- 24 7月, 2014 4 次提交
-
-
由 Thomas Gleixner 提交于
Right now we have time related prototypes in 3 different header files. Move it to a single timekeeping header file and move the core internal stuff into a core private header. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NJohn Stultz <john.stultz@linaro.org>
-
由 Thomas Gleixner 提交于
With the plain nanoseconds based ktime_t we can simply use ktime_divns() instead of going through loops and hoops of timespec/timeval conversion. Reported-by: NJohn Stultz <john.stultz@linaro.org> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NJohn Stultz <john.stultz@linaro.org>
-
由 John Stultz 提交于
The non-scalar ktime_t implementation is basically a timespec which has to be changed to support dates past 2038 on 32bit systems. This patch removes the non-scalar ktime_t implementation, forcing the scalar s64 nanosecond version on all architectures. This may have additional performance overhead on some 32bit systems when converting between ktime_t and timespec structures, however the majority of 32bit systems (arm and i386) were already using scalar ktime_t, so no performance regressions will be seen on those platforms. On affected platforms, I'm open to finding optimizations, including avoiding converting to timespecs where possible. [ tglx: We can now cleanup the ktime_t.tv64 mess, but thats a different issue and we can throw a coccinelle script at it ] Signed-off-by: NJohn Stultz <john.stultz@linaro.org> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NJohn Stultz <john.stultz@linaro.org>
-
由 John Stultz 提交于
Rather then having two similar but totally different implementations that provide timekeeping state to the hrtimer code, try to unify the two implementations to be more simliar. Thus this clarifies ktime_get_update_offsets to ktime_get_update_offsets_now and changes get_xtime... to ktime_get_update_offsets_tick. Signed-off-by: NJohn Stultz <john.stultz@linaro.org> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NJohn Stultz <john.stultz@linaro.org>
-
- 23 6月, 2014 4 次提交
-
-
由 Viresh Kumar 提交于
We call hrtimer_enqueue_reprogram() only when we are in high resolution mode now so we don't need to check that again in hrtimer_enqueue_reprogram(). Once the check is removed, hrtimer_enqueue_reprogram() turns to be an useless wrapper over hrtimer_reprogram() and can be dropped. Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Link: http://lkml.kernel.org/r/1403393357-2070-6-git-send-email-fweisbec@gmail.comSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
由 Viresh Kumar 提交于
In lowres mode, hrtimers are serviced by the tick instead of a clock event. It works well as long as the tick stays periodic but we must also make sure that the hrtimers are serviced in dynticks mode targets, pretty much like timer list timers do. Note that all dynticks modes are concerned: get_nohz_timer_target() tries not to return remote idle CPUs but there is nothing to prevent the elected target from entering dynticks idle mode until we lock its base. It's also prefectly legal to enqueue hrtimers on full dynticks CPU. So there are two requirements to correctly handle dynticks: 1) On target's tick stop time, we must not delay the next tick further the next hrtimer. 2) On hrtimer queue time. If the tick of the target is stopped, we must wake up that CPU such that it sees the new hrtimer and recalculate the next tick accordingly. The point 1 is well handled currently through get_nohz_timer_interrupt() and cmp_next_hrtimer_event(). But the point 2 isn't handled at all. Fixing this is easy though as we have the necessary API ready for that. All we need is to call wake_up_nohz_cpu() on a target when a newly enqueued hrtimer requires tick rescheduling, like timer list timer do. Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Link: http://lkml.kernel.org/r/3d7ea08ce008698e26bd39fe10f55949391073ab.1403507178.git.viresh.kumar@linaro.orgSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
由 Viresh Kumar 提交于
In lowres mode, hrtimers are serviced by the tick instead of a clock event. Now it works well as long as the tick stays periodic but we must also make sure that the hrtimers are serviced in dynticks mode. Part of that job consist in kicking a dynticks hrtimer target in order to make it reconsider the next tick to schedule to correctly handle the hrtimer's expiring time. And that part isn't handled by the hrtimers subsystem. To prepare for fixing this, we need __hrtimer_start_range_ns() to be able to resolve the CPU target associated to a hrtimer's object 'cpu_base' so that the kick can be centralized there. So lets store it in the 'struct hrtimer_cpu_base' to resolve the CPU without overhead. It is set once at CPU's online notification. Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Link: http://lkml.kernel.org/r/1403393357-2070-4-git-send-email-fweisbec@gmail.comSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
