupts. kvm_vgic_vcpu_pending_irq() will then say that no interrupts are pending (despite an interrupt being received) and we'll block for no reason. If the guest doesn't have a periodic interrupt firing once it has blocked, it will stay there forever. To avoid this unfortuante situation, let's resync VMCR from kvm_arch_vcpu_blocking(), ensuring that a following kvm_vcpu_check_block() will observe the latest value of PMR. This has been found by booting an arm64 Linux guest with the pseudo NMI feature, and thus using interrupt priorities to mask interrupts instead of the usual PSTATE masking. Cc: stable@vger.kernel.org # 4.12 Fixes: 328e5664 ("KVM: arm/arm64: vgic: Defer touching GICH_VMCR to vcpu_load/put") Signed-off-by: NMarc Zyngier <maz@kernel.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 24 3月, 2019 1 次提交
-
-
由 Julien Thierry 提交于
[ Upstream commit fc3bc475231e12e9c0142f60100cf84d077c79e1 ] vgic_dist->lpi_list_lock must always be taken with interrupts disabled as it is used in interrupt context. For configurations such as PREEMPT_RT_FULL, this means that it should be a raw_spinlock since RT spinlocks are interruptible. Signed-off-by: NJulien Thierry <julien.thierry@arm.com> Acked-by: NChristoffer Dall <christoffer.dall@arm.com> Acked-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
- 12 8月, 2018 1 次提交
-
-
由 Marc Zyngier 提交于
Although vgic-v3 now supports Group0 interrupts, it still doesn't deal with Group0 SGIs. As usually with the GIC, nothing is simple: - ICC_SGI1R can signal SGIs of both groups, since GICD_CTLR.DS==1 with KVM (as per 8.1.10, Non-secure EL1 access) - ICC_SGI0R can only generate Group0 SGIs - ICC_ASGI1R sees its scope refocussed to generate only Group0 SGIs (as per the note at the bottom of Table 8-14) We only support Group1 SGIs so far, so no material change. Reviewed-by: NEric Auger <eric.auger@redhat.com> Reviewed-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 21 7月, 2018 3 次提交
-
-
由 Christoffer Dall 提交于
Simply letting IGROUPR be writable from userspace would break migration from old kernels to newer kernels, because old kernels incorrectly report interrupt groups as group 1. This would not be a big problem if userspace wrote GICD_IIDR as read from the kernel, because we could detect the incompatibility and return an error to userspace. Unfortunately, this is not the case with current userspace implementations and simply letting IGROUPR be writable from userspace for an emulated GICv2 silently breaks migration and causes the destination VM to no longer run after migration. We now encourage userspace to write the read and expected value of GICD_IIDR as the first part of a GIC register restore, and if we observe a write to GICD_IIDR we know that userspace has been updated and has had a chance to cope with older kernels (VGICv2 IIDR.Revision == 0) incorrectly reporting interrupts as group 1, and therefore we now allow groups to be user writable. Reviewed-by: NAndrew Jones <drjones@redhat.com> Signed-off-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Christoffer Dall 提交于
In preparation for proper group 0 and group 1 support in the vgic, we add a field in the struct irq to store the group of all interrupts. We initialize the group to group 0 when emulating GICv2 and to group 1 when emulating GICv3, just like we treat them today. LPIs are always group 1. We also continue to ignore writes from the guest, preserving existing functionality, for now. Finally, we also add this field to the vgic debug logic to show the group for all interrupts. Reviewed-by: NAndrew Jones <drjones@redhat.com> Signed-off-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Christoffer Dall 提交于
As we are about to tweak implementation aspects of the VGIC emulation, while still preserving some level of backwards compatibility support, add a field to keep track of the implementation revision field which is reported to the VM and to userspace. Reviewed-by: NAndrew Jones <drjones@redhat.com> Signed-off-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 25 5月, 2018 3 次提交
-
-
由 Eric Auger 提交于
Let's raise the number of supported vcpus along with vgic v3 now that HW is looming with more physical CPUs. Signed-off-by: NEric Auger <eric.auger@redhat.com> Acked-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Eric Auger 提交于
