1. 16 9月, 2019 13 次提交
    • S
      KVM: VMX: Fix handling of #MC that occurs during VM-Entry · 891011ca
      Sean Christopherson 提交于
      [ Upstream commit beb8d93b3e423043e079ef3dda19dad7b28467a8 ]
      
      A previous fix to prevent KVM from consuming stale VMCS state after a
      failed VM-Entry inadvertantly blocked KVM's handling of machine checks
      that occur during VM-Entry.
      
      Per Intel's SDM, a #MC during VM-Entry is handled in one of three ways,
      depending on when the #MC is recognoized.  As it pertains to this bug
      fix, the third case explicitly states EXIT_REASON_MCE_DURING_VMENTRY
      is handled like any other VM-Exit during VM-Entry, i.e. sets bit 31 to
      indicate the VM-Entry failed.
      
      If a machine-check event occurs during a VM entry, one of the following occurs:
       - The machine-check event is handled as if it occurred before the VM entry:
              ...
       - The machine-check event is handled after VM entry completes:
              ...
       - A VM-entry failure occurs as described in Section 26.7. The basic
         exit reason is 41, for "VM-entry failure due to machine-check event".
      
      Explicitly handle EXIT_REASON_MCE_DURING_VMENTRY as a one-off case in
      vmx_vcpu_run() instead of binning it into vmx_complete_atomic_exit().
      Doing so allows vmx_vcpu_run() to handle VMX_EXIT_REASONS_FAILED_VMENTRY
      in a sane fashion and also simplifies vmx_complete_atomic_exit() since
      VMCS.VM_EXIT_INTR_INFO is guaranteed to be fresh.
      
      Fixes: b060ca3b ("kvm: vmx: Handle VMLAUNCH/VMRESUME failure properly")
      Cc: stable@vger.kernel.org
      Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com>
      Reviewed-by: NJim Mattson <jmattson@google.com>
      Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
      Signed-off-by: NSasha Levin <sashal@kernel.org>
      891011ca
    • S
      KVM: VMX: Always signal #GP on WRMSR to MSR_IA32_CR_PAT with bad value · 74ce1333
      Sean Christopherson 提交于
      [ Upstream commit d28f4290b53a157191ed9991ad05dffe9e8c0c89 ]
      
      The behavior of WRMSR is in no way dependent on whether or not KVM
      consumes the value.
      
      Fixes: 4566654b ("KVM: vmx: Inject #GP on invalid PAT CR")
      Cc: stable@vger.kernel.org
      Cc: Nadav Amit <nadav.amit@gmail.com>
      Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com>
      Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
      Signed-off-by: NSasha Levin <sashal@kernel.org>
      74ce1333
    • P
      KVM: x86: optimize check for valid PAT value · 74fd8aae
      Paolo Bonzini 提交于
      [ Upstream commit 674ea351cdeb01d2740edce31db7f2d79ce6095d ]
      
      This check will soon be done on every nested vmentry and vmexit,
      "parallelize" it using bitwise operations.
      Reviewed-by: NSean Christopherson <sean.j.christopherson@intel.com>
      Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
      Signed-off-by: NSasha Levin <sashal@kernel.org>
      74fd8aae
    • P
      kvm: Check irqchip mode before assign irqfd · d5f65393
      Peter Xu 提交于
      [ Upstream commit 654f1f13ea56b92bacade8ce2725aea0457f91c0 ]
      
      When assigning kvm irqfd we didn't check the irqchip mode but we allow
      KVM_IRQFD to succeed with all the irqchip modes.  However it does not
      make much sense to create irqfd even without the kernel chips.  Let's
      provide a arch-dependent helper to check whether a specific irqfd is
      allowed by the arch.  At least for x86, it should make sense to check:
      
      - when irqchip mode is NONE, all irqfds should be disallowed, and,
      
      - when irqchip mode is SPLIT, irqfds that are with resamplefd should
        be disallowed.
      
      For either of the case, previously we'll silently ignore the irq or
      the irq ack event if the irqchip mode is incorrect.  However that can
      cause misterious guest behaviors and it can be hard to triage.  Let's
      fail KVM_IRQFD even earlier to detect these incorrect configurations.
      