由 Thomas Gleixner 提交于
Except for Kconfig.HZ. That needs a separate treatment. Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 12 5月, 2014 1 次提交
-
-
由 Viresh Kumar 提交于
switch_hrtimer_base() calls hrtimer_check_target() which ensures that we do not migrate a timer to a remote cpu if the timer expires before the current programmed expiry time on that remote cpu. But __hrtimer_start_range_ns() calls switch_hrtimer_base() before the new expiry time is set. So the sanity check in hrtimer_check_target() is operating on stale or even uninitialized data. Update expiry time before calling switch_hrtimer_base(). [ tglx: Rewrote changelog once again ] Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Cc: linaro-kernel@lists.linaro.org Cc: linaro-networking@linaro.org Cc: fweisbec@gmail.com Cc: arvind.chauhan@arm.com Link: http://lkml.kernel.org/r/81999e148745fc51bbcd0615823fbab9b2e87e23.1399882253.git.viresh.kumar@linaro.org Cc: stable@vger.kernel.org Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 30 4月, 2014 2 次提交
-
-
由 Leon Ma 提交于
If a cpu is idle and starts an hrtimer which is not pinned on that same cpu, the nohz code might target the timer to a different cpu. In the case that we switch the cpu base of the timer we already have a sanity check in place, which determines whether the timer is earlier than the current leftmost timer on the target cpu. In that case we enqueue the timer on the current cpu because we cannot reprogram the clock event device on the target. If the timers base is already the target CPU we do not have this sanity check in place so we enqueue the timer as the leftmost timer in the target cpus rb tree, but we cannot reprogram the clock event device on the target cpu. So the timer expires late and subsequently prevents the reprogramming of the target cpu clock event device until the previously programmed event fires or a timer with an earlier expiry time gets enqueued on the target cpu itself. Add the same target check as we have for the switch base case and start the timer on the current cpu if it would become the leftmost timer on the target. [ tglx: Rewrote subject and changelog ] Signed-off-by: NLeon Ma <xindong.ma@intel.com> Link: http://lkml.kernel.org/r/1398847391-5994-1-git-send-email-xindong.ma@intel.com Cc: stable@vger.kernel.org Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
-
由 Stuart Hayes 提交于
If the last hrtimer interrupt detected a hang it sets hang_detected=1 and programs the clock event device with a delay to let the system make progress. If hang_detected == 1, we prevent reprogramming of the clock event device in hrtimer_reprogram() but not in hrtimer_force_reprogram(). This can lead to the following situation: hrtimer_interrupt() hang_detected = 1; program ce device to Xms from now (hang delay) We have two timers pending: T1 expires 50ms from now T2 expires 5s from now Now T1 gets canceled, which causes hrtimer_force_reprogram() to be invoked, which in turn programs the clock event device to T2 (5 seconds from now). Any hrtimer_start after that will not reprogram the hardware due to hang_detected still being set. So we effectivly block all timers until the T2 event fires and cleans up the hang situation. Add a check for hang_detected to hrtimer_force_reprogram() which prevents the reprogramming of the hang delay in the hardware timer. The subsequent hrtimer_interrupt will resolve all outstanding issues. [ tglx: Rewrote subject and changelog and fixed up the comment in hrtimer_force_reprogram() ] Signed-off-by: NStuart Hayes <stuart.w.hayes@gmail.com> Link: http://lkml.kernel.org/r/53602DC6.2060101@gmail.com Cc: stable@vger.kernel.org Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 18 4月, 2014 1 次提交
-
-
由 Yan, Zheng 提交于
Export __hrtimer_start_range_ns() to allow building perf Intel uncore driver as a module. Signed-off-by: NYan, Zheng <zheng.z.yan@intel.com> Acked-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1395133004-23205-2-git-send-email-zheng.z.yan@intel.com Cc: eranian@google.com Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: linux-kernel@vger.kernel.org Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
- 20 3月, 2014 1 次提交
-
-
由 Viresh Kumar 提交于
