- 25 6月, 2015 9 次提交
-
-
由 Dan Williams 提交于
NVDIMM namespaces, in addition to accepting "struct bio" based requests, also have the capability to perform byte-aligned accesses. By default only the bio/block interface is used. However, if another driver can make effective use of the byte-aligned capability it can claim namespace interface and use the byte-aligned ->rw_bytes() interface. The BTT driver is the initial first consumer of this mechanism to allow adding atomic sector update semantics to a pmem or blk namespace. This patch is the sysfs infrastructure to allow configuring a BTT instance for a namespace. Enabling that BTT and performing i/o is in a subsequent patch. Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Neil Brown <neilb@suse.de> Signed-off-by: NDan Williams <dan.j.williams@intel.com>
-
由 Dan Williams 提交于
This on media label format [1] consists of two index blocks followed by an array of labels. None of these structures are ever updated in place. A sequence number tracks the current active index and the next one to write, while labels are written to free slots. +------------+ | | | nsindex0 | | | +------------+ | | | nsindex1 | | | +------------+ | label0 | +------------+ | label1 | +------------+ | | ....nslot... | | +------------+ | labelN | +------------+ After reading valid labels, store the dpa ranges they claim into per-dimm resource trees. [1]: http://pmem.io/documents/NVDIMM_Namespace_Spec.pdf Cc: Neil Brown <neilb@suse.de> Acked-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDan Williams <dan.j.williams@intel.com>
-
由 Dan Williams 提交于
Prepare the pmem driver to consume PMEM namespaces emitted by regions of an nvdimm_bus instance. No functional change. Acked-by: NChristoph Hellwig <hch@lst.de> Tested-by: NToshi Kani <toshi.kani@hp.com> Signed-off-by: NDan Williams <dan.j.williams@intel.com>
-
由 Dan Williams 提交于
The libnvdimm region driver is an intermediary driver that translates non-volatile "region"s into "namespace" sub-devices that are surfaced by persistent memory block-device drivers (PMEM and BLK). ACPI 6 introduces the concept that a given nvdimm may simultaneously offer multiple access modes to its media through direct PMEM load/store access, or windowed BLK mode. Existing nvdimms mostly implement a PMEM interface, some offer a BLK-like mode, but never both as ACPI 6 defines. If an nvdimm is single interfaced, then there is no need for dimm metadata labels. For these devices we can take the region boundaries directly to create a child namespace device (nd_namespace_io). Acked-by: NChristoph Hellwig <hch@lst.de> Tested-by: NToshi Kani <toshi.kani@hp.com> Signed-off-by: NDan Williams <dan.j.williams@intel.com>
-
由 Dan Williams 提交于
A "region" device represents the maximum capacity of a BLK range (mmio block-data-window(s)), or a PMEM range (DAX-capable persistent memory or volatile memory), without regard for aliasing. Aliasing, in the dimm-local address space (DPA), is resolved by metadata on a dimm to designate which exclusive interface will access the aliased DPA ranges. Support for the per-dimm metadata/label arrvies is in a subsequent patch. The name format of "region" devices is "regionN" where, like dimms, N is a global ida index assigned at discovery time. This id is not reliable across reboots nor in the presence of hotplug. Look to attributes of the region or static id-data of the sub-namespace to generate a persistent name. However, if the platform configuration does not change it is reasonable to expect the same region id to be assigned at the next boot. "region"s have 2 generic attributes "size", and "mapping"s where: - size: the BLK accessible capacity or the span of the system physical address range in the case of PMEM. - mappingN: a tuple describing a dimm's contribution to the region's capacity in the format (<nmemX>,<dpa>,<size>). For a PMEM-region there will be at least one mapping per dimm in the interleave set. For a BLK-region there is only "mapping0" listing the starting DPA of the BLK-region and the available DPA capacity of that space (matches "size" above). The max number of mappings per "region" is hard coded per the constraints of sysfs attribute groups. That said the number of mappings per region should never exceed the maximum number of possible dimms in the system. If the current number turns out to not be enough then the "mappings" attribute clarifies how many there are supposed to be. "32 should be enough for anybody...". Cc: Neil Brown <neilb@suse.de> Cc: <linux-acpi@vger.kernel.org> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Robert Moore <robert.moore@intel.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: NChristoph Hellwig <hch@lst.de> Acked-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: NToshi Kani <toshi.kani@hp.com> Signed-off-by: NDan Williams <dan.j.williams@intel.com>