      CC: Paolo Bonzini <pbonzini@redhat.com>
      CC: Radim Krčmář <rkrcmar@redhat.com>
      CC: Alex Williamson <alex.williamson@redhat.com>
      CC: Eduardo Habkost <ehabkost@redhat.com>
      Signed-off-by: NPeter Xu <peterx@redhat.com>
      Cc: stable@vger.kernel.org
      Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
      Signed-off-by: NSasha Levin <sashal@kernel.org>
      d5f65393
    • S
      KVM: x86: Always use 32-bit SMRAM save state for 32-bit kernels · df5d4ea2
      Sean Christopherson 提交于
      [ Upstream commit b68f3cc7d978943fcf85148165b00594c38db776 ]
      
      Invoking the 64-bit variation on a 32-bit kenrel will crash the guest,
      trigger a WARN, and/or lead to a buffer overrun in the host, e.g.
      rsm_load_state_64() writes r8-r15 unconditionally, but enum kvm_reg and
      thus x86_emulate_ctxt._regs only define r8-r15 for CONFIG_X86_64.
      
      KVM allows userspace to report long mode support via CPUID, even though
      the guest is all but guaranteed to crash if it actually tries to enable
      long mode.  But, a pure 32-bit guest that is ignorant of long mode will
      happily plod along.
      
      SMM complicates things as 64-bit CPUs use a different SMRAM save state
      area.  KVM handles this correctly for 64-bit kernels, e.g. uses the
      legacy save state map if userspace has hid long mode from the guest,
      but doesn't fare well when userspace reports long mode support on a
      32-bit host kernel (32-bit KVM doesn't support 64-bit guests).
      
      Since the alternative is to crash the guest, e.g. by not loading state
      or explicitly requesting shutdown, unconditionally use the legacy SMRAM
      save state map for 32-bit KVM.  If a guest has managed to get far enough
      to handle SMIs when running under a weird/buggy userspace hypervisor,
      then don't deliberately crash the guest since there are no downsides
      (from KVM's perspective) to allow it to continue running.
      
      Fixes: 660a5d51 ("KVM: x86: save/load state on SMM switch")
      Cc: stable@vger.kernel.org
      Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com>
      Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
      Signed-off-by: NSasha Levin <sashal@kernel.org>
      df5d4ea2
    • W
      x86/kvm: move kvm_load/put_guest_xcr0 into atomic context · 7a74d806
      WANG Chao 提交于
      [ Upstream commit 1811d979c71621aafc7b879477202d286f7e863b ]
      
      guest xcr0 could leak into host when MCE happens in guest mode. Because
      do_machine_check() could schedule out at a few places.
      
      For example:
      
      kvm_load_guest_xcr0
      ...
      kvm_x86_ops->run(vcpu) {
        vmx_vcpu_run
          vmx_complete_atomic_exit
            kvm_machine_check
              do_machine_check
                do_memory_failure
                  memory_failure
                    lock_page
      
      In this case, host_xcr0 is 0x2ff, guest vcpu xcr0 is 0xff. After schedule
      out, host cpu has guest xcr0 loaded (0xff).
      
      In __switch_to {
           switch_fpu_finish
             copy_kernel_to_fpregs
               XRSTORS
      
      If any bit i in XSTATE_BV[i] == 1 and xcr0[i] == 0, XRSTORS will
      generate #GP (In this case, bit 9). Then ex_handler_fprestore kicks in
      and tries to reinitialize fpu by restoring init fpu state. Same story as
      last #GP, except we get DOUBLE FAULT this time.
      
      Cc: stable@vger.kernel.org
      Signed-off-by: NWANG Chao <chao.wang@ucloud.cn>
      Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
      Signed-off-by: NSasha Levin <sashal@kernel.org>
      7a74d806
    • B
      kvm: mmu: Fix overflow on kvm mmu page limit calculation · 163b24b1
      Ben Gardon 提交于
      [ Upstream commit bc8a3d8925a8fa09fa550e0da115d95851ce33c6 ]
      
      KVM bases its memory usage limits on the total number of guest pages
      across all memslots. However, those limits, and the calculations to
      produce them, use 32 bit unsigned integers. This can result in overflow
      if a VM has more guest pages that can be represented by a u32. As a
      result of this overflow, KVM can use a low limit on the number of MMU
      pages it will allocate. This makes KVM unable to map all of guest memory
      at once, prompting spurious faults.
      