There are only two users of get_nohz_timer_target(): timer and hrtimer. Both call it under same circumstances, i.e. #ifdef CONFIG_NO_HZ_COMMON if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu)) return get_nohz_timer_target(); #endif So, it makes more sense to get all this as part of get_nohz_timer_target() instead of duplicating code at two places. For this another parameter is required to be passed to this routine, pinned. Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Cc: linaro-kernel@lists.linaro.org Cc: fweisbec@gmail.com Cc: peterz@infradead.org Link: http://lkml.kernel.org/r/1e1b53537217d58d48c2d7a222a9c3ac47d5b64c.1395140107.git.viresh.kumar@linaro.orgSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 13 1月, 2014 1 次提交
-
-
由 Dario Faggioli 提交于
Introduces the data structures, constants and symbols needed for SCHED_DEADLINE implementation. Core data structure of SCHED_DEADLINE are defined, along with their initializers. Hooks for checking if a task belong to the new policy are also added where they are needed. Adds a scheduling class, in sched/dl.c and a new policy called SCHED_DEADLINE. It is an implementation of the Earliest Deadline First (EDF) scheduling algorithm, augmented with a mechanism (called Constant Bandwidth Server, CBS) that makes it possible to isolate the behaviour of tasks between each other. The typical -deadline task will be made up of a computation phase (instance) which is activated on a periodic or sporadic fashion. The expected (maximum) duration of such computation is called the task's runtime; the time interval by which each instance need to be completed is called the task's relative deadline. The task's absolute deadline is dynamically calculated as the time instant a task (better, an instance) activates plus the relative deadline. The EDF algorithms selects the task with the smallest absolute deadline as the one to be executed first, while the CBS ensures each task to run for at most its runtime every (relative) deadline length time interval, avoiding any interference between different tasks (bandwidth isolation). Thanks to this feature, also tasks that do not strictly comply with the computational model sketched above can effectively use the new policy. To summarize, this patch: - introduces the data structures, constants and symbols needed; - implements the core logic of the scheduling algorithm in the new scheduling class file; - provides all the glue code between the new scheduling class and the core scheduler and refines the interactions between sched/dl and the other existing scheduling classes. Signed-off-by: NDario Faggioli <raistlin@linux.it> Signed-off-by: NMichael Trimarchi <michael@amarulasolutions.com> Signed-off-by: NFabio Checconi <fchecconi@gmail.com> Signed-off-by: NJuri Lelli <juri.lelli@gmail.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1383831828-15501-4-git-send-email-juri.lelli@gmail.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 15 7月, 2013 1 次提交
-
-
由 Paul Gortmaker 提交于
The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. This removes all the uses of the __cpuinit macros from C files in the core kernel directories (kernel, init, lib, mm, and include) that don't really have a specific maintainer. [1] https://lkml.org/lkml/2013/5/20/589Signed-off-by: NPaul Gortmaker <paul.gortmaker@windriver.com>
-
- 06 7月, 2013 1 次提交
-
-
由 Thomas Gleixner 提交于
Sigh, should have noticed myself. Reported-by: fengguang.wu@intel.com Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 05 7月, 2013 1 次提交
-
-
由 Thomas Gleixner 提交于
smp_call_function_* must not be called from softirq context. But clock_was_set() which calls on_each_cpu() is called from softirq context to implement a delayed clock_was_set() for the timer interrupt handler. Though that almost never gets invoked. A recent change in the resume code uses the softirq based delayed clock_was_set to support Xens resume mechanism. linux-next contains a new warning which warns if smp_call_function_* is called from softirq context which gets triggered by that Xen change. Fix this by moving the delayed clock_was_set() call to a work context. Reported-and-tested-by: NArtem Savkov <artem.savkov@gmail.com> Reported-by: NSasha Levin <sasha.levin@oracle.com> Cc: David Vrabel <david.vrabel@citrix.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: H. Peter Anvin <hpa@zytor.com>, Cc: Konrad Wilk <konrad.wilk@oracle.com> Cc: John Stultz <john.stultz@linaro.org> Cc: xen-devel@lists.xen.org Cc: stable@vger.kernel.org Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 29 6月, 2013 1 次提交
-
-
由 David Vrabel 提交于