-
由 Dan Williams 提交于
* Implement the device-model infrastructure for loading modules and attaching drivers to nvdimm devices. This is a simple association of a nd-device-type number with a driver that has a bitmask of supported device types. To facilitate userspace bind/unbind operations 'modalias' and 'devtype', that also appear in the uevent, are added as generic sysfs attributes for all nvdimm devices. The reason for the device-type number is to support sub-types within a given parent devtype, be it a vendor-specific sub-type or otherwise. * The first consumer of this infrastructure is the driver for dimm devices. It simply uses control messages to retrieve and store the configuration-data image (label set) from each dimm. Note: nd_device_register() arranges for asynchronous registration of nvdimm bus devices by default. Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Neil Brown <neilb@suse.de> Acked-by: NChristoph Hellwig <hch@lst.de> Tested-by: NToshi Kani <toshi.kani@hp.com> Signed-off-by: NDan Williams <dan.j.williams@intel.com>
-
由 Dan Williams 提交于
Enable nvdimm devices to be registered on a nvdimm_bus. The kernel assigned device id for nvdimm devicesis dynamic. If userspace needs a more static identifier it should consult a provider-specific attribute. In the case where NFIT is the provider, the 'nmemX/nfit/handle' or 'nmemX/nfit/serial' attributes may be used for this purpose. Cc: Neil Brown <neilb@suse.de> Cc: <linux-acpi@vger.kernel.org> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Robert Moore <robert.moore@intel.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: NChristoph Hellwig <hch@lst.de> Acked-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: NToshi Kani <toshi.kani@hp.com> Signed-off-by: NDan Williams <dan.j.williams@intel.com>
-
由 Dan Williams 提交于
The control device for a nvdimm_bus is registered as an "nd" class device. The expectation is that there will usually only be one "nd" bus registered under /sys/class/nd. However, we allow for the possibility of multiple buses and they will listed in discovery order as ndctl0...ndctlN. This character device hosts the ioctl for passing control messages. The initial command set has a 1:1 correlation with the commands listed in the by the "NFIT DSM Example" document [1], but this scheme is extensible to future command sets. Note, nd_ioctl() and the backing ->ndctl() implementation are defined in a subsequent patch. This is simply the initial registrations and sysfs attributes. [1]: http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf Cc: Neil Brown <neilb@suse.de> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: <linux-acpi@vger.kernel.org> Cc: Robert Moore <robert.moore@intel.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: NChristoph Hellwig <hch@lst.de> Acked-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: NToshi Kani <toshi.kani@hp.com> Signed-off-by: NDan Williams <dan.j.williams@intel.com>
-
由 Dan Williams 提交于
A struct nvdimm_bus is the anchor device for registering nvdimm resources and interfaces, for example, a character control device, nvdimm devices, and I/O region devices. The ACPI NFIT (NVDIMM Firmware Interface Table) is one possible platform description for such non-volatile memory resources in a system. The nfit.ko driver attaches to the "ACPI0012" device that indicates the presence of the NFIT and parses the table to register a struct nvdimm_bus instance. Cc: <linux-acpi@vger.kernel.org> Cc: Lv Zheng <lv.zheng@intel.com> Cc: Robert Moore <robert.moore@intel.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: NJeff Moyer <jmoyer@redhat.com> Acked-by: NChristoph Hellwig <hch@lst.de> Acked-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: NToshi Kani <toshi.kani@hp.com> Signed-off-by: NDan Williams <dan.j.williams@intel.com>
-