      Tested: Ran all kvm-unit-tests on an Intel Haswell machine. This patch
      	introduced no new failures.
      Signed-off-by: NBen Gardon <bgardon@google.com>
      Cc: stable@vger.kernel.org
      Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
      Signed-off-by: NSasha Levin <sashal@kernel.org>
      163b24b1
    • S
      KVM: VMX: Compare only a single byte for VMCS' "launched" in vCPU-run · cd490d44
      Sean Christopherson 提交于
      [ Upstream commit 61c08aa9606d4e48a8a50639c956448a720174c3 ]
      
      The vCPU-run asm blob does a manual comparison of a VMCS' launched
      status to execute the correct VM-Enter instruction, i.e. VMLAUNCH vs.
      VMRESUME.  The launched flag is a bool, which is a typedef of _Bool.
      C99 does not define an exact size for _Bool, stating only that is must
      be large enough to hold '0' and '1'.  Most, if not all, compilers use
      a single byte for _Bool, including gcc[1].
      
      Originally, 'launched' was of type 'int' and so the asm blob used 'cmpl'
      to check the launch status.  When 'launched' was moved to be stored on a
      per-VMCS basis, struct vcpu_vmx's "temporary" __launched flag was added
      in order to avoid having to pass the current VMCS into the asm blob.
      The new  '__launched' was defined as a 'bool' and not an 'int', but the
      'cmp' instruction was not updated.
      
      This has not caused any known problems, likely due to compilers aligning
      variables to 4-byte or 8-byte boundaries and KVM zeroing out struct
      vcpu_vmx during allocation.  I.e. vCPU-run accesses "junk" data, it just
      happens to always be zero and so doesn't affect the result.
      
      [1] https://gcc.gnu.org/ml/gcc-patches/2000-10/msg01127.html
      
      Fixes: d462b819 ("KVM: VMX: Keep list of loaded VMCSs, instead of vcpus")
      Cc: <stable@vger.kernel.org>
      Reviewed-by: NJim Mattson <jmattson@google.com>
      Reviewed-by: NKonrad Rzeszutek Wilk <konrad.wilk@oracle.com>
      Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com>
      Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
      Signed-off-by: NSasha Levin <sashal@kernel.org>
      cd490d44
    • V
      x86/kvm/lapic: preserve gfn_to_hva_cache len on cache reinit · 796469e3
      Vitaly Kuznetsov 提交于
      [ Upstream commit a7c42bb6da6b1b54b2e7bd567636d72d87b10a79 ]
      
      vcpu->arch.pv_eoi is accessible through both HV_X64_MSR_VP_ASSIST_PAGE and
      MSR_KVM_PV_EOI_EN so on migration userspace may try to restore them in any
      order. Values match, however, kvm_lapic_enable_pv_eoi() uses different
      length: for Hyper-V case it's the whole struct hv_vp_assist_page, for KVM
      native case it is 8. In case we restore KVM-native MSR last cache will
      be reinitialized with len=8 so trying to access VP assist page beyond
      8 bytes with kvm_read_guest_cached() will fail.
      
      Check if we re-initializing cache for the same address and preserve length
      in case it was greater.
      Signed-off-by: NVitaly Kuznetsov <vkuznets@redhat.com>
      Cc: stable@vger.kernel.org
      Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
      Signed-off-by: NSasha Levin <sashal@kernel.org>
      796469e3
    • L
      KVM: hyperv: define VP assist page helpers · cdad0f65
      Ladi Prosek 提交于
      [ Upstream commit 72bbf9358c3676bd89dc4bd8fb0b1f2a11c288fc ]
      
      The state related to the VP assist page is still managed by the LAPIC
      code in the pv_eoi field.
      Signed-off-by: NLadi Prosek <lprosek@redhat.com>
      Signed-off-by: NVitaly Kuznetsov <vkuznets@redhat.com>
      Reviewed-by: NLiran Alon <liran.alon@oracle.com>
      Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
      Signed-off-by: NSasha Levin <sashal@kernel.org>
      cdad0f65
    • V
      KVM: x86: hyperv: keep track of mismatched VP indexes · b0d9043b
      Vitaly Kuznetsov 提交于
      [ Upstream commit 87ee613d076351950b74383215437f841ebbeb75 ]
      