hrtimers_resume() only reprograms the timers for the current CPU as it assumes that all other CPUs are offline at this point in the resume process. If other CPUs are online then their timers will not be corrected and they may fire at the wrong time. When running as a Xen guest, this assumption is not true. Non-boot CPUs are only stopped with IRQs disabled instead of offlining them. This is a performance optimization as disabling the CPUs would add an unacceptable amount of additional downtime during a live migration (> 200 ms for a 4 VCPU guest). hrtimers_resume() cannot call on_each_cpu(retrigger_next_event,...) as the other CPUs will be stopped with IRQs disabled. Instead, defer the call to the next softirq. [ tglx: Separated the xen change out ] Signed-off-by: NDavid Vrabel <david.vrabel@citrix.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: John Stultz <john.stultz@linaro.org> Cc: <xen-devel@lists.xen.org> Link: http://lkml.kernel.org/r/1372329348-20841-2-git-send-email-david.vrabel@citrix.comSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 12 5月, 2013 1 次提交
-
-
由 Colin Cross 提交于
Avoid waking up every thread sleeping in a nanosleep call during suspend and resume by calling a freezable blocking call. Previous patches modified the freezer to avoid sending wakeups to threads that are blocked in freezable blocking calls. This call was selected to be converted to a freezable call because it doesn't hold any locks or release any resources when interrupted that might be needed by another freezing task or a kernel driver during suspend, and is a common site where idle userspace tasks are blocked. Acked-by: NTejun Heo <tj@kernel.org> Acked-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NColin Cross <ccross@android.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 09 4月, 2013 2 次提交
-
-
由 David Engraf 提交于
One can trigger an overflow when using ktime_add_ns() on a 32bit architecture not supporting CONFIG_KTIME_SCALAR. When passing a very high value for u64 nsec, e.g. 7881299347898368000 the do_div() function converts this value to seconds (7881299347) which is still to high to pass to the ktime_set() function as long. The result in is a negative value. The problem on my system occurs in the tick-sched.c, tick_nohz_stop_sched_tick() when time_delta is set to timekeeping_max_deferment(). The check for time_delta < KTIME_MAX is valid, thus ktime_add_ns() is called with a too large value resulting in a negative expire value. This leads to an endless loop in the ticker code: time_delta: 7881299347898368000 expires = ktime_add_ns(last_update, time_delta) expires: negative value This fix caps the value to KTIME_MAX. This error doesn't occurs on 64bit or architectures supporting CONFIG_KTIME_SCALAR (e.g. ARM, x86-32). Cc: stable@vger.kernel.org Signed-off-by: NDavid Engraf <david.engraf@sysgo.com> [jstultz: Minor tweaks to commit message & header] Signed-off-by: NJohn Stultz <john.stultz@linaro.org>
-
由 Prarit Bhargava 提交于
The settimeofday01 test in the LTP testsuite effectively does gettimeofday(current time); settimeofday(Jan 1, 1970 + 100 seconds); settimeofday(current time); This test causes a stack trace to be displayed on the console during the setting of timeofday to Jan 1, 1970 + 100 seconds: [ 131.066751] ------------[ cut here ]------------ [ 131.096448] WARNING: at kernel/time/clockevents.c:209 clockevents_program_event+0x135/0x140() [ 131.104935] Hardware name: Dinar [ 131.108150] Modules linked in: sg nfsv3 nfs_acl nfsv4 auth_rpcgss nfs dns_resolver fscache lockd sunrpc nf_conntrack_netbios_ns nf_conntrack_broadcast ipt_MASQUERADE ip6table_mangle ip6t_REJECT nf_conntrack_ipv6 nf_defrag_ipv6 iptable_nat nf_nat_ipv4 nf_nat iptable_mangle ipt_REJECT nf_conntrack_ipv4 nf_defrag_ipv4 xt_conntrack nf_conntrack ebtable_filter ebtables ip6table_filter ip6_tables iptable_filter ip_tables kvm_amd kvm sp5100_tco bnx2 i2c_piix4 crc32c_intel k10temp fam15h_power ghash_clmulni_intel amd64_edac_mod pcspkr serio_raw edac_mce_amd edac_core microcode xfs libcrc32c sr_mod sd_mod cdrom ata_generic crc_t10dif pata_acpi radeon i2c_algo_bit drm_kms_helper ttm drm ahci pata_atiixp libahci libata usb_storage i2c_core dm_mirror dm_region_hash dm_log dm_mod [ 131.176784] Pid: 0, comm: swapper/28 Not tainted 3.8.0+ #6 [ 131.182248] Call Trace: [ 131.184684] <IRQ> [<ffffffff810612af>] warn_slowpath_common+0x7f/0xc0 [ 131.191312] [<ffffffff8106130a>] warn_slowpath_null+0x1a/0x20 [ 131.197131] [<ffffffff810b9fd5>] clockevents_program_event+0x135/0x140 [ 131.203721] [<ffffffff810bb584>] tick_program_event+0x24/0x30 [ 131.209534] [<ffffffff81089ab1>] hrtimer_interrupt+0x131/0x230 [ 131.215437] [<ffffffff814b9600>] ? cpufreq_p4_target+0x130/0x130 [ 131.221509] [<ffffffff81619119>] smp_apic_timer_interrupt+0x69/0x99 [ 131.227839] [<ffffffff8161805d>] apic_timer_interrupt+0x6d/0x80 [ 131.233816] <EOI> [<ffffffff81099745>] ? sched_clock_cpu+0xc5/0x120 [ 131.240267] [<ffffffff814b9ff0>] ? cpuidle_wrap_enter+0x50/0xa0 [ 131.246252] [<ffffffff814b9fe9>] ? cpuidle_wrap_enter+0x49/0xa0 [ 131.252238] [<ffffffff814ba050>] cpuidle_enter_tk+0x10/0x20 [ 131.257877] [<ffffffff814b9c89>] cpuidle_idle_call+0xa9/0x260 [ 131.263692] [<ffffffff8101c42f>] cpu_idle+0xaf/0x120 [ 131.268727] [<ffffffff815f8971>] start_secondary+0x255/0x257 [ 131.274449] ---[ end trace 1151a50552231615 ]--- When we change the system time to a low value like this, the value of timekeeper->offs_real will be a negative value. It seems that the WARN occurs because an hrtimer has been started in the time between the releasing of the timekeeper lock and the IPI call (via a call to on_each_cpu) in clock_was_set() in the do_settimeofday() code. The end result is that a REALTIME_CLOCK timer has been added with softexpires = expires = KTIME_MAX. The hrtimer_interrupt() fires/is called and the loop at kernel/hrtimer.c:1289 is executed. In this loop the code subtracts the clock base's offset (which was set to timekeeper->offs_real in do_settimeofday()) from the current hrtimer_cpu_base->expiry value (which was KTIME_MAX): KTIME_MAX - (a negative value) = overflow A simple check for an overflow can resolve this problem. Using KTIME_MAX instead of the overflow value will result in the hrtimer function being run, and the reprogramming of the timer after that. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org Reviewed-by: NRik van Riel <riel@redhat.com> Signed-off-by: NPrarit Bhargava <prarit@redhat.com> [jstultz: Tweaked commit subject] Signed-off-by: NJohn Stultz <john.stultz@linaro.org>
-
- 03 4月, 2013 1 次提交
-
-
由 Frederic Weisbecker 提交于
We are planning to convert the dynticks Kconfig options layout into a choice menu. The user must be able to easily pick any of the following implementations: constant periodic tick, idle dynticks, full dynticks. As this implies a mutual exclusion, the two dynticks implementions need to converge on the selection of a common Kconfig option in order to ease the sharing of a common infrastructure. It would thus seem pretty natural to reuse CONFIG_NO_HZ to that end. It already implements all the idle dynticks code and the full dynticks depends on all that code for now. So ideally the choice menu would propose CONFIG_NO_HZ_IDLE and CONFIG_NO_HZ_EXTENDED then both would select CONFIG_NO_HZ. On the other hand we want to stay backward compatible: if CONFIG_NO_HZ is set in an older config file, we want to enable CONFIG_NO_HZ_IDLE by default. But we can't afford both at the same time or we run into a circular dependency: 1) CONFIG_NO_HZ_IDLE and CONFIG_NO_HZ_EXTENDED both select CONFIG_NO_HZ 2) If CONFIG_NO_HZ is set, we default to CONFIG_NO_HZ_IDLE We might be able to support that from Kconfig/Kbuild but it may not be wise to introduce such a confusing behaviour. So to solve this, create a new CONFIG_NO_HZ_COMMON option which gathers the common code between idle and full dynticks (that common code for now is simply the idle dynticks code) and select it from their referring Kconfig. Then we'll later create CONFIG_NO_HZ_IDLE and map CONFIG_NO_HZ to it for backward compatibility. Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Christoph Lameter <cl@linux.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Gilad Ben Yossef <gilad@benyossef.com> Cc: Hakan Akkan <hakanakkan@gmail.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Kevin Hilman <khilman@linaro.org> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Namhyung Kim <namhyung.kim@lge.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de>
-
- 27 3月, 2013 1 次提交
-
-
由 Michael Bohan 提交于
The current code makes the assumption that a cpu_base lock won't be held if the CPU corresponding to that cpu_base is offline, which isn't always true. If a hrtimer is not queued, then it will not be migrated by migrate_hrtimers() when a CPU is offlined. Therefore, the hrtimer's cpu_base may still point to a CPU which has subsequently gone offline if the timer wasn't enqueued at the time the CPU went down. Normally this wouldn't be a problem, but a cpu_base's lock is blindly reinitialized each time a CPU is brought up. If a CPU is brought online during the period that another thread is performing a hrtimer operation on a stale hrtimer, then the lock will be reinitialized under its feet, and a SPIN_BUG() like the following will be observed: <0>[ 