kvm_vgic_vcpu_early_init gets called after kvm_vgic_cpu_init which is confusing. The call path is as follows: kvm_vm_ioctl_create_vcpu |_ kvm_arch_cpu_create |_ kvm_vcpu_init |_ kvm_arch_vcpu_init |_ kvm_vgic_vcpu_init |_ kvm_arch_vcpu_postcreate |_ kvm_vgic_vcpu_early_init Static initialization currently done in kvm_vgic_vcpu_early_init() can be moved to kvm_vgic_vcpu_init(). So let's move the code and remove kvm_vgic_vcpu_early_init(). kvm_arch_vcpu_postcreate() does nothing. Signed-off-by: NEric Auger <eric.auger@redhat.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Eric Auger 提交于
At the moment KVM supports a single rdist region. We want to support several separate rdist regions so let's introduce a list of them. This patch currently only cares about a single entry in this list as the functionality to register several redist regions is not yet there. So this only translates the existing code into something functionally similar using that new data struct. The redistributor region handle is stored in the vgic_cpu structure to allow later computation of the TYPER last bit. Signed-off-by: NEric Auger <eric.auger@redhat.com> Reviewed-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 27 4月, 2018 1 次提交
-
-
由 Marc Zyngier 提交于
Now that we make sure we don't inject multiple instances of the same GICv2 SGI at the same time, we've made another bug more obvious: If we exit with an active SGI, we completely lose track of which vcpu it came from. On the next entry, we restore it with 0 as a source, and if that wasn't the right one, too bad. While this doesn't seem to trouble GIC-400, the architectural model gets offended and doesn't deactivate the interrupt on EOI. Another connected issue is that we will happilly make pending an interrupt from another vcpu, overriding the above zero with something that is just as inconsistent. Don't do that. The final issue is that we signal a maintenance interrupt when no pending interrupts are present in the LR. Assuming we've fixed the two issues above, we end-up in a situation where we keep exiting as soon as we've reached the active state, and not be able to inject the following pending. The fix comes in 3 parts: - GICv2 SGIs have their source vcpu saved if they are active on exit, and restored on entry - Multi-SGIs cannot go via the Pending+Active state, as this would corrupt the source field - Multi-SGIs are converted to using MI on EOI instead of NPIE Fixes: 16ca6a60 ("KVM: arm/arm64: vgic: Don't populate multiple LRs with the same vintid") Reported-by: NMark Rutland <mark.rutland@arm.com> Tested-by: NMark Rutland <mark.rutland@arm.com> Reviewed-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 19 3月, 2018 2 次提交
-
-
由 Marc Zyngier 提交于
As we're about to change the way we map devices at HYP, we need to move away from kern_hyp_va on an IO address. One way of achieving this is to store the VAs in kvm_vgic_global_state, and use that directly from the HYP code. This requires a small change to create_hyp_io_mappings so that it can also return a HYP VA. We take this opportunity to nuke the vctrl_base field in the emulated distributor, as it is not used anymore. Acked-by: NCatalin Marinas <catalin.marinas@arm.com> Reviewed-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Christoffer Dall 提交于
There is really no need to store the vgic_elrsr on the VGIC data structures as the only need we have for the elrsr is to figure out if an LR is inactive when we save the VGIC state upon returning from the guest. We can might as well store this in a temporary local variable. Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 15 3月, 2018 1 次提交
-
-
由 Christoffer Dall 提交于
We currently don't allow resetting mapped IRQs from userspace, because their state is controlled by the hardware. But we do need to reset the state when the VM is reset, so we provide a function for the 'owner' of the mapped interrupt to reset the interrupt state. Currently only the timer uses mapped interrupts, so we call this function from the timer reset logic. Cc: stable@vger.kernel.org Fixes: 4c60e360 ("KVM: arm/arm64: Provide a get_input_level for the arch timer") Signed-off-by: NChristoffer Dall <cdall@kernel.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 02 1月, 2018 1 次提交