      In most common cases VP index of a vcpu matches its vcpu index. Userspace
      is, however, free to set any mapping it wishes and we need to account for
      that when we need to find a vCPU with a particular VP index. To keep search
      algorithms optimal in both cases introduce 'num_mismatched_vp_indexes'
      counter showing how many vCPUs with mismatching VP index we have. In case
      the counter is zero we can assume vp_index == vcpu_idx.
      Signed-off-by: NVitaly Kuznetsov <vkuznets@redhat.com>
      Reviewed-by: NRoman Kagan <rkagan@virtuozzo.com>
      Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
      Signed-off-by: NSasha Levin <sashal@kernel.org>
      b0d9043b
    • V
      KVM: x86: hyperv: consistently use 'hv_vcpu' for 'struct kvm_vcpu_hv' variables · f031fd03
      Vitaly Kuznetsov 提交于
      [ Upstream commit 1779a39f786397760ae7a7cc03cf37697d8ae58d ]
      
      Rename 'hv' to 'hv_vcpu' in kvm_hv_set_msr/kvm_hv_get_msr(); 'hv' is
      'reserved' for 'struct kvm_hv' variables across the file.
      Signed-off-by: NVitaly Kuznetsov <vkuznets@redhat.com>
      Reviewed-by: NRoman Kagan <rkagan@virtuozzo.com>
      Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
      Signed-off-by: NSasha Levin <sashal@kernel.org>
      f031fd03
    • V
      KVM: x86: hyperv: enforce vp_index < KVM_MAX_VCPUS · 0b535f7b
      Vitaly Kuznetsov 提交于
      [ Upstream commit 9170200ec0ebad70e5b9902bc93e2b1b11456a3b ]
      
      Hyper-V TLFS (5.0b) states:
      
      > Virtual processors are identified by using an index (VP index). The
      > maximum number of virtual processors per partition supported by the
      > current implementation of the hypervisor can be obtained through CPUID
      > leaf 0x40000005. A virtual processor index must be less than the
      > maximum number of virtual processors per partition.
      
      Forbid userspace to set VP_INDEX above KVM_MAX_VCPUS. get_vcpu_by_vpidx()
      can now be optimized to bail early when supplied vpidx is >= KVM_MAX_VCPUS.
      Signed-off-by: NVitaly Kuznetsov <vkuznets@redhat.com>
      Reviewed-by: NRoman Kagan <rkagan@virtuozzo.com>
      Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
      Signed-off-by: NSasha Levin <sashal@kernel.org>
      0b535f7b
  2. 06 9月, 2019 2 次提交
  3. 16 8月, 2019 1 次提交
    • W
      KVM: Fix leak vCPU's VMCS value into other pCPU · 2bc73d91
      Wanpeng Li 提交于
      commit 17e433b54393a6269acbcb792da97791fe1592d8 upstream.
      
      After commit d73eb57b80b (KVM: Boost vCPUs that are delivering interrupts), a
      five years old bug is exposed. Running ebizzy benchmark in three 80 vCPUs VMs
      on one 80 pCPUs Skylake server, a lot of rcu_sched stall warning splatting
      in the VMs after stress testing:
      
       INFO: rcu_sched detected stalls on CPUs/tasks: { 4 41 57 62 77} (detected by 15, t=60004 jiffies, g=899, c=898, q=15073)
       Call Trace:
         flush_tlb_mm_range+0x68/0x140
         tlb_flush_mmu.part.75+0x37/0xe0
         tlb_finish_mmu+0x55/0x60
         zap_page_range+0x142/0x190
         SyS_madvise+0x3cd/0x9c0
         system_call_fastpath+0x1c/0x21
      
      swait_active() sustains to be true before finish_swait() is called in
      kvm_vcpu_block(), voluntarily preempted vCPUs are taken into account
      by kvm_vcpu_on_spin() loop greatly increases the probability condition
      kvm_arch_vcpu_runnable(vcpu) is checked and can be true, when APICv
      is enabled the yield-candidate vCPU's VMCS RVI field leaks(by
      vmx_sync_pir_to_irr()) into spinning-on-a-taken-lock vCPU's current
      VMCS.
      
      This patch fixes it by checking conservatively a subset of events.
      