28.082085] BUG: spinlock already unlocked on CPU#0, swapper/0/0 <0>[ 28.087078] lock: 0xc4780b40, value 0x0 .magic: dead4ead, .owner: <none>/-1, .owner_cpu: -1 <4>[ 42.451150] [<c0014398>] (unwind_backtrace+0x0/0x120) from [<c0269220>] (do_raw_spin_unlock+0x44/0xdc) <4>[ 42.460430] [<c0269220>] (do_raw_spin_unlock+0x44/0xdc) from [<c071b5bc>] (_raw_spin_unlock+0x8/0x30) <4>[ 42.469632] [<c071b5bc>] (_raw_spin_unlock+0x8/0x30) from [<c00a9ce0>] (__hrtimer_start_range_ns+0x1e4/0x4f8) <4>[ 42.479521] [<c00a9ce0>] (__hrtimer_start_range_ns+0x1e4/0x4f8) from [<c00aa014>] (hrtimer_start+0x20/0x28) <4>[ 42.489247] [<c00aa014>] (hrtimer_start+0x20/0x28) from [<c00e6190>] (rcu_idle_enter_common+0x1ac/0x320) <4>[ 42.498709] [<c00e6190>] (rcu_idle_enter_common+0x1ac/0x320) from [<c00e6440>] (rcu_idle_enter+0xa0/0xb8) <4>[ 42.508259] [<c00e6440>] (rcu_idle_enter+0xa0/0xb8) from [<c000f268>] (cpu_idle+0x24/0xf0) <4>[ 42.516503] [<c000f268>] (cpu_idle+0x24/0xf0) from [<c06ed3c0>] (rest_init+0x88/0xa0) <4>[ 42.524319] [<c06ed3c0>] (rest_init+0x88/0xa0) from [<c0c00978>] (start_kernel+0x3d0/0x434) As an example, this particular crash occurred when hrtimer_start() was executed on CPU #0. The code locked the hrtimer's current cpu_base corresponding to CPU #1. CPU #0 then tried to switch the hrtimer's cpu_base to an optimal CPU which was online. In this case, it selected the cpu_base corresponding to CPU #3. Before it could proceed, CPU #1 came online and reinitialized the spinlock corresponding to its cpu_base. Thus now CPU #0 held a lock which was reinitialized. When CPU #0 finally ended up unlocking the old cpu_base corresponding to CPU #1 so that it could switch to CPU #3, we hit this SPIN_BUG() above while in switch_hrtimer_base(). CPU #0 CPU #1 ---- ---- ... <offline> hrtimer_start() lock_hrtimer_base(base #1) ... init_hrtimers_cpu() switch_hrtimer_base() ... ... raw_spin_lock_init(&cpu_base->lock) raw_spin_unlock(&cpu_base->lock) ... <spin_bug> Solve this by statically initializing the lock. Signed-off-by: NMichael Bohan <mbohan@codeaurora.org> Link: http://lkml.kernel.org/r/1363745965-23475-1-git-send-email-mbohan@codeaurora.org Cc: stable@vger.kernel.org Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 25 3月, 2013 1 次提交
-
-
由 David Daney 提交于
The comments mention HRTIMER_ABS and HRTIMER_REL, these symbols don't exist, the proper names are HRTIMER_MODE_ABS and HRTIMER_MODE_REL. Signed-off-by: NDavid Daney <david.daney@cavium.com> Cc: Jiri Kosina <trivial@kernel.org> Link: http://lkml.kernel.org/r/1363202438-21234-1-git-send-email-ddaney.cavm@gmail.comSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 23 3月, 2013 1 次提交
-
-
由 John Stultz 提交于
Add hrtimer support for CLOCK_TAI, as well as posix timer interfaces. Signed-off-by: NJohn Stultz <john.stultz@linaro.org>
-
- 08 2月, 2013 2 次提交
-
-
由 Clark Williams 提交于
Move rt scheduler definitions out of include/linux/sched.h into new file include/linux/sched/rt.h Signed-off-by: NClark Williams <williams@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Link: http://lkml.kernel.org/r/20130207094707.7b9f825f@riff.lanSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Clark Williams 提交于
Move the sysctl-related bits from include/linux/sched.h into a new file: include/linux/sched/sysctl.h. Then update source files requiring access to those bits by including the new header file. Signed-off-by: NClark Williams <williams@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Link: http://lkml.kernel.org/r/20130207094659.06dced96@riff.lanSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 05 2月, 2013 1 次提交
-
-
由 Leonid Shatz 提交于
hrtimer_enqueue_reprogram contains a race which could result in timer.base switch during unlock/lock sequence. hrtimer_enqueue_reprogram is releasing the lock protecting the timer base for calling raise_softirq_irqsoff() due to a lock ordering issue versus rq->lock. If during that time another CPU calls __hrtimer_start_range_ns() on the same hrtimer, the timer base might switch, before the current CPU can lock base->lock again and therefor the unlock_timer_base() call will unlock the wrong lock. [ tglx: Added comment and massaged changelog ] Signed-off-by: NLeonid Shatz <leonid.shatz@ravellosystems.com> Signed-off-by: NIzik Eidus <izik.eidus@ravellosystems.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: stable@vger.kernel.org Link: http://lkml.kernel.org/r/1359981217-389-1-git-send-email-izik.eidus@ravellosystems.comSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 12 7月, 2012 3 次提交
-
-
由 John Stultz 提交于