-
-
由 Christoffer Dall 提交于
The GIC sometimes need to sample the physical line of a mapped interrupt. As we know this to be notoriously slow, provide a callback function for devices (such as the timer) which can do this much faster than talking to the distributor, for example by comparing a few in-memory values. Fall back to the good old method of poking the physical GIC if no callback is provided. Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Reviewed-by: NEric Auger <eric.auger@redhat.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
- 10 11月, 2017 4 次提交
-
-
由 Marc Zyngier 提交于
The doorbell interrupt is only useful if the vcpu is blocked on WFI. In all other cases, recieving a doorbell interrupt is just a waste of cycles. So let's only enable the doorbell if a vcpu is getting blocked, and disable it when it is unblocked. This is very similar to what we're doing for the background timer. Reviewed-by: NChristoffer Dall <cdall@linaro.org> Reviewed-by: NEric Auger <eric.auger@redhat.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
由 Marc Zyngier 提交于
Let's use the irq bypass mechanism also used for x86 posted interrupts to intercept the virtual PCIe endpoint configuration and establish our LPI->VLPI mapping. Reviewed-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
由 Marc Zyngier 提交于
In order to control the GICv4 view of virtual CPUs, we rely on an irqdomain allocated for that purpose. Let's add a couple of helpers to that effect. At the same time, the vgic data structures gain new fields to track all this... erm... wonderful stuff. The way we hook into the vgic init is slightly convoluted. We need the vgic to be initialized (in order to guarantee that the number of vcpus is now fixed), and we must have a vITS (otherwise this is all very pointless). So we end-up calling the init from both vgic_init and vgic_its_create. Reviewed-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
由 Marc Zyngier 提交于
Add a new has_gicv4 field in the global VGIC state that indicates whether the HW is GICv4 capable, as a per-VM predicate indicating if there is a possibility for a VM to support direct injection (the above being true and the VM having an ITS). Reviewed-by: NChristoffer Dall <christoffer.dall@linaro.org> Reviewed-by: NEric Auger <eric.auger@redhat.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
- 07 11月, 2017 1 次提交
-
-
由 Eric Auger 提交于
We want to reuse the core of the map/unmap functions for IRQ forwarding. Let's move the computation of the hwirq in kvm_vgic_map_phys_irq and pass the linux IRQ as parameter. the host_irq is added to struct vgic_irq. We introduce kvm_vgic_map/unmap_irq which take a struct vgic_irq handle as a parameter. Acked-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NEric Auger <eric.auger@redhat.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
- 15 6月, 2017 1 次提交
-
-
由 Marc Zyngier 提交于
In order to start handling guest access to GICv3 system registers, let's add a hook that will get called when we trap a system register access. This is gated by a new static key (vgic_v3_cpuif_trap). Tested-by: NAlexander Graf <agraf@suse.de> Acked-by: NDavid Daney <david.daney@cavium.com> Reviewed-by: NEric Auger <eric.auger@redhat.com> Reviewed-by: NChristoffer Dall <cdall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <cdall@linaro.org>
-
- 08 6月, 2017 4 次提交
-
-
由 Christoffer Dall 提交于
The PMU IRQ number is set through the VCPU device's KVM_SET_DEVICE_ATTR ioctl handler for the KVM_ARM_VCPU_PMU_V3_IRQ attribute, but there is no enforced or stated requirement that this must happen after initializing the VGIC. As a result, calling vgic_valid_spi() which relies on the nr_spis being set during the VGIC init can incorrectly fail. Introduce irq_is_spi, which determines if an IRQ number is within the SPI range without verifying it against the actual VGIC properties. Signed-off-by: NChristoffer Dall <cdall@linaro.org> Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Christoffer Dall 提交于
When injecting an IRQ to the VGIC, you now have to present an owner token for that IRQ line to show that you are the owner of that line. IRQ lines driven from userspace or via an irqfd do not have an owner and will simply pass a NULL pointer. Also get rid of the unused kvm_vgic_inject_mapped_irq prototype. Signed-off-by: NChristoffer Dall <cdall@linaro.org> Acked-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Christoffer Dall 提交于