      Cc: Paolo Bonzini <pbonzini@redhat.com>
      Cc: Radim Krčmář <rkrcmar@redhat.com>
      Cc: Christian Borntraeger <borntraeger@de.ibm.com>
      Cc: Marc Zyngier <Marc.Zyngier@arm.com>
      Cc: stable@vger.kernel.org
      Fixes: 98f4a146 (KVM: add kvm_arch_vcpu_runnable() test to kvm_vcpu_on_spin() loop)
      Signed-off-by: NWanpeng Li <wanpengli@tencent.com>
      Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
      2bc73d91
  4. 07 8月, 2019 2 次提交
    • F
      x86/cpufeatures: Combine word 11 and 12 into a new scattered features word · b5dd7f61
      Fenghua Yu 提交于
      commit acec0ce081de0c36459eea91647faf99296445a3 upstream
      
      It's a waste for the four X86_FEATURE_CQM_* feature bits to occupy two
      whole feature bits words. To better utilize feature words, re-define
      word 11 to host scattered features and move the four X86_FEATURE_CQM_*
      features into Linux defined word 11. More scattered features can be
      added in word 11 in the future.
      
      Rename leaf 11 in cpuid_leafs to CPUID_LNX_4 to reflect it's a
      Linux-defined leaf.
      
      Rename leaf 12 as CPUID_DUMMY which will be replaced by a meaningful
      name in the next patch when CPUID.7.1:EAX occupies world 12.
      
      Maximum number of RMID and cache occupancy scale are retrieved from
      CPUID.0xf.1 after scattered CQM features are enumerated. Carve out the
      code into a separate function.
      
      KVM doesn't support resctrl now. So it's safe to move the
      X86_FEATURE_CQM_* features to scattered features word 11 for KVM.
      Signed-off-by: NFenghua Yu <fenghua.yu@intel.com>
      Signed-off-by: NBorislav Petkov <bp@suse.de>
      Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
      Cc: Aaron Lewis <aaronlewis@google.com>
      Cc: Andy Lutomirski <luto@kernel.org>
      Cc: Babu Moger <babu.moger@amd.com>
      Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
      Cc: "Sean J Christopherson" <sean.j.christopherson@intel.com>
      Cc: Frederic Weisbecker <frederic@kernel.org>
      Cc: "H. Peter Anvin" <hpa@zytor.com>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: Jann Horn <jannh@google.com>
      Cc: Juergen Gross <jgross@suse.com>
      Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
      Cc: kvm ML <kvm@vger.kernel.org>
      Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
      Cc: Masami Hiramatsu <mhiramat@kernel.org>
      Cc: Nadav Amit <namit@vmware.com>
      Cc: Paolo Bonzini <pbonzini@redhat.com>
      Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
      Cc: Peter Feiner <pfeiner@google.com>
      Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org>
      Cc: "Radim Krčmář" <rkrcmar@redhat.com>
      Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
      Cc: Ravi V Shankar <ravi.v.shankar@intel.com>
      Cc: Sherry Hurwitz <sherry.hurwitz@amd.com>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Thomas Lendacky <Thomas.Lendacky@amd.com>
      Cc: x86 <x86@kernel.org>
      Link: https://lkml.kernel.org/r/1560794416-217638-2-git-send-email-fenghua.yu@intel.comSigned-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
      b5dd7f61
    • A
      x86: kvm: avoid constant-conversion warning · 80f58147
      Arnd Bergmann 提交于
      [ Upstream commit a6a6d3b1f867d34ba5bd61aa7bb056b48ca67cff ]
      
      clang finds a contruct suspicious that converts an unsigned
      character to a signed integer and back, causing an overflow:
      
      arch/x86/kvm/mmu.c:4605:39: error: implicit conversion from 'int' to 'u8' (aka 'unsigned char') changes value from -205 to 51 [-Werror,-Wconstant-conversion]
                      u8 wf = (pfec & PFERR_WRITE_MASK) ? ~w : 0;
                         ~~                               ^~
      arch/x86/kvm/mmu.c:4607:38: error: implicit conversion from 'int' to 'u8' (aka 'unsigned char') changes value from -241 to 15 [-Werror,-Wconstant-conversion]
                      u8 uf = (pfec & PFERR_USER_MASK) ? ~u : 0;
                         ~~                              ^~
      arch/x86/kvm/mmu.c:4609:39: error: implicit conversion from 'int' to 'u8' (aka 'unsigned char') changes value from -171 to 85 [-Werror,-Wconstant-conversion]
                      u8 ff = (pfec & PFERR_FETCH_MASK) ? ~x : 0;
                         ~~                               ^~
      
      Add an explicit cast to tell clang that everything works as
      intended here.
      Signed-off-by: NArnd Bergmann <arnd@arndb.de>
      Link: https://github.com/ClangBuiltLinux/linux/issues/95Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
      Signed-off-by: NSasha Levin <sashal@kernel.org>
      80f58147
  5. 28 7月, 2019 2 次提交
  6. 26 7月, 2019 1 次提交
  7. 10 7月, 2019 2 次提交
    • W
      KVM: LAPIC: Fix pending interrupt in IRR blocked by software disable LAPIC · f25c0695
      Wanpeng Li 提交于
      commit bb34e690e9340bc155ebed5a3d75fc63ff69e082 upstream.
      