The update of the hrtimer base offsets on all cpus cannot be made atomically from the timekeeper.lock held and interrupt disabled region as smp function calls are not allowed there. clock_was_set(), which enforces the update on all cpus, is called either from preemptible process context in case of do_settimeofday() or from the softirq context when the offset modification happened in the timer interrupt itself due to a leap second. In both cases there is a race window for an hrtimer interrupt between dropping timekeeper lock, enabling interrupts and clock_was_set() issuing the updates. Any interrupt which arrives in that window will see the new time but operate on stale offsets. So we need to make sure that an hrtimer interrupt always sees a consistent state of time and offsets. ktime_get_update_offsets() allows us to get the current monotonic time and update the per cpu hrtimer base offsets from hrtimer_interrupt() to capture a consistent state of monotonic time and the offsets. The function replaces the existing ktime_get() calls in hrtimer_interrupt(). The overhead of the new function vs. ktime_get() is minimal as it just adds two store operations. This ensures that any changes to realtime or boottime offsets are noticed and stored into the per-cpu hrtimer base structures, prior to any hrtimer expiration and guarantees that timers are not expired early. Signed-off-by: NJohn Stultz <johnstul@us.ibm.com> Reviewed-by: NIngo Molnar <mingo@kernel.org> Acked-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: NPrarit Bhargava <prarit@redhat.com> Cc: stable@vger.kernel.org Link: http://lkml.kernel.org/r/1341960205-56738-8-git-send-email-johnstul@us.ibm.comSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
由 Thomas Gleixner 提交于
We need to update the base offsets from this code and we need to do that under base->lock. Move the lock held region around the ktime_get() calls. The ktime_get() calls are going to be replaced with a function which gets the time and the offsets atomically. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Reviewed-by: NIngo Molnar <mingo@kernel.org> Acked-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: NPrarit Bhargava <prarit@redhat.com> Cc: stable@vger.kernel.org Signed-off-by: NJohn Stultz <johnstul@us.ibm.com> Link: http://lkml.kernel.org/r/1341960205-56738-6-git-send-email-johnstul@us.ibm.comSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
由 John Stultz 提交于
clock_was_set() cannot be called from hard interrupt context because it calls on_each_cpu(). For fixing the widely reported leap seconds issue it is necessary to call it from hard interrupt context, i.e. the timer tick code, which does the timekeeping updates. Provide a new function which denotes it in the hrtimer cpu base structure of the cpu on which it is called and raise the hrtimer softirq. We then execute the clock_was_set() notificiation from softirq context in run_hrtimer_softirq(). The hrtimer softirq is rarely used, so polling the flag there is not a performance issue. [ tglx: Made it depend on CONFIG_HIGH_RES_TIMERS. We really should get rid of all this ifdeffery ASAP ] Signed-off-by: NJohn Stultz <johnstul@us.ibm.com> Reported-by: NJan Engelhardt <jengelh@inai.de> Reviewed-by: NIngo Molnar <mingo@kernel.org> Acked-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: NPrarit Bhargava <prarit@redhat.com> Cc: stable@vger.kernel.org Link: http://lkml.kernel.org/r/1341960205-56738-2-git-send-email-johnstul@us.ibm.comSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 19 11月, 2011 1 次提交
-
-
由 Jeff Ohlstein 提交于
__remove_hrtimer() attempts to reprogram the clockevent device when the timer being removed is the next to expire. However, __remove_hrtimer() reprograms the clockevent *before* removing the timer from the timerqueue and thus when hrtimer_force_reprogram() finds the next timer to expire it finds the timer we're trying to remove. This is especially noticeable when the system switches to NOHz mode and the system tick is removed. The timer tick is removed from the system but the clockevent is programmed to wakeup in another HZ anyway. Silence the extra wakeup by removing the timer from the timerqueue before calling hrtimer_force_reprogram() so that we actually program the clockevent for the next timer to expire. This was broken by 998adc3d "hrtimers: Convert hrtimers to use timerlist infrastructure". Signed-off-by: NJeff Ohlstein <johlstei@codeaurora.org> Cc: stable@vger.kernel.org Link: http://lkml.kernel.org/r/1321660030-8520-1-git-send-email-johlstei@codeaurora.orgSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 31 10月, 2011 1 次提交
-
-
由 Paul Gortmaker 提交于