Having multiple devices being able to signal the same interrupt line is very confusing and almost certainly guarantees a configuration error. Therefore, introduce a very simple allocator which allows a device to claim an interrupt line from the vgic for a given VM. Signed-off-by: NChristoffer Dall <cdall@linaro.org> Acked-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Christoffer Dall 提交于
We are about to need this define in the arch timer code as well so move it to a common location. Signed-off-by: NChristoffer Dall <cdall@linaro.org> Acked-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 18 5月, 2017 1 次提交
-
-
由 Christoffer Dall 提交于
If userspace creates the VCPUs after initializing the VGIC, then we end up in a situation where we trigger a bug in kvm_vcpu_get_idx(), because it is called prior to adding the VCPU into the vcpus array on the VM. There is no tight coupling between the VCPU index and the area of the redistributor region used for the VCPU, so we can simply ensure that all creations of redistributors are serialized per VM, and increment an offset when we successfully add a redistributor. The vgic_register_redist_iodev() function can be called from two paths: vgic_redister_all_redist_iodev() which is called via the kvm_vgic_addr() device attribute handler. This patch already holds the kvm->lock mutex. The other path is via kvm_vgic_vcpu_init, which is called through a longer chain from kvm_vm_ioctl_create_vcpu(), which releases the kvm->lock mutex just before calling kvm_arch_vcpu_create(), so we can simply take this mutex again later for our purposes. Fixes: ab6f468c10 ("KVM: arm/arm64: Register iodevs when setting redist base and creating VCPUs") Signed-off-by: NChristoffer Dall <cdall@linaro.org> Tested-by: NJean-Philippe Brucker <jean-philippe.brucker@arm.com> Reviewed-by: NEric Auger <eric.auger@redhat.com>
-
- 09 5月, 2017 2 次提交
-
-
由 Marc Zyngier 提交于
The its->initialized doesn't bring much to the table, and creates unnecessary ordering between setting the address and initializing it (which amounts to exactly nothing). Let's kill it altogether, making KVM_DEV_ARM_VGIC_CTRL_INIT the no-op it deserves to be. Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <cdall@linaro.org> Reviewed-by: NEric Auger <eric.auger@redhat.com>
-
由 Christoffer Dall 提交于
Instead of waiting with registering KVM iodevs until the first VCPU is run, we can actually create the iodevs when the redist base address is set. The only downside is that we must now also check if we need to do this for VCPUs which are created after creating the VGIC, because there is no enforced ordering between creating the VGIC (and setting its base addresses) and creating the VCPUs. Signed-off-by: NChristoffer Dall <cdall@linaro.org> Reviewed-by: NEric Auger <eric.auger@redhat.com>
-
- 08 5月, 2017 1 次提交
-
-
由 Eric Auger 提交于
We plan to support different migration ABIs, ie. characterizing the ITS table layout format in guest RAM. For example, a new ABI will be needed if vLPIs get supported for nested use case. So let's introduce an array of supported ABIs (at the moment a single ABI is supported though). The following characteristics are foreseen to vary with the ABI: size of table entries, save/restore operation, the way abi settings are applied. By default the MAX_ABI_REV is applied on its creation. In subsequent patches we will introduce a way for the userspace to change the ABI in use. The entry sizes now are set according to the ABI version and not hardcoded anymore. Signed-off-by: NEric Auger <eric.auger@redhat.com> Reviewed-by: NChristoffer Dall <cdall@linaro.org>
-
- 09 4月, 2017 3 次提交
-
-
由 Christoffer Dall 提交于
We don't use these fields anymore so let's nuke them completely. Acked-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
由 Christoffer Dall 提交于
There is no need to calculate and maintain live_lrs when we always populate the lowest numbered LRs first on every entry and clear all LRs on every exit. Acked-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
由 Christoffer Dall 提交于