      Thomas reported that:
      
       | Background:
       |
       |    In preparation of supporting IPI shorthands I changed the CPU offline
       |    code to software disable the local APIC instead of just masking it.
       |    That's done by clearing the APIC_SPIV_APIC_ENABLED bit in the APIC_SPIV
       |    register.
       |
       | Failure:
       |
       |    When the CPU comes back online the startup code triggers occasionally
       |    the warning in apic_pending_intr_clear(). That complains that the IRRs
       |    are not empty.
       |
       |    The offending vector is the local APIC timer vector who's IRR bit is set
       |    and stays set.
       |
       | It took me quite some time to reproduce the issue locally, but now I can
       | see what happens.
       |
       | It requires apicv_enabled=0, i.e. full apic emulation. With apicv_enabled=1
       | (and hardware support) it behaves correctly.
       |
       | Here is the series of events:
       |
       |     Guest CPU
       |
       |     goes down
       |
       |       native_cpu_disable()
       |
       | 			apic_soft_disable();
       |
       |     play_dead()
       |
       |     ....
       |
       |     startup()
       |
       |       if (apic_enabled())
       |         apic_pending_intr_clear()	<- Not taken
       |
       |      enable APIC
       |
       |         apic_pending_intr_clear()	<- Triggers warning because IRR is stale
       |
       | When this happens then the deadline timer or the regular APIC timer -
       | happens with both, has fired shortly before the APIC is disabled, but the
       | interrupt was not serviced because the guest CPU was in an interrupt
       | disabled region at that point.
       |
       | The state of the timer vector ISR/IRR bits:
       |
       |     	     	       	        ISR     IRR
       | before apic_soft_disable()    0	      1
       | after apic_soft_disable()     0	      1
       |
       | On startup		      		 0	      1
       |
       | Now one would assume that the IRR is cleared after the INIT reset, but this
       | happens only on CPU0.
       |
       | Why?
       |
       | Because our CPU0 hotplug is just for testing to make sure nothing breaks
       | and goes through an NMI wakeup vehicle because INIT would send it through
       | the boots-trap code which is not really working if that CPU was not
       | physically unplugged.
       |
       | Now looking at a real world APIC the situation in that case is:
       |
       |     	     	       	      	ISR     IRR
       | before apic_soft_disable()    0	      1
       | after apic_soft_disable()     0	      1
       |
       | On startup		      		 0	      0
       |
       | Why?
       |
       | Once the dying CPU reenables interrupts the pending interrupt gets
       | delivered as a spurious interupt and then the state is clear.
       |
       | While that CPU0 hotplug test case is surely an esoteric issue, the APIC
       | emulation is still wrong, Even if the play_dead() code would not enable
       | interrupts then the pending IRR bit would turn into an ISR .. interrupt
       | when the APIC is reenabled on startup.
      
      From SDM 10.4.7.2 Local APIC State After It Has Been Software Disabled
      * Pending interrupts in the IRR and ISR registers are held and require
        masking or handling by the CPU.
      
      In Thomas's testing, hardware cpu will not respect soft disable LAPIC
      when IRR has already been set or APICv posted-interrupt is in flight,
      so we can skip soft disable APIC checking when clearing IRR and set ISR,
      continue to respect soft disable APIC when attempting to set IRR.
      Reported-by: NRong Chen <rong.a.chen@intel.com>
      Reported-by: NFeng Tang <feng.tang@intel.com>
      Reported-by: NThomas Gleixner <tglx@linutronix.de>
      Tested-by: NThomas Gleixner <tglx@linutronix.de>
      Cc: Paolo Bonzini <pbonzini@redhat.com>
      Cc: Radim Krčmář <rkrcmar@redhat.com>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Rong Chen <rong.a.chen@intel.com>
      Cc: Feng Tang <feng.tang@intel.com>
      Cc: stable@vger.kernel.org
      Signed-off-by: NWanpeng Li <wanpengli@tencent.com>
      Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
      f25c0695
    • P
      KVM: x86: degrade WARN to pr_warn_ratelimited · f6472f50
      Paolo Bonzini 提交于
      commit 3f16a5c318392cbb5a0c7a3d19dff8c8ef3c38ee upstream.
      