The changed files were only including linux/module.h for the EXPORT_SYMBOL infrastructure, and nothing else. Revector them onto the isolated export header for faster compile times. Nothing to see here but a whole lot of instances of: -#include <linux/module.h> +#include <linux/export.h> This commit is only changing the kernel dir; next targets will probably be mm, fs, the arch dirs, etc. Signed-off-by: NPaul Gortmaker <paul.gortmaker@windriver.com>
-
- 26 5月, 2011 1 次提交
-
-
由 Thomas Gleixner 提交于
commit 9ec26907 ("timerfd: Manage cancelable timers in timerfd") introduced a CONFIG_HIGHRES_TIMERS (should be CONFIG_HIGH_RES_TIMERS) typo, which caused applications depending on CLOCK_REALTIME timers to become sluggy due to the fact that the time base of the realtime timers was not updated when the wall clock time was set. This causes anything from 100% CPU use for some applications to odd delays and hickups. Reported-bisected-and-tested-by: NAnca Emanuel <anca.emanuel@gmail.com> Tested-by: NLinus Torvalds <torvalds@linux-foundation.org> Fatfingered-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 23 5月, 2011 3 次提交
-
-
由 Thomas Gleixner 提交于
The ordering of the clock bases is historical due to the CLOCK_REALTIME and CLOCK_MONOTONIC constants. Now the hrtimer bases have their own enumeration due to the gap between CLOCK_MONOTONIC and CLOCK_BOOTTIME. So we can be more clever as most timers end up on the CLOCK_MONOTONIC base due to the virtue of POSIX declaring that relative CLOCK_REALTIME timers are not affected by time changes. In desktop environments this is slowly changing as applications switch to absolute timers, but I've observed empty CLOCK_REALTIME bases often enough. There is no performance penalty or overhead when CLOCK_REALTIME timers are active, but in case they are not we don't skip over a full cache line. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Reviewed-by: NPeter Zijlstra <peterz@infradead.org>
-
由 Thomas Gleixner 提交于
Instead of iterating over all possible timer bases avoid it by marking the active bases in the cpu base. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Reviewed-by: NPeter Zijlstra <peterz@infradead.org>
-
由 Thomas Gleixner 提交于
Peter is concerned about the extra scan of CLOCK_REALTIME_COS in the timer interrupt. Yes, I did not think about it, because the solution was so elegant. I didn't like the extra list in timerfd when it was proposed some time ago, but with a rcu based list the list walk it's less horrible than the original global lock, which was held over the list iteration. Requested-by: NPeter Zijlstra <peterz@infradead.org> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Reviewed-by: NPeter Zijlstra <peterz@infradead.org>
-
- 03 5月, 2011 3 次提交
-
-
由 Thomas Gleixner 提交于
Some applications must be aware of clock realtime being set backward. A simple example is a clock applet which arms a timer for the next minute display. If clock realtime is set backward then the applet displays a stale time for the amount of time which the clock was set backwards. Due to that applications poll the time because we don't have an interface. Extend the timerfd interface by adding a flag which puts the timer onto a different internal realtime clock. All timers on this clock are expired whenever the clock was set. The timerfd core records the monotonic offset when the timer is created. When the timer is armed, then the current offset is compared to the previous recorded offset. When it has changed, then timerfd_settime returns -ECANCELED. When a timer is read the offset is compared and if it changed -ECANCELED returned to user space. Periodic timers are not rearmed in the cancelation case. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Acked-by: NJohn Stultz <johnstul@us.ibm.com> Cc: Chris Friesen <chris.friesen@genband.com> Tested-by: NKay Sievers <kay.sievers@vrfy.org> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Davide Libenzi <davidel@xmailserver.org> Reviewed-by: NAlexander Shishkin <virtuoso@slind.org> Link: http://lkml.kernel.org/r/%3Calpine.LFD.2.02.1104271359580.3323%40ionos%3ESigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
由 Thomas Gleixner 提交于
Make clock_was_set() unconditional and rename hres_timers_resume to hrtimers_resume. This is a preparatory patch for hrtimers which are cancelled when clock realtime was set. Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
-
由 Mike Frysinger 提交于
Signed-off-by: NMike Frysinger <vapier@gentoo.org> Link: http://lkml.kernel.org/r/%3C1304364267-14489-1-git-send-email-vapier%40gentoo.org%3ESigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-