We don't have to save/restore the VMCR on every entry to/from the guest, since on GICv2 we can access the control interface from EL1 and on VHE systems with GICv3 we can access the control interface from KVM running in EL2. GICv3 systems without VHE becomes the rare case, which has to save/restore the register on each round trip. Note that userspace accesses may see out-of-date values if the VCPU is running while accessing the VGIC state via the KVM device API, but this is already the case and it is up to userspace to quiesce the CPUs before reading the CPU registers from the GIC for an up-to-date view. Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <cdall@cs.columbia.edu> Signed-off-by: NChristoffer Dall <cdall@linaro.org>
-
- 04 4月, 2017 1 次提交
-
-
由 Christoffer Dall 提交于
We currently have some code to clear the list registers on GICv3, but we never call this code, because the caller got nuked when removing the old vgic. We also used to have a similar GICv2 part, but that got lost in the process too. Let's reintroduce the logic for GICv2 and call the logic when we initialize the use of hypervisors on the CPU, for example when first loading KVM or when exiting a low power state. Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 30 1月, 2017 1 次提交
-
-
由 Vijaya Kumar K 提交于
VGICv3 CPU interface registers are accessed using KVM_DEV_ARM_VGIC_CPU_SYSREGS ioctl. These registers are accessed as 64-bit. The cpu MPIDR value is passed along with register id. It is used to identify the cpu for registers access. The VM that supports SEIs expect it on destination machine to handle guest aborts and hence checked for ICC_CTLR_EL1.SEIS compatibility. Similarly, VM that supports Affinity Level 3 that is required for AArch64 mode, is required to be supported on destination machine. Hence checked for ICC_CTLR_EL1.A3V compatibility. The arch/arm64/kvm/vgic-sys-reg-v3.c handles read and write of VGIC CPU registers for AArch64. For AArch32 mode, arch/arm/kvm/vgic-v3-coproc.c file is created but APIs are not implemented. Updated arch/arm/include/uapi/asm/kvm.h with new definitions required to compile for AArch32. The version of VGIC v3 specification is defined here Documentation/virtual/kvm/devices/arm-vgic-v3.txt Acked-by: NChristoffer Dall <christoffer.dall@linaro.org> Reviewed-by: NEric Auger <eric.auger@redhat.com> Signed-off-by: NPavel Fedin <p.fedin@samsung.com> Signed-off-by: NVijaya Kumar K <Vijaya.Kumar@cavium.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 25 1月, 2017 2 次提交
-
-
由 Christoffer Dall 提交于
Add a file to debugfs to read the in-kernel state of the vgic. We don't do any locking of the entire VGIC state while traversing all the IRQs, so if the VM is running the user/developer may not see a quiesced state, but should take care to pause the VM using facilities in user space for that purpose. We also don't support LPIs yet, but they can be added easily if needed. Reviewed-by: NEric Auger <eric.auger@redhat.com> Tested-by: NEric Auger <eric.auger@redhat.com> Tested-by: NAndre Przywara <andre.przywara@arm.com> Acked-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
由 Christoffer Dall 提交于
One of the goals behind the VGIC redesign was to get rid of cached or intermediate state in the data structures, but we decided to allow ourselves to precompute the pending value of an IRQ based on the line level and pending latch state. However, this has now become difficult to base proper GICv3 save/restore on, because there is a potential to modify the pending state without knowing if an interrupt is edge or level configured. See the following post and related message for more background: https://lists.cs.columbia.edu/pipermail/kvmarm/2017-January/023195.html This commit gets rid of the precomputed pending field in favor of a function that calculates the value when needed, irq_is_pending(). The soft_pending field is renamed to pending_latch to represent that this latch is the equivalent hardware latch which gets manipulated by the input signal for edge-triggered interrupts and when writing to the SPENDR/CPENDR registers. After this commit save/restore code should be able to simply restore the pending_latch state, line_level state, and config state in any order and get the desired result. Reviewed-by: NAndre Przywara <andre.przywara@arm.com> Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Tested-by: NAndre Przywara <andre.przywara@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