      This warning can be triggered easily by userspace, so it should certainly not
      cause a panic if panic_on_warn is set.
      
      Reported-by: syzbot+c03f30b4f4c46bdf8575@syzkaller.appspotmail.com
      Suggested-by: NAlexander Potapenko <glider@google.com>
      Acked-by: NAlexander Potapenko <glider@google.com>
      Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
      f6472f50
  8. 03 7月, 2019 1 次提交
  9. 19 6月, 2019 2 次提交
  10. 09 6月, 2019 1 次提交
    • T
      KVM: s390: Do not report unusabled IDs via KVM_CAP_MAX_VCPU_ID · 6a2fbec7
      Thomas Huth 提交于
      commit a86cb413f4bf273a9d341a3ab2c2ca44e12eb317 upstream.
      
      KVM_CAP_MAX_VCPU_ID is currently always reporting KVM_MAX_VCPU_ID on all
      architectures. However, on s390x, the amount of usable CPUs is determined
      during runtime - it is depending on the features of the machine the code
      is running on. Since we are using the vcpu_id as an index into the SCA
      structures that are defined by the hardware (see e.g. the sca_add_vcpu()
      function), it is not only the amount of CPUs that is limited by the hard-
      ware, but also the range of IDs that we can use.
      Thus KVM_CAP_MAX_VCPU_ID must be determined during runtime on s390x, too.
      So the handling of KVM_CAP_MAX_VCPU_ID has to be moved from the common
      code into the architecture specific code, and on s390x we have to return
      the same value here as for KVM_CAP_MAX_VCPUS.
      This problem has been discovered with the kvm_create_max_vcpus selftest.
      With this change applied, the selftest now passes on s390x, too.
      Reviewed-by: NAndrew Jones <drjones@redhat.com>
      Reviewed-by: NCornelia Huck <cohuck@redhat.com>
      Reviewed-by: NDavid Hildenbrand <david@redhat.com>
      Signed-off-by: NThomas Huth <thuth@redhat.com>
      Message-Id: <20190523164309.13345-9-thuth@redhat.com>
      Cc: stable@vger.kernel.org
      Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
      
      6a2fbec7
  11. 04 6月, 2019 1 次提交
  12. 31 5月, 2019 2 次提交
  13. 26 5月, 2019 1 次提交
    • V
      x86: kvm: hyper-v: deal with buggy TLB flush requests from WS2012 · a0a49d87
      Vitaly Kuznetsov 提交于
      [ Upstream commit da66761c2d93a46270d69001abb5692717495a68 ]
      
      It was reported that with some special Multi Processor Group configuration,
      e.g:
       bcdedit.exe /set groupsize 1
       bcdedit.exe /set maxgroup on
       bcdedit.exe /set groupaware on
      for a 16-vCPU guest WS2012 shows BSOD on boot when PV TLB flush mechanism
      is in use.
      
      Tracing kvm_hv_flush_tlb immediately reveals the issue:
      
       kvm_hv_flush_tlb: processor_mask 0x0 address_space 0x0 flags 0x2
      
      The only flag set in this request is HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES,
      however, processor_mask is 0x0 and no HV_FLUSH_ALL_PROCESSORS is specified.
      We don't flush anything and apparently it's not what Windows expects.
      
      TLFS doesn't say anything about such requests and newer Windows versions
      seem to be unaffected. This all feels like a WS2012 bug, which is, however,
      easy to workaround in KVM: let's flush everything when we see an empty
      flush request, over-flushing doesn't hurt.
      Signed-off-by: NVitaly Kuznetsov <vkuznets@redhat.com>
      Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
      Signed-off-by: NSasha Levin <sashal@kernel.org>
      a0a49d87
  14. 22 5月, 2019 2 次提交
  15. 17 5月, 2019 2 次提交
  16. 15 5月, 2019 4 次提交
  17. 08 5月, 2019 1 次提交