- 22 9月, 2016 2 次提交
-
-
由 Vladimir Murzin 提交于
This patch allows to build and use vgic-v3 in 32-bit mode. Unfortunately, it can not be split in several steps without extra stubs to keep patches independent and bisectable. For instance, virt/kvm/arm/vgic/vgic-v3.c uses function from vgic-v3-sr.c, handling access to GICv3 cpu interface from the guest requires vgic_v3.vgic_sre to be already defined. It is how support has been done: * handle SGI requests from the guest * report configured SRE on access to GICv3 cpu interface from the guest * required vgic-v3 macros are provided via uapi.h * static keys are used to select GIC backend * to make vgic-v3 build KVM_ARM_VGIC_V3 guard is removed along with the static inlines Acked-by: NMarc Zyngier <marc.zyngier@arm.com> Reviewed-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NVladimir Murzin <vladimir.murzin@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
由 Vladimir Murzin 提交于
Currently GIC backend is selected via alternative framework and this is fine. We are going to introduce vgic-v3 to 32-bit world and there we don't have patching framework in hand, so we can either check support for GICv3 every time we need to choose which backend to use or try to optimise it by using static keys. The later looks quite promising because we can share logic involved in selecting GIC backend between architectures if both uses static keys. This patch moves arm64 from alternative to static keys framework for selecting GIC backend. For that we embed static key into vgic_global and enable the key during vgic initialisation based on what has already been exposed by the host GIC driver. Acked-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NVladimir Murzin <vladimir.murzin@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
- 08 9月, 2016 2 次提交
-
-
由 Marc Zyngier 提交于
Now that we have the necessary infrastructure to handle MMIO accesses in HYP, perform the GICV access on behalf of the guest. This requires checking that the access is strictly 32bit, properly aligned, and falls within the expected range. When all condition are satisfied, we perform the access and tell the rest of the HYP code that the instruction has been correctly emulated. Reviewed-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
由 Marc Zyngier 提交于
In order to efficiently perform the GICV access on behalf of the guest, we need to be able to avoid going back all the way to the host kernel. For this, we introduce a new hook in the world switch code, conveniently placed just after populating the fault info. At that point, we only have saved/restored the GP registers, and we can quickly perform all the required checks (data abort, translation fault, valid faulting syndrome, not an external abort, not a PTW). Coming back from the emulation code, we need to skip the emulated instruction. This involves an additional bit of save/restore in order to be able to access the guest's PC (and possibly CPSR if this is a 32bit guest). At this stage, no emulation code is provided. Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Reviewed-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
- 23 7月, 2016 1 次提交
-
-
由 Eric Auger 提交于
This patch adds compilation and link against irqchip. Main motivation behind using irqchip code is to enable MSI routing code. In the future irqchip routing may also be useful when targeting multiple irqchips. Routing standard callbacks now are implemented in vgic-irqfd: - kvm_set_routing_entry - kvm_set_irq - kvm_set_msi They only are supported with new_vgic code. Both HAVE_KVM_IRQCHIP and HAVE_KVM_IRQ_ROUTING are defined. KVM_CAP_IRQ_ROUTING is advertised and KVM_SET_GSI_ROUTING is allowed. So from now on IRQCHIP routing is enabled and a routing table entry must exist for irqfd injection to succeed for a given SPI. This patch builds a default flat irqchip routing table (gsi=irqchip.pin) covering all the VGIC SPI indexes. This routing table is overwritten by the first first user-space call to KVM_SET_GSI_ROUTING ioctl. MSI routing setup is not yet allowed. Signed-off-by: NEric Auger <eric.auger@redhat.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-